Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Isocyanide-based Multicomponent Reactions (IMCRs) in Water or Aqueous Biphasic Systems

Author(s): Chitteti Divyavani, Pannala Padmaja and Pedavenkatagari Narayana Reddy*

Volume 21, Issue 2, 2024

Published on: 09 June, 2023

Page: [140 - 165] Pages: 26

DOI: 10.2174/1570179420666230330170845

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Isocyanide is an intriguing one-carbon synthon that is frequently employed in a variety of carbon-carbon and carbon-heteroatom bond-forming reactions. Isocyanide-based multicomponent reactions (IMCRs) are effective synthetic tools in organic synthesis for the preparation of complex heterocyclic molecules. The IMCRs in water have become an attractive research direction, enabling simultaneous growth of both IMCRs and green solvents towards ideal organic synthesis.

Objective: The goal of this review is to provide a general overview of IMCRs in water or biphasic aqueous systems for accessing various organic molecules, as well as an examination of their benefits and mechanistic insights.

Conclusion: High atom economies, mild reaction conditions, high yields, and catalyst-free processes are crucial features of these IMCRs in water or biphasic aqueous systems.

Keywords: Isocyanide-based multicomponent reactions (IMCRs), water, aqueous biphasic systems, heterocyclic compounds, reaction mechanism, bond-forming reactions, organic molecules.

Graphical Abstract
[1]
Qiu, G.; Ding, Q.; Wu, J. Recent advances in isocyanide insertion chemistry. Chem. Soc. Rev., 2013, 42(12), 5257-5269.
[http://dx.doi.org/10.1039/c3cs35507a] [PMID: 23456037]
[2]
Lygin, A.V.; de Meijere, A. Isocyanides in the synthesis of nitrogen heterocycles. Angew. Chem. Int. Ed., 2010, 49(48), 9094-9124.
[http://dx.doi.org/10.1002/anie.201000723] [PMID: 21053220]
[3]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[4]
Koopmanschap, G.; Ruijter, E.; Orru, R.V.A. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J. Org. Chem., 2014, 10, 544-598.
[http://dx.doi.org/10.3762/bjoc.10.50] [PMID: 24605172]
[5]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[6]
Ugi, I. Isonitrile chemistry; Academic Press: London, 1971.
[7]
Ugi, I. From isocyanides via four-component condensations to antibiotic syntheses. Angew. Chem. Int. Ed. Engl., 1982, 21(11), 810-819.
[http://dx.doi.org/10.1002/anie.198208101]
[8]
Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G.C.; Zhu, J. To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chem. Soc. Rev., 2017, 46(5), 1295-1357.
[http://dx.doi.org/10.1039/C6CS00444J] [PMID: 27983738]
[9]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3(10), 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[10]
Khan, M.M.; Yousuf, R.; Khan, S.; Shafiullah, S. Recent advances in multicomponent reactions involving carbohydrates. RSC Advances, 2015, 5(71), 57883-57905.
[http://dx.doi.org/10.1039/C5RA08059B]
[11]
Zhu, J. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 2003(7), 1133-1144.
[http://dx.doi.org/10.1002/ejoc.200390167]
[12]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[13]
Yi, F.; Zhao, W.; Wang, Z.; Bi, X. Silver-mediate [3+2] cycloaddition of alkynes and N- isocyanoiminotriphenylphosphorane: Access to monosubstituted pyrazoles. Org. Lett., 2019, 21(9), 3158-3161.
[http://dx.doi.org/10.1021/acs.orglett.9b00860] [PMID: 30990050]
[14]
Ghorai, S.; Lin, Y.; Xia, Y.; Wink, D.J.; Lee, D. Silver-catalyzed selective multicomponent coupling reactions of arynes with nitriles and isonitriles. Org. Lett., 2020, 22(2), 642-647.
[http://dx.doi.org/10.1021/acs.orglett.9b04416] [PMID: 31891273]
[15]
George, J.; Kim, S.Y.; Oh, K. Three-component reactions to spirocyclicpyrrolidinonylformimidamindes: α-Isocyano lactams as two-atom unit in silver- catalyzed formal [3+2] cycloaddition. Org. Lett., 2018, 20(22), 7192-7196.
[http://dx.doi.org/10.1021/acs.orglett.8b03118] [PMID: 30371083]
[16]
Hu, Z.; Dong, J.; Li, Z.; Yuan, B.; Wei, R.; Xu, X. Metal-free triple annulation of ene-yne- ketones with isocyanides: Domino access to furan-fused heterocycles via furoketenimine. Org. Lett., 2018, 20(21), 6750-6754.
[http://dx.doi.org/10.1021/acs.orglett.8b02870] [PMID: 30336052]
[17]
Kaur, T.; Wadhwa, P.; Bagchi, S.; Sharma, A. Isocyanide based [4+1] cycloaddition reactions: An indispensable tool in Multi-Component Reactions (MCRs). Chem. Commun., 2016, 52(43), 6958-6976.
[http://dx.doi.org/10.1039/C6CC01562J] [PMID: 27063921]
[18]
Yuan, W.K.; Liu, Y.F.; Lan, Z.; Wen, L.R.; Li, M. Nickle catalysis enables access to thiazolidines from thioureas via oxidative double isocyanide insertion reactions. Org. Lett., 2018, 20(22), 7158-7162.
[http://dx.doi.org/10.1021/acs.orglett.8b03098] [PMID: 30398058]
[19]
Mokhtari, T.S.; Amrollahi, M.A.; Sheikhhosseini, E.; Sheibani, H. Isocyanide-based multicomponent reactions: One-pot catalyst-free synthesis of carboxamides. ChemistrySelect, 2018, 3(45), 12813-12815.
[http://dx.doi.org/10.1002/slct.201801001]
[20]
Masdeu, C.; Gómez, E.; Williams, N.A.O.; Lavilla, R. Double insertion of isocyanides into dihydropyridines: direct access to substituted benzimidazolium salts. Angew. Chem. Int. Ed., 2007, 46(17), 3043-3046.
[http://dx.doi.org/10.1002/anie.200605070] [PMID: 17352444]
[21]
Lei, J.; Li, Y.; Xu, J.; Tang, D.Y.; Shao, J.W.; Li, H.; Chen, Z.Z.; Xu, Z.G. An acid-catalyzed 1,4-addition isocyanide-based multicomponent reaction in neat water. Green Chem., 2020, 22(12), 3716-3720.
[http://dx.doi.org/10.1039/D0GC00652A]
[22]
Hu, W.; Li, J.; Xu, Y.; Li, J.; Wu, W.; Liu, H.; Jiang, H. Palladium-catalyzed redox-neutral N-O/C(sp3)-H functionalization of aryl oximes with isocyanides. Org. Lett., 2017, 19(3), 678-681.
[http://dx.doi.org/10.1021/acs.orglett.6b03852] [PMID: 28121456]
[23]
Hu, W.; Li, M.; Jiang, G.; Wu, W.; Jiang, H. Synthesis of 2,3-difunctionalized benzofuran derivatives through palladium-catalyzed double isocyanide insertion reaction. Org. Lett., 2018, 20(12), 3500-3503.
[http://dx.doi.org/10.1021/acs.orglett.8b01277] [PMID: 29870267]
[24]
Shaabani, A.; Maleki, A.; Rezayan, A.H.; Sarvary, A. Recent progress of isocyanide-based multicomponent reactions in Iran. Mol. Divers., 2011, 15(1), 41-68.
[http://dx.doi.org/10.1007/s11030-010-9258-1] [PMID: 20669047]
[25]
Koszelewski, D.; Redzej, A.; Ostaszewski, R. The study on efficient hydrolases immobilization for the kinetic resolution of the α-acetoxyamides. J. Mol. Catal., B Enzym., 2007, 47, 51-57.
[http://dx.doi.org/10.1016/j.molcatb.2007.03.007]
[26]
Passerini, M.; Simone, L. Sopragliisonitrili (I). Composto del p-isonitrilazobenzolo con acetone edacidoacetico. Gazz. Chim. Ital., 1921, 51, 126-129.
[27]
Ugi, I.; Lohberger, S.; Karl, R. Comprehensive Organic Synthesis; Fleming, B.M.I, Ed.; Pergamon Press: Oxford, 1991, 2, pp. 1083.
[28]
Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. VersuchemitIsonitrilen. Angew. Chem., 1959, 71, 373-388.
[http://dx.doi.org/10.1002/ange.19590711110]
[29]
Liu, Z.Q. Two neglected multicomponent reactions: Asinger and Groebke reaction for constructing thiazolines and imidazolines. Curr. Org. Synth., 2015, 12(1), 20-60.
[http://dx.doi.org/10.2174/1570179411999141112144441]
[30]
El Kaim, L.; Grimaud, L. Beyond the Ugi reaction: Less conventional interactions between isocyanides and iminium species. Tetrahedron, 2009, 65(11), 2153-2171.
[http://dx.doi.org/10.1016/j.tet.2008.12.002]
[31]
Váradi, A.; Palmer, T.; Notis, D.R.; Majumdar, S. Isocyanide-based multicomponent reactions for the synthesis of heterocycles. Molecules, 2015, 21(1), 19.
[http://dx.doi.org/10.3390/molecules21010019] [PMID: 26703561]
[32]
Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[33]
Dömling, A. Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol., 2002, 6(3), 306-313.
[http://dx.doi.org/10.1016/S1367-5931(02)00328-9] [PMID: 12023110]
[34]
Ugi, I.; Heck, S. The multicomponent reactions and their libraries for natural and preparative chemistry. Comb. Chem. High Throughput Screen., 1970, 4(1), 1-34.
[http://dx.doi.org/10.2174/1386207013331291] [PMID: 11281825]
[35]
Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry, 2000, 6(18), 3321-3329.
[http://dx.doi.org/10.1002/1521-3765(20000915)6:18<3321:AID-CHEM3321>3.0.CO;2-A] [PMID: 11039522]
[36]
Grieco, P.A. Organic Synthesis in Water; Blackie Academic and Professional: London, 1998.
[http://dx.doi.org/10.1007/978-94-011-4950-1]
[37]
Li, C.J.; Chan, T.H. Organic Reactions in Aqueous Media; John Wiley and Sons: New York, 1997, p. 159.
[38]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[39]
Gu, Y. Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 2012, 14(8), 2091-2128.
[http://dx.doi.org/10.1039/c2gc35635j]
[40]
Anastas, P.; Williamson, T.C. Green Chemistry Frontiers in Benign Chemical Synthesis and Processes; Oxford University Press: New York, 1998.
[41]
Nazeri, M.T.; Nasiriani, T.; Farhid, H.; Javanbakht, S.; Bahri, F.; Shadi, M.; Shaabani, A. Sustainable synthesis of pseudopeptides via isocyanide-based multicomponent reactions in water. ACS Sustain. Chem.& Eng., 2022, 10(25), 8115-8134.
[http://dx.doi.org/10.1021/acssuschemeng.2c01030]
[42]
Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev., 2021, 13(2), 259-272.
[http://dx.doi.org/10.1007/s12551-021-00795-9] [PMID: 33936318]
[43]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[44]
Liu, Y.; Zhou, B.; Li, Q.; Jin, H. Nickel-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides and H2O: An expedient way to access alkyl amides. Synthesis, 2020, 52(22), 3466-3472.
[http://dx.doi.org/10.1055/s-0040-1707229]
[45]
Ramazani, A.; Rouhani, M.; Joo, S.W. Catalyst-free sonosynthesis of highly substituted propanamide derivatives in water. Ultrason. Sonochem., 2016, 28, 393-399.
[http://dx.doi.org/10.1016/j.ultsonch.2015.08.019] [PMID: 26384923]
[46]
Shaabani, A.; Sarvary, A.; Ghasemi, S.; Rezayan, A.H.; Ghadari, R.; Ng, S.W. An environmentally benign approach for the synthesis of bifunctional sulfonamide-amide compounds via isocyanide-based multicomponent reactions. Green Chem., 2011, 13(3), 582-585.
[http://dx.doi.org/10.1039/c0gc00442a]
[47]
Shaabani, A.; Soleimani, E.; Hossein Rezayan, A. A novel approach for the synthesis of alkyl and aryl sulfonamides. Tetrahedron Lett., 2007, 48(12), 2185-2188.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.091]
[48]
Shaabani, A.; Bazgir, A.; Soleimani, K.; Bijanzahdeh, H.R. Reaction between alkyl isocyanides and 1,1,1,5,5,5-hexafluoropentane-2,4-dione in the presence of water: One-pot synthesis of highly fluorinated γ-dihydroxy-α-hydroxy amides and γ-keto-α-hydroxy amides. J. Fluor. Chem., 2002, 116(1), 93-95.
[http://dx.doi.org/10.1016/S0022-1139(02)00119-7]
[49]
Yamada, T. Hirose, T.; Ōmura, S.; Sunazuka, T. Sunazuka. T. Organocatalytic α-addition of isocyanides to aldehydes. Eur. J. Org. Chem., 2015, 2015(2), 296-301.
[http://dx.doi.org/10.1002/ejoc.201403313]
[50]
Ghorai, S.; Lee, D. Synthesis of imides, imidates, amidines, and amides by intercepting the aryne-isocyanide adduct with weak nucleophiles. Org. Lett., 2019, 21(18), 7390-7393.
[http://dx.doi.org/10.1021/acs.orglett.9b02711] [PMID: 31482701]
[51]
Lam, P.Y.S.; Jadhav, P.K.; Eyermann, C.J.; Hodge, C.N.; Ru, Y.; Bacheler, L.T.; Meek, J.L.; Otto, M.J.; Rayner, M.M.; Wong, Y.N.; Chang, C-H.; Weber, P.C.; Jackson, D.A.; Sharpe, T.R.; Erickson-Viitanen, S. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science, 1994, 263(5145), 380-384.
[http://dx.doi.org/10.1126/science.8278812] [PMID: 8278812]
[52]
Angyal, A.; Demjén, A.; Wölfling, J.; Puskás, L.G.; Kanizsai, I. A green, isocyanide-based three-component reaction approach for the synthesis of multisubstituted ureas and thioureas. Tetrahedron Lett., 2018, 59(1), 54-57.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.053]
[53]
Batool, Z.; Xu, D.; Zhang, X.; Li, X.; Li, Y.; Chen, Z.; Li, B.; Li, L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 395-406.
[http://dx.doi.org/10.1080/10408398.2020.1734532] [PMID: 32146825]
[54]
Yadav, J.S.; Reddy, B.V.S.; Shubashree, S.; Sadashiv, K.; Rao, D.K. Organic synthesis in water: Green protocol for the synthesis of 2-amino furan derivatives. J. Mol. Catal. Chem., 2007, 272(1-2), 128-131.
[http://dx.doi.org/10.1016/j.molcata.2007.02.032]
[55]
Adib, M.; Mahdavi, M.; Bagherzadeh, S.; Zhu, L.G.; Rahimi-Nasrabadi, M. Reaction between anthranilic acids, salicylaldehydes and isocyanides in water: an efficient synthesis of 2-[2-(alkylimino)-1-benzofuran-3-yliden]aminobenzoic acids. Tetrahedron Lett., 2010, 51(1), 27-29.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.017]
[56]
Teimouri, M.B.; Khavasi, H.R. One-pot three-component regioselective synthesis of linear naphtho[2,3-b]-furan-4,9-diones. Tetrahedron, 2007, 63(41), 10269-10275.
[http://dx.doi.org/10.1016/j.tet.2007.07.082]
[57]
Teimouri, M.; Bazhrang, R. An efficient three-component reaction involving [3+1+1] furannulation leading to furanonaphthoquiones in water. Monatsh. Chem., 2008, 139, 957-961.
[http://dx.doi.org/10.1007/s00706-007-0846-4]
[58]
Sambavekara, P.P.; Aitawadea, M.M.; Kolekarb, G.B.; Deshmukhb, M.B.; Anbhule, P.V. Uncatalyzed synthesis of furo(2,3-d)pyrimidine-2,4(1H,3H)-diones in water and their antimicrobial activity. Indian J. Chem., 2014, 53B, 1454-1461.
[59]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[60]
Chen, D.; Yang, M.; Li, J.; Cui, P.; Su, L.; Shan, Y.; You, J.; Rojsitthisak, P.; Liu, J.B.; Qiu, G. Palladium-catalyzed cycloaddition of alkynylimines, double isocyanides, and H2O/KOAc. J. Org. Chem., 2020, 85(10), 6441-6449.
[http://dx.doi.org/10.1021/acs.joc.0c00323] [PMID: 32321251]
[61]
Qiu, G.; Wang, Q.; Zhu, J. Palladium-Catalyzed three-component reaction of propargyl carbonates, isocyanides, and alcohols or water: Switchable synthesis of pyrroles and its bicyclic analogues. Org. Lett., 2017, 19(1), 270-273.
[http://dx.doi.org/10.1021/acs.orglett.6b03592] [PMID: 28001417]
[62]
Roncali, J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications. Chem. Rev., 1992, 92(4), 711-738.
[http://dx.doi.org/10.1021/cr00012a009]
[63]
Holmes, J.M.; Lee, G.C.M.; Wijono, M.; Weinkam, R.; Wheeler, L.A.; Garst, M.E. Synthesis and carbonic anhydrase inhibitory activity of 4-substituted 2-thiophenesulfonamides. J. Med. Chem., 1994, 37(11), 1646-1651.
[http://dx.doi.org/10.1021/jm00037a015] [PMID: 8201598]
[64]
Luker, T.J.; Beaton, H.G.; Whiting, M.; Mete, A.; Cheshire, D.R. Palladium catalysed amination of electron deficient halothiophenes. Tetrahedron Lett., 2000, 41(40), 7731-7735.
[http://dx.doi.org/10.1016/S0040-4039(00)01307-1]
[65]
Pinto, I.L.; Jarvest, R.L.; Serafinowska, H.T. The synthesis of 5-alkoxy and 5-amino substituted thiophenes. Tetrahedron Lett., 2000, 41(10), 1597-1600.
[http://dx.doi.org/10.1016/S0040-4039(99)02338-2]
[66]
Matloubi Moghaddam, F.; Khodabakhshi, M.R.; Latifkar, A. A one-pot multicomponent synthesis of polysubstituted thiophenes via the reactions of an isocyanide, α-haloketones, and β-ketodithioesters in water. Tetrahedron Lett., 2014, 55(6), 1251-1254.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.014]
[67]
Moghaddam, F.M.; Bardajee, G.R.; Dolabi, M. An efficient one-pot synthesis of tri-substituted thiophenes via a multicomponent reaction in water. J. Sulfur Chem., 2010, 31(5), 387-393.
[http://dx.doi.org/10.1080/17415993.2010.496129]
[68]
Oliaruso, M.A.; Wolf, J.F. Synthesis of Lactones and Lactams; Wiley: New York, NY, 1993.
[http://dx.doi.org/10.1002/9780470772522]
[69]
Ramazani, A.; Rezaei, A.; Mahyari, A.T.; Rouhani, M.; Khoobi, M. Three component reaction of an isocyanide and a dialkylacetylenedicarboxylate with a phenacyl halide in the presence of water: An efficient method for the one‐pot synthesis of γ‐iminolactone derivatives. Helv. Chim. Acta, 2010, 93(10), 2033-2036.
[http://dx.doi.org/10.1002/hlca.201000057]
[70]
Safaei, H.R.; Shioukhi, N.; Shekouhy, M. Eco-friendly multi-component synthesis of γ-spiroiminolactones in water. Monatsh. Chem., 2013, 144, 1855-1863.
[http://dx.doi.org/10.1007/s00706-013-1060-1] [PMID: 29318310]
[71]
Levandowski, B.J.; Raines, R.T. Click chemistry with cyclopentadiene. Chem. Rev., 2021, 121(12), 6777-6801.
[http://dx.doi.org/10.1021/acs.chemrev.0c01055] [PMID: 33651602]
[72]
Emtiazi, H.; Ali Amrollahi, M. Ultrasound-assisted synthesis of highly functionalized cyclopentadienes via an isocyanide-based three-component reaction. Helv. Chim. Acta, 2013, 96(12), 2196-2199.
[http://dx.doi.org/10.1002/hlca.201300041]
[73]
Cheng, Y.; Huang, Z.T.; Wang, M.X. Heterocyclic enamines: The versatile intermediates in the synthesis of heterocyclic compounds and natural products. Curr. Org. Chem., 2004, 8(4), 325-351.
[http://dx.doi.org/10.2174/1385272043485936]
[74]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[75]
Zhu, X.; Xu, X.P.; Sun, C.; Wang, H.Y.; Zhao, K.; Ji, S.J. Direct construction of imino-pyrrolidine-thione scaffold via isocyanide-based multicomponent reaction. J. Comb. Chem., 2010, 12(6), 822-828.
[http://dx.doi.org/10.1021/cc100014g] [PMID: 20804131]
[76]
Jiang, H.; Tian, Y.; Tianc, L.; Li, J. A multicomponent bicyclization reaction of isocyanide, allenoate, imine and water to synthesize pyrrolidine-fused rings. RSC Advances, 2017, 7, 32300-32303.
[http://dx.doi.org/10.1039/C7RA05701F]
[77]
Barrow, J.C.; Rittle, K.E.; Ngo, P.L.; Selnick, H.G.; Graham, S.L.; Pitzenberger, S.M.; McGaughey, G.B.; Colussi, D.; Lai, M.T.; Huang, Q.; Tugusheva, K.; Espeseth, A.S.; Simon, A.J.; Munshi, S.K.; Vacca, J.P. Design and synthesis of 2,3,5-substituted imidazolidin-4-one inhibitors of BACE-1. ChemMedChem, 2007, 2(7), 995-999.
[http://dx.doi.org/10.1002/cmdc.200700038] [PMID: 17458843]
[78]
Attorresi, C.I.; Bonifazi, E.L.; Ramírez, J.A.; Gola, G.F. One-step synthesis of N, N '-substituted 4-imidazolidinones by an isocyanide-based pseudo-five-multicomponent reaction. Org. Biomol. Chem., 2018, 16(46), 8944-8949.
[http://dx.doi.org/10.1039/C8OB02229A] [PMID: 30452056]
[79]
Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Isoxazoline containing natural products as anticancer agents: A review. Eur. J. Med. Chem., 2014, 77, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.063] [PMID: 24631731]
[80]
Habibi, A.; Vafadarnejad, F.; Armand, M.A. An isocyanide based multicomponent reaction: New route for synthesis of Isoxazolinedione. J. Heterocycl. Chem., 2013, 50(4), 887-890.
[http://dx.doi.org/10.1002/jhet.719]
[81]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[82]
Chandgude, A.L.; Dömling, A. An efficient Passerini tetrazole reaction (PT-3CR). Green Chem., 2016, 18(13), 3718-3721.
[http://dx.doi.org/10.1039/C6GC00910G] [PMID: 27840590]
[83]
Mortzfeld, F.B.; Hashem, C.; Vranková, K.; Winkler, M.; Rudroff, F. Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol. J., 2020, 15(11)2000064
[http://dx.doi.org/10.1002/biot.202000064]
[84]
Shaabani, A.; Hajishaabanha, F.; Mofakham, H.; Mahyari, M.; Lali, B. Isocyanide-based three-component synthesis of highly substituted 1,6-Dihydro-6,6-dimethylpyrazine-2,3-dicarbonitrile, 3,4-Dihydrobe-nzo[g]quinoxalin-2-amine, and 3,4-Dihydro-3,3-dimethyl-quinoxalin-2-amine Derivatives. Helv. Chim. Acta, 2012, 95(2), 246-254.
[http://dx.doi.org/10.1002/hlca.201100270]
[85]
Xiu, C.; Hua, Z.; Xiao, B.; Tang, W.J.; Zhou, H.P.; Liu, X.H.; Liu, X.H. Novel benzopyran derivatives and their therapeutic applications: a patent review (2009–2016). Expert Opin. Ther. Pat., 2017, 27(9), 1031-1045.
[http://dx.doi.org/10.1080/13543776.2017.1338687] [PMID: 28627270]
[86]
Soleimani, E.; Ghorbani, S.; Ghasempour, H.R. Novel isocyanide-based three-component reaction: a facile synthesis of substituted 1H-chromeno[2,3-d]pyrimidine-5-carboxamides. Tetrahedron, 2013, 69(39), 8511-8515.
[http://dx.doi.org/10.1016/j.tet.2013.06.080]
[87]
Scott, J.D.; Williams, R.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 2002, 102(5), 1669-1730.
[http://dx.doi.org/10.1021/cr010212u] [PMID: 11996547]
[88]
Shaabani, A.; Soleimani, E.; Khavasi, H.R. An unexpected, novel, three-component reaction between isoquinoline, an isocyanide and strong CH-acids in water. Tetrahedron Lett., 2007, 48(27), 4743-4747.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.019]
[89]
Shaabani, A.; Soleimani, E.; Moghimi-Rad, J. A novel three-component reaction for the synthesis of 1,2-dihydroisoquinolines via the reaction of isoquinoline and isocyanides with strong CH-acids in water. Tetrahedron Lett., 2008, 49(7), 1277-1281.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.079]
[90]
Díaz, J.L.; Miguel, M.; Lavilla, R. N-acylazinium salts: A new source of iminium ions for Ugi-type processes. J. Org. Chem., 2004, 69(10), 3550-3553.
[http://dx.doi.org/10.1021/jo049823n] [PMID: 15132569]
[91]
Katritzky, A.R.; Rees, C.W. Comprehensive Heterocyclic Chemistry, 1ST ed., Pergamon Press: New Youk, 1984.
[92]
Mousavi Faraz, S.; Rahmati, A.; Mirkhani, V. One-pot isocyanide-based five-component reaction: Synthesis of highly functionalized N -cyclohexyl-2-(2,4-dioxo-2,3,4,5 tetrahydro-1 H -benzo[b][1,5]diaze-pin-3-yl)-2-phenylacetamides. Synth. Commun., 2017, 47(6), 557-565.
[http://dx.doi.org/10.1080/00397911.2016.1271894]
[93]
Astaraki, A.M.; Bazgir, A. Synthesis of New Tetrahydro-1,5-benzodiazepin-3-yl-2-phenylacetamides via isocyanide-based multicomponent reactions. J. Heterocycl. Chem., 2013, 50(1), 175-178.
[http://dx.doi.org/10.1002/jhet.1041]
[94]
Shaabani, A.; Maleki, A.; Mofakham, H. Novel multicomponent one-pot synthesis of tetrahydro-1H-1,5-benzodiazepine-2-carboxamide derivatives. J. Comb. Chem., 2008, 10(4), 595-598.
[http://dx.doi.org/10.1021/cc8000635] [PMID: 18553983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy