Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Identification of Essential Genes and Drug Discovery in Bladder Cancer and Inflammatory Bowel Disease via Text Mining and Bioinformatics Analysis

Author(s): Qingyuan Zheng, Liantao Guo, Rui Yang, Zhiyuan Chen and Xiuheng Liu*

Volume 20, Issue 4, 2024

Published on: 18 April, 2023

Page: [359 - 366] Pages: 8

DOI: 10.2174/1573409919666230330154008

Price: $65

conference banner
Abstract

Background: Bladder cancer (BCa) is the most common malignancy of the urinary system. Inflammation is critical in the occurrence and development of BCa. The purpose of this study was to identify key genes and pathways of inflammatory bowel disease in BCa through text mining technology and bioinformatics technology and to explore potential therapeutic drugs for BCa.

Methods: Genes associated with BCa and Crohn's disease (CD) were detected using the text mining tool GenClip3, and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape, and modular analysis was performed using the Molecular Complex Detection plugin (MCODE). Finally, the genes clustered in the first two modules were selected as core genes, and the drug-gene interaction database was used to discover potential therapeutic drugs.

Results: We identified 796 genes shared by "Bladder cancer" and "Crohn's disease" by text mining. Gene function enrichment analysis yielded 18 enriched GO terms and the 6 most relevant KEGG pathways. A PPI network with 758 nodes and 4014 edges was constructed, and 20 gene modules were obtained using MCODE. We selected the top two gene clusters as core candidate genes. We found that 3 out of 55 selected core genes could be targeted by 26 existing drugs.

Conclusion: The results indicated that CXCL12, FGF2 and FSCN1 are potential key genes involved in CD with BCa. Additionally, 26 drugs were identified as potential therapeutics for BCa treatment and management.

Keywords: Bladder cancer, inflammatory bowel disease, crohn's disease, text mining, drug discovery, key genes.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; Rouanne, M.; Thalmann, G.N.; Veskimäe, E.; Ribal, M.J.; van der Heijden, A.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines. Eur. Urol., 2021, 79(1), 82-104.
[http://dx.doi.org/10.1016/j.eururo.2020.03.055] [PMID: 32360052]
[3]
Zhang, C.; Liu, S.; Peng, L.; Wu, J.; Zeng, X.; Lu, Y.; Shen, H.; Luo, D. Does inflammatory bowel disease increase the risk of lower urinary tract tumors: A meta-analysis. Transl. Androl. Urol., 2021, 10(1), 164-173.
[http://dx.doi.org/10.21037/tau-20-1020] [PMID: 33532306]
[4]
Geng, Z.; Geng, Q. Risk of urinary bladder cancer in patients with inflammatory bowel diseases: A meta-analysis. Front. Surg., 2021, 8, 636791.
[http://dx.doi.org/10.3389/fsurg.2021.636791] [PMID: 34124132]
[5]
Ghandour, R.; Singla, N.; Lotan, Y. Treatment options and outcomes in nonmetastatic muscle invasive bladder cancer. Trends Cancer, 2019, 5(7), 426-439.
[http://dx.doi.org/10.1016/j.trecan.2019.05.011] [PMID: 31311657]
[6]
Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle‐invasive and advanced bladder cancer in 2020. CA Cancer J. Clin., 2020, 70(5), 404-423.
[http://dx.doi.org/10.3322/caac.21631] [PMID: 32767764]
[7]
Lobo, N.; Mount, C.; Omar, K.; Nair, R.; Thurairaja, R.; Khan, M.S. Landmarks in the treatment of muscle-invasive bladder cancer. Nat. Rev. Urol., 2017, 14(9), 565-574.
[http://dx.doi.org/10.1038/nrurol.2017.82] [PMID: 28675174]
[8]
Koch, G.E.; Smelser, W.W.; Chang, S.S. Side effects of intravesical BCG and chemotherapy for bladder cancer: What they are and how to manage them. Urology, 2021, 149, 11-20.
[http://dx.doi.org/10.1016/j.urology.2020.10.039] [PMID: 33181123]
[9]
Actis, G.C.; Pellicano, R.; Fagoonee, S.; Ribaldone, D.G. History of inflammatory bowel diseases. J. Clin. Med., 2019, 8(11), 1970.
[http://dx.doi.org/10.3390/jcm8111970] [PMID: 31739460]
[10]
Berkowitz, L.; Schultz, B.M.; Salazar, G.A.; Pardo-Roa, C.; Sebastián, V.P.; Álvarez-Lobos, M.M.; Bueno, S.M. Impact of cigarette smoking on the gastrointestinal tract inflammation: Opposing effects in Crohn’s disease and ulcerative colitis. Front. Immunol., 2018, 9, 74.
[http://dx.doi.org/10.3389/fimmu.2018.00074] [PMID: 29441064]
[11]
Pedersen, N.; Duricova, D.; Elkjaer, M.; Gamborg, M.; Munkholm, P.; Jess, T. Risk of extra-intestinal cancer in inflammatory bowel disease: Meta-analysis of population-based cohort studies. Am. J. Gastroenterol., 2010, 105(7), 1480-1487.
[http://dx.doi.org/10.1038/ajg.2009.760] [PMID: 20332773]
[12]
Gakis, G. The role of inflammation in bladder cancer. Adv. Exp. Med. Biol., 2014, 816, 183-196.
[http://dx.doi.org/10.1007/978-3-0348-0837-8_8] [PMID: 24818724]
[13]
Hsiao, Y.W.; Lu, T.P. Text-mining in cancer research may help identify effective treatments. Transl. Lung Cancer Res., 2019, 8(Suppl. 4), S460-S463.
[http://dx.doi.org/10.21037/tlcr.2019.12.20] [PMID: 32038938]
[14]
Zhang, N.; Xu, W.; Wang, S.; Qiao, Y.; Zhang, X. Computational drug discovery in chemotherapy-induced alopecia via text mining and biomedical databases. Clin. Ther., 2019, 41(5), 972-980.e8.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.003] [PMID: 31030996]
[15]
Kirk, J.; Shah, N.; Noll, B.; Stevens, C.B.; Lawler, M.; Mougeot, F.B.; Mougeot, J.L.C. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy. Support. Care Cancer, 2018, 26(8), 2695-2705.
[http://dx.doi.org/10.1007/s00520-018-4096-2] [PMID: 29476419]
[16]
Wang, J.H.; Zhao, L.F.; Wang, H.F.; Wen, Y.T.; Jiang, K.K.; Mao, X.M.; Zhou, Z.Y.; Yao, K.T.; Geng, Q.S.; Guo, D.; Huang, Z.X. GenCLiP 3: Mining human genes’ functions and regulatory networks from PubMed based on co-occurrences and natural language processing. Bioinformatics, 2019, btz807.
[http://dx.doi.org/10.1093/bioinformatics/btz807] [PMID: 31681951]
[17]
Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 2012, 40(D1), D109-D114.
[http://dx.doi.org/10.1093/nar/gkr988] [PMID: 22080510]
[18]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[19]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[20]
Sulochana, S.P.; Syed, M.; Chandrasekar, D.V.; Mullangi, R.; Srinivas, N.R. Clinical drug-drug pharmacokinetic interaction potential of sucralfate with other drugs: Review and perspectives. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(5), 469-503.
[http://dx.doi.org/10.1007/s13318-016-0335-4] [PMID: 27086359]
[21]
Mossanen, M. The epidemiology of bladder cancer. Hematol. Oncol. Clin. North Am., 2021, 35(3), 445-455.
[http://dx.doi.org/10.1016/j.hoc.2021.02.001] [PMID: 33958144]
[22]
Kappelman, M.D.; Farkas, D.K.; Long, M.D.; Erichsen, R.; Sandler, R.S.; Sørensen, H.T.; Baron, J.A. Risk of cancer in patients with inflammatory bowel diseases: A nationwide population-based cohort study with 30 years of follow-up evaluation. Clin. Gastroenterol. Hepatol., 2014, 12(2), 265-273.e1.
[http://dx.doi.org/10.1016/j.cgh.2013.03.034] [PMID: 23602821]
[23]
De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Grönberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer, 2007, 7(4), 256-269.
[http://dx.doi.org/10.1038/nrc2090] [PMID: 17384581]
[24]
Madanchi, M.; Zeitz, J.; Barthel, C.; Samaras, P.; Scharl, S.; Sulz, M.C.; Biedermann, L.; Frei, P.; Vavricka, S.R.; Rogler, G.; Scharl, M. Malignancies in patients with inflammatory bowel disease: A single-centre experience. Digestion, 2016, 94(1), 1-8.
[http://dx.doi.org/10.1159/000447259] [PMID: 27318857]
[25]
Janssens, R.; Struyf, S.; Proost, P. The unique structural and functional features of CXCL12. Cell. Mol. Immunol., 2018, 15(4), 299-311.
[http://dx.doi.org/10.1038/cmi.2017.107] [PMID: 29082918]
[26]
Nazari, A.; Khorramdelazad, H.; Hassanshahi, G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int. J. Clin. Oncol., 2017, 22(6), 991-1000.
[http://dx.doi.org/10.1007/s10147-017-1187-x] [PMID: 29022185]
[27]
Song, Y.; Jin, D.; Chen, J.; Luo, Z.; Chen, G.; Yang, Y.; Liu, X. Identification of an immune-related long non-coding RNA signature and nomogram as prognostic target for muscle-invasive bladder cancer. Aging, 2020, 12(12), 12051-12073.
[http://dx.doi.org/10.18632/aging.103369] [PMID: 32579540]
[28]
Zhao, X.; Tang, Y.; Ren, H.; Lei, Y. Identification of prognosis-related genes in bladder cancer microenvironment across TCGA database. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/9143695] [PMID: 33204728]
[29]
Alessi, P.; Leali, D.; Camozzi, M.; Cantelmo, A.; Albini, A.; Presta, M. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: Long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Eur. Cytokine Netw., 2009, 20(4), 225-234.
[http://dx.doi.org/10.1684/ecn.2009.0175] [PMID: 20167562]
[30]
Youssef, R.F.; Kapur, P.; Mosbah, A.; Abol-Enein, H.; Ghoneim, M.; Lotan, Y. Role of fibroblast growth factor in squamous cell carcinoma of the bladder: Prognostic biomarker and potential therapeutic target. Urol. Oncol., 2015, 33(3), 111.e1-111.e7.
[http://dx.doi.org/10.1016/j.urolonc.2014.09.020] [PMID: 25477183]
[31]
Zaravinos, A.; Volanis, D.; Lambrou, G.; Delakas, D.; Spandidos, D.A. Role of the angiogenic components, VEGFA, FGF2, OPN and RHOC, in urothelial cell carcinoma of the urinary bladder. Oncol. Rep., 2012, 28(4), 1159-1166.
[http://dx.doi.org/10.3892/or.2012.1948] [PMID: 22895562]
[32]
Gao, R.; Zhang, N.; Yang, J.; Zhu, Y.; Zhang, Z.; Wang, J.; Xu, X.; Li, Z.; Liu, X.; Li, Z.; Li, J.; Kong, C.; Bi, J. Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-β1 in bladder cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 111.
[http://dx.doi.org/10.1186/s13046-019-1102-6] [PMID: 30823924]
[33]
Zhang, N.; Bi, X.; Zeng, Y.; Zhu, Y.; Zhang, Z.; Liu, Y.; Wang, J.; Li, X.; Bi, J.; Kong, C. TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression. Oncol. Rep., 2016, 36(2), 977-983.
[http://dx.doi.org/10.3892/or.2016.4889] [PMID: 27350089]
[34]
Chiyomaru, T.; Enokida, H.; Tatarano, S.; Kawahara, K.; Uchida, Y.; Nishiyama, K.; Fujimura, L.; Kikkawa, N.; Seki, N.; Nakagawa, M. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br. J. Cancer, 2010, 102(5), 883-891.
[http://dx.doi.org/10.1038/sj.bjc.6605570] [PMID: 20160723]
[35]
Xue, M.; Pang, H.; Li, X.; Li, H.; Pan, J.; Chen, W. Long non‐coding RNA urothelial cancer‐associated 1 promotes bladder cancer cell migration and invasion by way of the hsa‐miR‐145- ZEB 1/2- FSCN 1 pathway. Cancer Sci., 2016, 107(1), 18-27.
[http://dx.doi.org/10.1111/cas.12844] [PMID: 26544536]
[36]
Daugherty, S.E.; Pfeiffer, R.M.; Sigurdson, A.J.; Hayes, R.B.; Leitzmann, M.; Schatzkin, A.; Hollenbeck, A.R.; Silverman, D.T. Nonsteroidal antiinflammatory drugs and bladder cancer: A pooled analysis. Am. J. Epidemiol., 2011, 173(7), 721-730.
[http://dx.doi.org/10.1093/aje/kwq437] [PMID: 21367875]
[37]
Agrawal, U.; Kumari, N.; Vasudeva, P.; Mohanty, N.K.; Saxena, S. Overexpression of COX2 indicates poor survival in urothelial bladder cancer. Ann. Diagn. Pathol., 2018, 34, 50-55.
[http://dx.doi.org/10.1016/j.anndiagpath.2018.01.008] [PMID: 29661728]
[38]
Wahli, W.; Michalik, L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab., 2012, 23(7), 351-363.
[http://dx.doi.org/10.1016/j.tem.2012.05.001] [PMID: 22704720]
[39]
Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol., 2019, 858, 172472.
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[40]
Goonewardene, T.I.; Bozcuk, H.; Oliver, R.T.D.; Barua, J.; Nargund, V.; Philip, T.; Mair, G.; Gibbs, S. Phase 1/2 study of synchronous methotrexate, cisplatin, vincristine (MOPq10) chemotherapy and radiation for patients with locally advanced bladder cancer. Urol. Int., 2001, 67(4), 293-297.
[http://dx.doi.org/10.1159/000051006] [PMID: 11741131]
[41]
Griffiths, G.; Hall, R.; Sylvester, R.; Raghavan, D.; Parmar, M.K. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: Long-term results of the BA06 30894 trial. J. Clin. Oncol., 2011, 29(16), 2171-2177.
[http://dx.doi.org/10.1200/JCO.2010.32.3139] [PMID: 21502557]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy