Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Advancement in Beneficial Effects of AVE 0991: A Brief Review

Author(s): Yang Deng, Wangli Ding, Qiang Peng, Wei Wang, Rui Duan* and Yingdong Zhang*

Volume 24, Issue 2, 2024

Published on: 14 April, 2023

Page: [139 - 158] Pages: 20

DOI: 10.2174/1389557523666230328134932

Price: $65

conference banner
Abstract

AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.

Keywords: AVE 0991, benefits, anti-inflammatory, anti-apoptotic, anti-oxidant, anti-fibrosis.

Graphical Abstract
[1]
Geng, X.; Chandra, A.; Stone, C.R.; Li, W.A.; Ding, Y. The cerebral circulation and cerebrovascular disease II: Pathogenesis of cerebrovascular disease. Brain Circ., 2017, 3(2), 57-65.
[http://dx.doi.org/10.4103/bc.bc_11_17] [PMID: 30276306]
[2]
Murray, C.J.L.; Lopez, A.D. Measuring the global burden of disease. New Engl. J. Med., 2013, 369(5), 448-457.
[http://dx.doi.org/10.1056/NEJMra1201534] [PMID: 23902484]
[3]
Lavoie, J.L.; Sigmund, C.D. Minireview: overview of the reninangiotensin system--an endocrine and paracrine system. Endocrinology, 2003, 144(6), 2179-2183.
[http://dx.doi.org/10.1210/en.2003-0150] [PMID: 12746271]
[4]
Luther, J.M.; Brown, N.J. The renin–angiotensin–aldosterone system and glucose homeostasis. Trends Pharmacol. Sci., 2011, 32(12), 734-739.
[http://dx.doi.org/10.1016/j.tips.2011.07.006] [PMID: 21880378]
[5]
Unger, T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol., 2002, 89(2), 3-9.
[http://dx.doi.org/10.1016/S0002-9149(01)02321-9] [PMID: 11835903]
[6]
Colafella, K.M.M.; Hilliard, L. M.; Denton, K. M. Epochs in the depressor/pressor balance of the renin-angiotensin system. Clin. Sci., 130(10), 761-771.2016,
[7]
Santos, R.A.S.; Campagnole-Santos, M.J.; Andrade, S.P. Angiotensin-(1–7): An update. Regul. Pept., 2000, 91(1-3), 45-62.
[http://dx.doi.org/10.1016/S0167-0115(00)00138-5] [PMID: 10967201]
[8]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[9]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[10]
Santos, R.A.S.e; Silva, A.C.S.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[11]
Sanjuliani, A.; Torres, M.; Paula, L. D.; Bassan, F. Reninangiotensin- aldosterone axis: Physiological and pathophysiological bases. Sanjuliani, 10(3), 90-117.2011,
[12]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[13]
Schindler, C.; Bramlage, P.; Kirch, W.; Ferrario, C.M. Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy. Vasc. Health Risk Manag., 2007, 3(1), 125-137.
[PMID: 17583183]
[14]
Young, D.; Waitches, G.; Birchmeier, C.; Fasano, O.; Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell, 1986, 45(5), 711-719.
[http://dx.doi.org/10.1016/0092-8674(86)90785-3] [PMID: 3708691]
[15]
Rabin, M.; Birnbaum, D.; Young, D.; Birchmeier, C.; Wigler, M.; Ruddle, F.H. Human ros1 and mas1 oncogenes located in regions of chromosome 6 associated with tumor-specific rearrangements. Oncogene Res., 1987, 1(2), 169-178.
[PMID: 3329713]
[16]
Probst, W.C.; Snyder, L.A.; Schuster, D.; Brosius, J.; Sealfon, S.C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol., 1992, 11(1), 1-20.
[http://dx.doi.org/10.1089/dna.1992.11.1] [PMID: 1310857]
[17]
Bader, M.; Alenina, N.; Andrade-Navarro, M.A.; Santos, R.A. MAS and its related G protein-coupled receptors. Mrgprs. Pharmacol. Rev., 2014, 66(4), 1080-1105.
[http://dx.doi.org/10.1124/pr.113.008136] [PMID: 25244929]
[18]
Wiemer, G.; Dobrucki, L.W.; Louka, F.R.; Malinski, T.; Heitsch, H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension, 2002, 40(6), 847-852.
[19]
Santos, R.A.S.; Ferreira, A.J. Pharmacological effects of AVE 0991, a nonpeptide angiotensin-(1-7) receptor agonist. Cardiovasc. Drug Rev., 2006, 24(3-4), 239-246.
[http://dx.doi.org/10.1111/j.1527-3466.2006.00239.x] [PMID: 17214600]
[20]
Skiba, D.S.; Nosalski, R.; Mikolajczyk, T.P.; Siedlinski, M.; Rios, F.J.; Montezano, A.C.; Jawien, J.; Olszanecki, R.; Korbut, R.; Czesnikiewicz-Guzik, M.; Touyz, R.M.; Guzik, T.J. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br. J. Pharmacol., 2017, 174(22), 4055-4069.
[http://dx.doi.org/10.1111/bph.13685] [PMID: 27935022]
[21]
Lee, S.; Evans, M.A.; Chu, H.X.; Kim, H.A.; Widdop, R.E.; Drummond, G.R.; Sobey, C.G. Effect of a selective mas receptor agonist in cerebral ischemia in vitro and in vivo. PLoS One, 2015, 10(11), e0142087.
[http://dx.doi.org/10.1371/journal.pone.0142087] [PMID: 26540167]
[22]
Pinheiro, S.V.B.; Simões e Silva, A.C.; Sampaio, W.O.; de Paula, R.D.; Mendes, E.P.; Bontempo, E.D.; Pesquero, J.B.; Walther, T.; Alenina, N.; Bader, M.; Bleich, M.; Santos, R.A.S. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension, 2004, 44(4), 490-496.
[23]
Qaradakhi, T.; Gadanec, L.K.; McSweeney, K.R.; Tacey, A.; Apostolopoulos, V.; Levinger, I.; Rimarova, K.; Egom, E.E.; Rodrigo, L.; Kruzliak, P.; Kubatka, P.; Zulli, A. The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin. Exp. Pharmacol. Physiol., 2020, 47(5), 751-758.
[http://dx.doi.org/10.1111/1440-1681.13251] [PMID: 31901211]
[24]
Tørris, C.; Småstuen, M.C.; Molin, M. Nutrients in Fish and Possible Associations with Cardiovascular Disease Risk Factors in Metabolic Syndrome. Nutrients, 2018, 10(7), 952.
[http://dx.doi.org/10.3390/nu10070952] [PMID: 30041496]
[25]
Narasimhan, S.D. Beyond Statins: New Therapeutic Frontiers for Cardiovascular Disease. Cell, 2017, 169(6), 971-973.
[http://dx.doi.org/10.1016/j.cell.2017.05.032] [PMID: 28575673]
[26]
Benter, I.F.; Yousif, M.H.M.; Anim, J.T.; Cojocel, C.; Diz, D.I. Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L -NAME. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(2), H684-H691.
[http://dx.doi.org/10.1152/ajpheart.00632.2005] [PMID: 16403946]
[27]
Tanrıverdi, L.H.; Özhan, O.; Ulu, A.; Yıldız, A.; Ateş, B.; Vardı, N.; Acet, H.A.; Parlakpinar, H. Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension. Fundam. Clin. Pharmacol., 2022.
[PMID: 36117326]
[28]
Baraldi, D. Cardiac anti-fibrotic effects of direct AT2 and Mas receptor stimulation in stroke-prone spontaneously hypertensive rats. J. Mol. Cell. Cardiol., 2016, 98(S34)
[29]
Wessel, N.; Malberg, H.; Heringer-Walther, S.; Schultheiss, H.P.; Walther, T. The angiotensin-(1-7) receptor agonist AVE0991 dominates the circadian rhythm and baroreflex in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol., 2007, 49(2), 67-73.
[http://dx.doi.org/10.1097/FJC.0b013e31802cffe9] [PMID: 17312445]
[30]
Carvalho, M.B.L.; Duarte, F.V.; Faria-Silva, R.; Fauler, B.; da Mata Machado, L.T.; de Paula, R.D.; Campagnole-Santos, M.J.; Santos, R.A.S. Evidence for Mas-mediated bradykinin potentiation by the angiotensin-(1-7) nonpeptide mimic AVE 0991 in normotensive rats. Hypertension, 2007, 50(4), 762-767.
[31]
Santiago, N. M.; Honoratosampaio, K.; Isoldi, M. C.; Santos, R. A.; Campagnolesantos, M. J. The cardiac anti-hypertrophic effect of an orally active mas agonist is associated to a decrease in beta-arrestin in doca-salt hypertensive rats., 2010.
[32]
Singh, Y.; Singh, K.; Sharma, P.L. Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA–salt-induced hypertension in rats. Mol. Cell. Biochem., 2013, 373(1-2), 189-194.
[http://dx.doi.org/10.1007/s11010-012-1489-2] [PMID: 23108791]
[33]
Cunha, T.M.B.; Lima, W.G.; Silva, M.E.; Souza Santos, R.A.; Campagnole-Santos, M.J.; Alzamora, A.C. The nonpeptide ANG-(1–7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sci., 2013, 92(4-5), 266-275.
[http://dx.doi.org/10.1016/j.lfs.2012.12.008] [PMID: 23333828]
[34]
Jiangui, H.; Shenglong, C.; Yiyi, H.; Yili, C.; Yuguang, D.; Hong, M. The effective comparison of nonpeptide angiotensin- (1-7) receptor agonist AVE0991 and Captopril on attenuating cardiac remodeling induced by constriction of abdominal aorta in rats. Circulation, 2010, 122(2), e220.
[35]
Colafella, K.M.; Vinh, A.; Tikellis, C.; Widdop, R.; Denton, K. ACE2 contributes to the normal regulation of arterial pressure and immunity in females of reproductive AGE. J. Hypertens., 2021, 39(Suppl. 1), e341-e342.
[http://dx.doi.org/10.1097/01.hjh.0000748476.77597.de]
[36]
Meir, K.S.; Leitersdorf, E. Atherosclerosis in the apolipoprotein-E-deficient mouse: A decade of progress. Arterioscler. Thromb. Vasc. Biol., 2004, 24(6), 1006-1014.
[http://dx.doi.org/10.1161/01.ATV.0000128849.12617.f4] [PMID: 15087308]
[37]
Toton-Zuranska, J.; Gajda, M.; Pyka-Fosciak, G.; Kus, K.; Pawlowska, M.; Niepsuj, A.; Wolkow, P.; Olszanecki, R.; Jawien, J.; Korbut, R. AVE 0991-angiotensin-(1-7) receptor agonist, inhibits atherogenesis in apoE-knockout mice. J. Physiol. Pharmacol., 2010, 61(2), 181-183.
[38]
Jawien, J.; Toton-Zuranska, J.; Gajda, M.; Niepsuj, A.; Gebska, A.; Kus, K.; Suski, M.; Pyka-Fosciak, G.; Nowak, B.; Guzik, T.J.; Marcinkiewicz, J.; Olszanecki, R.; Korbut, R. Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J. Physiol. Pharmacol., 2012, 63(1), 77-85.
[39]
Wolkow, P.P.; Gebska, A.; Olszanecki, R.; Jawien, J.; Godlewski, J.; Zmudka, K.; Korbut, R. Angiotensin metabolites differently affect chemotaxis of monocyte-derived dendritic cells to CCL19. Eur. J. Immunol., 2009, 39, S656.
[40]
Olszanecki, R.; Suski, M.; Gebska, A.; Toton-Zuranska, J.; Kus, K.; Madej, J.; Bujak-Gizycka, B.; Jawien, J.; Korbut, R. The influence of angiotensin-(1-7) peptidomimetic (AVE 0991) and nebivolol on angiotensin I metabolism in aorta of apoE-knockout mice. J. Physiol. Pharmacol., 2013, 64(3), 317-320.
[41]
Suski, M.; Olszanecki, R.; Bujak-Giżycka, B.; Madej, J.; Stachowicz, A.; Korbut, R. Influence of angiotensin-(1–7) peptidemimetic (AVE 0991) on liver mitoproteome in apoE-knockout mice. Vascul. Pharmacol., 2012, 56(5-6), 384.
[http://dx.doi.org/10.1016/j.vph.2011.08.213]
[42]
Suski, M.; Olszanecki, R.; Stachowicz, A.; Madej, J.; Bujak-Giżycka, B.; Okoń, K.; Korbut, R. The influence of angiotensin-(1–7) Mas receptor agonist (AVE 0991) on mitochondrial proteome in kidneys of apoE knockout mice. Biochim. Biophys. Acta. Proteins Proteomics, 2013, 1834(12), 2463-2469.
[http://dx.doi.org/10.1016/j.bbapap.2013.08.008] [PMID: 23988828]
[43]
Deng, Z.Y.; Hu, M.M.; Xin, Y.F.; Gang, C. Resveratrol alleviates vascular inflammatory injury by inhibiting inflammasome activation in rats with hypercholesterolemia and vitamin D2 treatment. Inflamma. Res., 2015, 64(5), 321-332.
[44]
Jawien, J.; Toton-Zuranska, J.; Kus, K.; Pawlowska, M.; Olszanecki, R.; Korbut, R. The effect of AVE 0991, nebivolol and doxycycline on inflammatory mediators in an apoE-knockout mouse model of atherosclerosis. Med. Sci. Monit., 2012, 18(10), BR389-BR393.
[http://dx.doi.org/10.12659/MSM.883478] [PMID: 23018345]
[45]
Guzik, T.J.; Olszanecki, R.; Sadowski, J.; Kapelak, B.; Rudziński, P.; Jopek, A.; Kawczynska, A.; Ryszawa, N.; Loster, J.; Jawien, J.; Czesnikiewicz-Guzik, M.; Channon, K. M.; Korbut, R. Superoxide dismutase activity and expression in human venous and arterial bypass graft vessels. J. Physiol. Pharmacol., 2005, 56(2), 313-323.
[46]
Kwon, G.P.; Schroeder, J.L.; Amar, M.J.; Remaley, A.T.; Balaban, R.S. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation, 2008, 117(22), 2919-2927.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.754614] [PMID: 18506002]
[47]
Lemos, V.S.; Silva, D.M.R.; Walther, T.; Alenina, N.; Bader, M.; Santos, R.A.S. The endothelium-dependent vasodilator effect of the non-peptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J. Cardiovasc. Pharmacol., 2005, 46(3), 274-279.
[http://dx.doi.org/10.1097/01.fjc.0000175237.41573.63] [PMID: 16116331]
[48]
Raffai, G.; Durand, M.J.; Lombard, J.H. Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(4), H1341-H1352.
[http://dx.doi.org/10.1152/ajpheart.00202.2011] [PMID: 21803946]
[49]
Raffai, G.; Lombard, J.H. Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats. J. Vasc. Res., 2016, 53(1-2), 105-118.
[http://dx.doi.org/10.1159/000448714] [PMID: 27676088]
[50]
Stavrou, E.X.; Fang, C.; Merkulova, A.; Alhalabi, O.; Grobe, N.; Antoniak, S.; Mackman, N.; Schmaier, A.H. Reduced thrombosis in Klkb1−/− mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood, 2015, 125(4), 710-719.
[http://dx.doi.org/10.1182/blood-2014-01-550285] [PMID: 25339356]
[51]
Sheng-Long, C.; Yan-Xin, W.; Yi-Yi, H.; Ming, F.; Jian-Gui, H.; Yi-Li, C.; Wen-Jing, X.; Hong, M. AVE0991, a nonpeptide compound, attenuates angiotensin II-induced vascular smooth muscle cell proliferation via induction of heme oxygenase-1 and downregulation of p-38 MAPK phosphorylation. Hypertension, 2012.
[52]
Moriya, J. Critical roles of inflammation in atherosclerosis. J. Cardiol., 2019, 73(1), 22-27.
[http://dx.doi.org/10.1016/j.jjcc.2018.05.010] [PMID: 29907363]
[53]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11, 117.
[http://dx.doi.org/10.1186/1741-7015-11-117]
[54]
Deng, W.; Tang, T.; Hou, Y.; Zeng, Q.; Wang, Y.; Fan, W.; Qu, S. Extracellular vesicles in atherosclerosis. Clinica Chimica Acta, 2019, 495, 109-117.
[55]
Ma, H.; Wang, Y.L.; Hei, N.H.; Li, J.L.; Cao, X.R.; Dong, B.; Yan, W. AVE0991, a nonpeptide angiotensin-(1–7) mimic, inhibits angiotensin II–induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice. J. Mol. Med. (Berl.), 2020, 98(4), 541-551.
[http://dx.doi.org/10.1007/s00109-020-01880-4] [PMID: 32060588]
[56]
He, J.G.; Chen, S.L.; Huang, Y.Y.; Chen, Y.L.; Dong, Y.G.; Ma, H. The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin II through downregulation of transforming growth factor-β1/Smad2 expression. Heart Vessels, 2010, 25(5), 438-443.
[http://dx.doi.org/10.1007/s00380-009-1213-7] [PMID: 20676968]
[57]
Zeng, W.; Chen, W.; Leng, X.; Tang, L.; Sun, X.; Li, C.; Dai, G. Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991. Cardiovasc. Ther., 2012, 30(3), 152-161.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00255.x] [PMID: 21167013]
[58]
Souza, Á.P.S.; Sobrinho, D.B.S.; Almeida, J.F.Q.; Alves, G.M.M.; Macedo, L.M.; Porto, J.E.; Vêncio, E.F.; Colugnati, D.B.; Santos, R.A.S.; Ferreira, A.J.; Mendes, E.P.; Castro, C.H. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts. Clinical Science, 2013, 125(9), 449-459.
[59]
Ma, Y.; Huang, H.; Jiang, J.; Wu, L.; Lin, C.; Tang, A.; Dai, G.; He, J.; Chen, Y. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress. Biochem. Biophys. Res. Commun., 2016, 474(4), 621-625.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.050] [PMID: 26403967]
[60]
Ferreira, A.J.; Jacoby, B.A.; Araújo, C.A.A.; Macedo, F.A.F.F.; Silva, G.A.B.; Almeida, A.P.; Caliari, M.V.; Santos, R.A.S. The nonpeptide angiotensin-(1–7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(2), H1113-H1119.
[http://dx.doi.org/10.1152/ajpheart.00828.2006] [PMID: 17056670]
[61]
Ferreira, A.J.; Oliveira, T.L.; Castro, M.C.M.; Almeida, A.P.; Castro, C.H.; Caliari, M.V.; Gava, E.; Kitten, G.T.; Santos, R.A.S. Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1-7) analogue AVE 0991. Life Sci., 2007, 81(11), 916-923.
[http://dx.doi.org/10.1016/j.lfs.2007.07.022] [PMID: 17825326]
[62]
Ozhan, O.; Parlakpinar, H.; Acet, A. Comparison of the effects of losartan, captopril, angiotensin II type 2 receptor agonist compound 21, and MAS receptor agonist AVE 0991 on myocardial ischemia–reperfusion necrosis in rats. Fundam. Clin. Pharmacol., 2021, 35(4), 669-680.
[http://dx.doi.org/10.1111/fcp.12599] [PMID: 32810901]
[63]
Yili, C.; Fengjuan, Y.; Huiling, H.; Lingling, W.; Jiangui, H. GW25-e1596 Nonpeptide angiotensin- (1-7) analogue AVE 0991 modulates proliferation of cardiac fibroblast via regulating Smad pathways. J. Am. Coll. Cardiol., 2014, 64(16), C75-C76.
[http://dx.doi.org/10.1016/j.jacc.2014.06.352]
[64]
Anene-Maidoh, O.T.; Greene, A.S. Effect of mas receptor stimulation and loss on cardiac pathology in salt sensitive hypertension. Hypertension, 2012, 60(3)
[http://dx.doi.org/10.1161/hyp.60.suppl_1.A70]
[65]
Castagna, M.T.; Lacchini, S.L.; Sinisterra, R.D.; Santos, R.A. The role of Ang-(1-7)-Mas axis on the vascular response induced by arterial denudation. J. Am. Coll. Cardiol., 2009, 53(10), A432.
[66]
Jingguo, W.; Nan, X.; Yanbing, L.; Hao, T.; Zhongfu, M. GW24- e2479 AVE0991 inhibits vascular remodelling in rat jugular vein grafts via reduced ERK1/2 and p38 MAPK activity. Heart, 2013, 99(Suppl. 3), A40-A40.
[67]
Klein, S.; Herath, C.B.; Schierwagen, R.; Grace, J.; Haltenhof, T.; Uschner, F.E.; Strassburg, C.P.; Sauerbruch, T.; Walther, T.; Angus, P.W.; Trebicka, J. Hemodynamic Effects of the Non-Peptidic Angiotensin-(1-7) Agonist AVE0991 in Liver Cirrhosis. PLoS One, 2015, 10(9), e0138732.
[http://dx.doi.org/10.1371/journal.pone.0138732] [PMID: 26406236]
[68]
Klein, S.; Kleine, C.E.; Pieper, A.; Granzow, M.; Gautsch, S.; Himmit, M.; Kahrmann, K.; Schierwagen, R.; Uschner, F.E.; Magdaleno, F.; Naoum, M.E.; Kristiansen, G.; Walther, T.; Bader, M.; Sauerbruch, T.; Trebicka, J. TGR(mREN2)27 rats develop non-alcoholic fatty liver disease-associated portal hypertension responsive to modulations of Janus-kinase 2 and Mas receptor. Sci. Rep., 2019, 9(1), 11598.
[http://dx.doi.org/10.1038/s41598-019-48024-4] [PMID: 31406138]
[69]
Zhang, M.; Zhu, X.; Tong, H.; Lou, A.; Li, Y.; Li, Y.; Su, L.; Li, X. AVE 0991 attenuates pyroptosis and liver damage after heatstroke by inhibiting the ROS-NLRP3 inflammatory signaling pathway. BioMed Res. Int., 2019, 2019, 1806234.
[70]
Chawla, L.S.; Kimmel, P.L. Acute kidney injury and chronic kidney disease: An integrated clinical syndrome. Kidney Int., 2012, 82(5), 516-524.
[http://dx.doi.org/10.1038/ki.2012.208] [PMID: 22673882]
[71]
Barroso, L.C.; Silveira, K.D.; Lima, C.X.; Borges, V.; Bader, M.; Rachid, M.; Santos, R.A.S.; Souza, D.G.; Simões, E. Renoprotective effects of AVE0991, a nonpeptide mas receptor agonist, in experimental acute renal injury. Hypertension, 2012.
[72]
Esteban, V.; Heringer-Walther, S.; Sterner-Kock, A.; de Bruin, R.; van den Engel, S.; Wang, Y.; Mezzano, S.; Egido, J.; Schultheiss, H.P.; Ruiz-Ortega, M.; Walther, T. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One, 2009, 4(4), e5406.
[http://dx.doi.org/10.1371/journal.pone.0005406] [PMID: 19404405]
[73]
Silveira, K.D.; Santos, R.A.S.; Barroso, L.C.; Lima, C.X.; Teixeira, M.M.; Simoes Silva, A.C. The administration of the agonist of angiotensin-(1-7), AVE0991, improved inflammation and proteinuria in experimental nephrotic syndrome. Pediatr. Nephrol., 2010, 25(9), 1795.
[74]
Gheit, R.E.A.E.; Emam, M. N. The Role of Fasudil and Ang (1-7) in PAN Induced Nephropathy in rats 2014.
[75]
Silveira, K.D.; Barroso, L.C.; Vieira, A.T.; Cisalpino, D.; Lima, C.X.; Bader, M.; Arantes, R.M.E.; dos Santos, R.A.S.; Simões-e-Silva, A.C.; Teixeira, M.M. Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One, 2013, 8(6), e66082.
[http://dx.doi.org/10.1371/journal.pone.0066082] [PMID: 23762470]
[76]
Soto-Pantoja, D.; Cruz-Diaz, N.; Chappell, M.C. Angiotensin-(1-7) preserves mitochondrial function in doxorubicin-exposed renal epithelial cells. Hypertension, 2017, 70(Suppl. 1), 70.
[http://dx.doi.org/10.1161/hyp.70.suppl_1.p411]
[77]
Burns, W.C.; Velkoska, E.; Dean, R.; Burrell, L.M.; Thomas, M.C. Angiotensin II mediates epithelial-to-mesenchymal transformation in tubular cells by ANG 1–7/MAS-1-dependent pathways. Am. J. Physiol. Renal Physiol., 2010, 299(3), F585-F593.
[http://dx.doi.org/10.1152/ajprenal.00538.2009] [PMID: 20554647]
[78]
Kong, Y.; Zhao, X.; Qiu, M.; Lin, Y.; Feng, P.; Li, S.; Liang, B.; Zhu, Q.; Huang, H.; Li, C.; Wang, W. Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis., 2021, 12(1), 110.
[http://dx.doi.org/10.1038/s41419-020-03375-z] [PMID: 33479200]
[79]
Schluger, N.W.; Koppaka, R. Lung disease in a global context. A call for public health action. Ann. Am. Thorac. Soc., 2014, 11(3), 407-416.
[http://dx.doi.org/10.1513/AnnalsATS.201312-420PS] [PMID: 24673697]
[80]
Rodrigues-Machado, M.G.; Magalhães, G.S.; Cardoso, J.A.; Kangussu, L.M.; Murari, A.; Caliari, M.V.; Oliveira, M.L.; Cara, D.C.; Noviello, M.L.M.; Marques, F.D.; Pereira, J.M.; Lautner, R.Q.; Santos, R A S.; Campagnole-Santos, M.J. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br. J. Pharmacol., 2013, 170(4), 835-846.
[http://dx.doi.org/10.1111/bph.12318] [PMID: 23889691]
[81]
Klein, N.; Gembardt, F.; Supé, S.; Kaestle, S.M.; Nickles, H.; Erfinanda, L.; Lei, X.; Yin, J.; Wang, L.; Mertens, M.; Szaszi, K.; Walther, T.; Kuebler, W.M. Angiotensin-(1-7) protects from experimental acute lung injury. Crit. Care Med., 2013, 41(11), e334-e343.
[http://dx.doi.org/10.1097/CCM.0b013e31828a6688] [PMID: 23949470]
[82]
Abdul-Hafez, A.; Mohamed, T.; Uhal, B.D. Activation of mas restores hyperoxia-induced loss of lung epithelial barrier function through inhibition of apoptosis. J. Lung Pulm. Respir. Res., 2019, 6(3), 58-62.
[http://dx.doi.org/10.15406/jlprr.2019.06.00208] [PMID: 32632378]
[83]
Thiruvenkataramani, R.P.; Abdul-Hafez, A.; Gewolb, I.; Uhal, B. Mas Receptor Agonist AVE0991 increases surfactant protein expression under hyperoxic conditions in human lung epithelial cells. J. Lung Pulm. Respir. Res., 2020, 7(4), 85-91.
[http://dx.doi.org/10.15406/jlprr.2020.07.00235] [PMID: 34414259]
[84]
Cao, Y.; Liu, Y.; Shang, J.; Yuan, Z.; Ping, F.; Yao, S.; Guo, Y.; Li, Y. Ang-(1-7) treatment attenuates lipopolysaccharide-induced early pulmonary fibrosis. Lab. Invest., 2019, 99(12), 1770-1783.
[http://dx.doi.org/10.1038/s41374-019-0289-7] [PMID: 31278346]
[85]
Hong, L.; Wang, Q.; Chen, M.; Shi, J.; Guo, Y.; Liu, S.; Pan, R.; Yuan, X.; Jiang, S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed. Pharmacother., 2021, 137, 111365.
[86]
Carrier, E.J.; Rathinasabapathy, A.; Menon, S.; Kaplowitz, M.R.; Fike, C.D.; West, J.D. Mas receptor activation increases Sod2 expression in pulmonary vessels and decreases endothelial dysfunction. In: A66. PH; Molecules, Cells and Animal Models, American Thoracic Society, 2016; pp. A2234-A2234.
[87]
Zhang, H.; Wang, C.Y.; Zhou, P.; Yue, H.; Du, R. Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Ann. Intern. Med., 2020, 173(4), 324.
[http://dx.doi.org/10.7326/L20-0895] [PMID: 32805177]
[88]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[89]
D’Ardes, D.; Boccatonda, A.; Rossi, I.; Guagnano, M.T.; Santilli, F.; Cipollone, F.; Bucci, M. COVID-19 and RAS: Unravelling an Unclear Relationship. Int. J. Mol. Sci., 2020, 21(8), 3003.
[http://dx.doi.org/10.3390/ijms21083003] [PMID: 32344526]
[90]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[91]
Lanza, K.; Perez, L.G.; Costa, L.B.; Cordeiro, T.M.; Palmeira, V.A.; Ribeiro, V.T.; Simões, E. COVID-19: The renin-angiotensin system imbalance hypothesis. Clin. Sci., 2020, 134(11), 1259-1264.
[92]
Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine, 2020, 76, 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037]
[93]
Magalhaes, G.S.; Rodrigues-Machado, M.d.G.; Motta-Santos, D.; Campagnole-Santos, M.J.; Santos, R.A.S. Activation of Ang-(1-7)/Mas receptor is a possible strategy to treat coronavirus (SARS-CoV-2) Infection. Front. Physiol., 2020, 11, 730.
[94]
Shete, A. Urgent need for evaluating agonists of angiotensin-(1-7)/Mas receptor axis for treating patients with COVID-19. Int. J. Infect. Dis., 2020, 96, 348-351.
[95]
Latil, M.; Camelo, S.; Veillet, S.; Lafont, R.; Dilda, P.J. Developing new drugs that activate the protective arm of the renin–angiotensin system as a potential treatment for respiratory failure in COVID-19 patients. Drug Discov. Today, 2021, 26(5), 1311-1318.
[http://dx.doi.org/10.1016/j.drudis.2021.02.010] [PMID: 33609783]
[96]
Melissa Hallow, K.; Dave, I. RAAS Blockade and COVID‐19: Mechanistic Modeling of Mas and AT1 Receptor Occupancy as Indicators of Pro‐Inflammatory and Anti‐Inflammatory Balance. Clin. Pharmacol. Ther., 2021, 109(4), 1092-1103.
[http://dx.doi.org/10.1002/cpt.2177] [PMID: 33506503]
[97]
Li, Y.Q.; Guo, C. A Review on Lactoferrin and Central Nervous System Diseases. Cells, 2021, 10(7), 1810.
[http://dx.doi.org/10.3390/cells10071810] [PMID: 34359979]
[98]
Dang, R.; Yang, M.; Cui, C.; Wang, C.; Zhang, W.; Geng, C.; Han, W.; Jiang, P. Activation of angiotensin‐converting enzyme 2/angiotensin (1–7)/mas receptor axis triggers autophagy and suppresses microglia proinflammatory polarization via forkhead box class O1 signaling. Aging Cell, 2021, 20(10), e13480.
[http://dx.doi.org/10.1111/acel.13480] [PMID: 34529881]
[99]
Xue, X. Duan, R.; Zhang, Q.Q.; Wang, S.Y.; Gong, P.Y.; e, Y.; Zhang, Y.D.; Jiang, T. A Non-Peptidic MAS1 Agonist AVE0991 Alleviates Hippocampal Synaptic Degeneration in Rats with Chronic Cerebral Hypoperfusion. Curr. Neurovasc. Res., 2021, 18(3), 343-350.
[http://dx.doi.org/10.2174/1567202618666211012095210] [PMID: 34636310]
[100]
Jiang, T.; Xue, L.J.; Yang, Y.; Wang, Q.G.; Xue, X.; Ou, Z.; Gao, Q.; Shi, J.Q.; Wu, L.; Zhang, Y.D. AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. Aging (Albany NY), 2018, 10(4), 645-657.
[http://dx.doi.org/10.18632/aging.101419] [PMID: 29667931]
[101]
Duan, R.; Wang, S.Y.; Wei, B.; Deng, Y.; Fu, X.X.; Gong, P.Y. Angiotensin-(1-7) Analogue AVE0991 Modulates Astrocyte-Mediated Neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 Pathway and Offers Neuroprotection in a Transgenic Mouse Model of Alzheimer’s Disease. J. Inflamm. Res., 2021, 14, 7007-7019.
[102]
Mo, J.; Enkhjargal, B.; Travis, Z.D.; Zhou, K.; Wu, P.; Zhang, G.; Zhu, Q.; Zhang, T.; Peng, J.; Xu, W.; Ocak, U.; Chen, Y.; Tang, J.; Zhang, J.; Zhang, J.H. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol., 2019, 20(75)
[103]
Mi, X.; Cao, Y.; Li, Y.; Li, Y.; Hong, J.; He, J.; Liang, Y.; Yang, N.; Liu, T.; Han, D.; Kuang, C.; Han, Y.; Zhou, Y.; Liu, Y.; Shi, C.; Guo, X.; Li, Z. The Non-peptide Angiotensin-(1-7) Mimic AVE 0991 Attenuates Delayed Neurocognitive Recovery After Laparotomy by Reducing Neuroinflammation and Restoring Blood-Brain Barrier Integrity in Aged Rats. Front. Aging Neurosci., 2021, 13, 624387.
[104]
Hammer, A.; Yang, G.; Friedrich, J.; Kovacs, A.; Lee, D.H.; Grave, K.; Jörg, S.; Alenina, N.; Grosch, J.; Winkler, J.; Gold, R.; Bader, M.; Manzel, A.; Rump, L.C.; Müller, D.N.; Linker, R.A.; Stegbauer, J. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc. Natl. Acad. Sci. USA, 2016, 113(49), 14109-14114.
[http://dx.doi.org/10.1073/pnas.1612668113] [PMID: 27872279]
[105]
Sun, J.; Ren, J.; Hu, X.; Hou, Y.; Yang, Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed. Pharmacother., 2021, 142, 111977.
[106]
Raber, I.; McCarthy, C.P.; Vaduganathan, M.; Bhatt, D.L.; Wood, D.A.; Cleland, J.G.F.; Blumenthal, R.S.; McEvoy, J.W. The rise and fall of aspirin in the primary prevention of cardiovascular disease. Lancet, 2019, 393(10186), 2155-2167.
[http://dx.doi.org/10.1016/S0140-6736(19)30541-0] [PMID: 31226053]
[107]
Mario, É.G.; Cordeiro, L.; Heringer, A.; Moreira, C.; Santos, R.; Botion, L. Non-peptide agonist of the receptor mas, ave 0991, improves glycemic and lipidic profile of rats fed a fructose-rich diet. J. Diabetes, 2011, 3, 173.
[108]
Singh, K.; Sharma, K.; Singh, M.; Sharma, P.L. Possible mechanism of the cardio-renal protective effects of AVE-0991, a non-peptide Mas-receptor agonist, in diabetic rats. J. Renin Angiotensin Aldosterone Syst., 2012, 13(3), 334-340.
[http://dx.doi.org/10.1177/1470320311435534] [PMID: 22345112]
[109]
Yadav, S.K.; Reddy, B.V.K.; Sharma, P.L. Possible involvement of leptin in a Mas-receptor agonist, AVE-0991-induced improvement in dyslipidemia and cardiomyopathy in STZ-induced diabetic rats. J. Appl. Pharm. Sci., 2013, 3(11), 70-75.
[110]
Ebermann, L.; Spillmann, F.; Sidiropoulos, M.; Escher, F.; Heringer-Walther, S.; Schultheiss, H.P.; Tschöpe, C.; Walther, T. The angiotensin-(1–7) receptor agonist AVE0991 is cardioprotective in diabetic rats. Eur. J. Pharmacol., 2008, 590(1-3), 276-280.
[http://dx.doi.org/10.1016/j.ejphar.2008.05.024] [PMID: 18571157]
[111]
Walther, T.; Westermann, D.; Sidoropoulos, M.; Spillmann, F.; Tschoepe, C. 476 Cardioprotection by the ang-(1?7) receptor agonist AVE0991 in experimental diabetic cardiomyopathy reveals beneficial effects of ang-(1?7) in DM. Eur. J. Heart Fail. Suppl., 2004, 3(1), 121.
[http://dx.doi.org/10.1016/S1567-4215(04)90346-3]
[112]
Papinska, A.M.; Rodgers, K.E. Long-term administration of angiotensin (1–7) to db/db mice reduces oxidative stress damage in the kidneys and prevents renal dysfunction. Oxid. Med. Cell. Longev., 2018, 2018, 1841046.
[113]
Benter, I.F.; Yousif, M.H.M.; Cojocel, C.; Al-Maghrebi, M.; Diz, D.I. Angiotensin-(1–7) prevents diabetes-induced cardiovascular dysfunction. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(1), H666-H672.
[http://dx.doi.org/10.1152/ajpheart.00372.2006] [PMID: 17213482]
[114]
Dobrocsyova, V.; Slamkova, M.; Krskova, K.; Balazova, L.; Suski, M.; Olszanecki, R.; Cacanyiova, S.; Zorad, S. AVE0991, A nonpeptide angiotensin 1-7 receptor agonist, improves glucose metabolism in the skeletal muscle of obese zucker rats: Possible involvement of prooxidant/antioxidant mechanisms. Oxid. Med. Cell. Longev., 2020, 2020, 6372935.
[115]
da Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Sachs, D.; Barroso, L.C.; Costa, V.V.; Bretas, T.L.B.; Bader, M.; de Sousa, L.P.; da Silva, T.A.; dos Santos, R.A.S.; Simões e Silva, A.C.; Teixeira, M.M. Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis. J. Immun., 2010, 185(9), 5569-5576.
[116]
Wang, Z.; Huang, W.; Ren, F.; Luo, L.; Zhou, J.; Huang, D.; Jiang, M.; Du, H.; Fan, J.; Tang, L. Characteristics of Ang-(1-7)/Mas-Mediated Amelioration of Joint Inflammation and Cardiac Complications in Mice With Collagen-Induced Arthritis. Front. Immunol., 2021, 12, 655614.
[117]
Pawlik, M.W.; Kwiecien, S.; Ptak-Belowska, A.; Pajdo, R.; Olszanecki, R.; Suski, M.; Madej, J.; Targosz, A.; Konturek, S.J.; Korbut, R.; Brzozowski, T. The renin-angiotensin system and its vasoactive metabolite angiotensin-(1-7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines. J. Physiol. Pharmacol., 2016, 67(1), 75-91.
[118]
Pajdo, R.; Sliwowski, Z.; Pawlik, M.; Kwiecien, S.; Bujak-Gizycka, B.; Konturek, S.J.; Pawlik, W.W.; Brzozowski, T. Importance of angiotensin-(1-7), a vasoactive metabolite of angiotensin i in the mechanism of gastric adaptation to repeated aspirin insult. A key in understanding of gastric adaptation to aspirin? United European Gastroenterol. J., 2014, 2(1), A568.
[119]
Magierowski, M.; Jasnos, K.; Pawlik, M.; Krzysiek-Maczka, G.; Ptak-Belowska, A.; Olszanecki, R.; Kwiecien, S.; Korbut, R.; Brzozowski, T. Role of angiotensin-(1-7) in gastroprotection against stress-induced ulcerogenesis. The involvement of mas receptor, nitric oxide, prostaglandins, and sensory neuropeptides. J. Pharmacol. Exp. Ther., 2013, 347(3), 717-726.
[http://dx.doi.org/10.1124/jpet.113.207233] [PMID: 24049058]
[120]
You, Y.; Huang, Y.; Wang, D.; Li, Y.; Wang, G.; Jin, S.; Zhu, X.; Wu, B.; Du, X.; Li, X. Angiotensin (1–7) inhibits arecoline‐induced migration and collagen synthesis in human oral myofibroblasts via inhibiting NLRP3 inflammasome activation. J. Cell. Physiol., 2019, 234(4), 4668-4680.
[http://dx.doi.org/10.1002/jcp.27267] [PMID: 30246378]
[121]
Murphy, K.T.; Hossain, M.I.; Swiderski, K.; Chee, A.; Naim, T.; Trieu, J.; Haynes, V.; Read, S.J.; Stapleton, D.I.; Judge, S.M.; Trevino, J.G.; Judge, A.R.; Lynch, G.S. Mas receptor activation slows tumor growth and attenuates muscle wasting in cancer. Cancer Res., 2019, 79(4), 706-719.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1207] [PMID: 30420474]
[122]
da Costa Gonçalves, A.C.; Fraga-Silva, R.A.; Leite, R.; Santos, R.A.S. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection. Exp. Physiol., 2013, 98(3), 850-855.
[http://dx.doi.org/10.1113/expphysiol.2012.068551] [PMID: 23042379]
[123]
Tao, K.; Bai, X.; Zhang, D.; Liu, M.; Zhang, Y.; Han, F.; Yang, X.; Han, J.; Hu, D. Encapsulation of troglitazone and AVE0991 by gelation microspheres promotes epithelial transformation of adipose-derived stem cells. Mol. Cell. Probes, 2020.
[http://dx.doi.org/10.1016/j.mcp.2020.101543]
[124]
Foulquier, S.; Caolo, V.; Swennen, G.; Milanova, I.; Reinhold, S.; Recarti, C.; Alenina, N.; Bader, M.; Steckelings, U.M.; Vanmierlo, T.; Post, M.J.; Jones, E.A.; van Oostenbrugge, R.J.; Unger, T. The role of receptor MAS in microglia-driven retinal vascular development. Angiogenesis, 2019, 22(4), 481-489.
[http://dx.doi.org/10.1007/s10456-019-09671-3] [PMID: 31240418]
[125]
Terrillon, S.; Bouvier, M. Roles of G‐protein‐coupled receptor dimerization. EMBO Rep., 2004, 5(1), 30-34.
[http://dx.doi.org/10.1038/sj.embor.7400052] [PMID: 14710183]
[126]
Stoll, M.; Steckelings, U.M.; Paul, M.; Bottari, S.P.; Metzger, R.; Unger, T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Invest., 1995, 95(2), 651-657.
[http://dx.doi.org/10.1172/JCI117710] [PMID: 7860748]
[127]
Nakajima, M.; Hutchinson, H.G.; Fujinaga, M.; Hayashida, W.; Morishita, R.; Zhang, L.; Horiuchi, M.; Pratt, R.E.; Dzau, V.J. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc. Natl. Acad. Sci. USA, 1995, 92(23), 10663-10667.
[http://dx.doi.org/10.1073/pnas.92.23.10663] [PMID: 7479861]
[128]
Booz, G.W.; Baker, K.M. Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension, 1996, 28(4), 635-640.
[http://dx.doi.org/10.1161/01.HYP.28.4.635] [PMID: 8843890]
[129]
van Kesteren, C.A.M.; van Heugten, H.A.A.; Lamers, J.M.J.; Saxena, P.R.; Schalekamp, M.A.D.H.; Danser, A.H.J. Angiotensin II-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblasts. J. Mol. Cell. Cardiol., 1997, 29(8), 2147-2157.
[http://dx.doi.org/10.1006/jmcc.1997.0448] [PMID: 9281446]
[130]
Ohkubo, N.; Matsubara, H.; Nozawa, Y.; Mori, Y.; Murasawa, S.; Kijima, K.; Maruyama, K.; Masaki, H.; Tsutumi, Y.; Shibazaki, Y.; Iwasaka, T.; Inada, M. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation, 1997, 96(11), 3954-3962.
[http://dx.doi.org/10.1161/01.CIR.96.11.3954] [PMID: 9403620]
[131]
Masaki, H.; Kurihara, T.; Yamaki, A.; Inomata, N.; Nozawa, Y.; Mori, Y.; Murasawa, S.; Kizima, K.; Maruyama, K.; Horiuchi, M.; Dzau, V.J.; Takahashi, H.; Iwasaka, T.; Inada, M.; Matsubara, H. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J. Clin. Invest., 1998, 101(3), 527-535.
[http://dx.doi.org/10.1172/JCI1885] [PMID: 9449684]
[132]
Lopez, J.J.; Lorell, B.H.; Ingelfinger, J.R.; Weinberg, E.O.; Schunkert, H.; Diamant, D.; Tang, S.S. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am. J. Physiol., 1994, 267(2 Pt 2), H844-H852.
[PMID: 8067441]
[133]
Kijima, K.; Matsubara, H.; Murasawa, S.; Maruyama, K.; Mori, Y.; Ohkubo, N.; Komuro, I.; Yazaki, Y.; Iwasaka, T.; Inada, M. Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ. Res., 1996, 79(4), 887-897.
[http://dx.doi.org/10.1161/01.RES.79.4.887] [PMID: 8831515]
[134]
AbdAlla. S.; Lother, H.; Abdel-tawab, A.M.; Quitterer, U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem., 2001, 276(43), 39721-39726.
[http://dx.doi.org/10.1074/jbc.M105253200] [PMID: 11507095]
[135]
Castoldi, G.; di Gioia, C.R.T.; Roma, F.; Carletti, R.; Manzoni, G.; Stella, A.; Zerbini, G.; Perseghin, G. Activation of angiotensin type 2 (AT2) receptors prevents myocardial hypertrophy in Zucker diabetic fatty rats. Acta Diabetol., 2019, 56(1), 97-104.
[http://dx.doi.org/10.1007/s00592-018-1220-1] [PMID: 30187136]
[136]
Chow, B.S.M.; Allen, T.J. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin. Sci. (Lond.), 2016, 130(15), 1307-1326.
[http://dx.doi.org/10.1042/CS20160243] [PMID: 27358027]
[137]
Sumners, C.; de Kloet, A.D.; Krause, E.G.; Unger, T.; Steckelings, U.M. Angiotensin type 2 receptors: Blood pressure regulation and end organ damage. Curr. Opin. Pharmacol., 2015, 21, 115-121.
[http://dx.doi.org/10.1016/j.coph.2015.01.004]
[138]
Matavelli, L.C.; Siragy, H.M. AT2 receptor activities and pathophysiological implications. J. Cardiovasc. Pharmacol., 2015, 65(3), 226-232.
[http://dx.doi.org/10.1097/FJC.0000000000000208] [PMID: 25636068]
[139]
Jones, E.S.; Black, M.J.; Widdop, R.E. Influence of Angiotensin II Subtype 2 Receptor (AT(2)R) Antagonist, PD123319, on Cardiovascular Remodelling of Aged Spontaneously Hypertensive Rats during Chronic Angiotensin II Subtype 1 Receptor (AT(1)R) Blockade. Int. J. Hypertens., 2012, 2012, 543062.
[140]
Alhusban, A.; Kozak, A.; Ergul, A.; Fagan, S.C. AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J. Pharmacol. Exp. Ther., 2013, 344(2), 348-359.
[http://dx.doi.org/10.1124/jpet.112.197483] [PMID: 23211364]
[141]
Goel, R.; Bhat, S.A.; Hanif, K.; Nath, C.; Shukla, R.; Angiotensin, I.I.; Angiotensin, II. Receptor Blockers Attenuate Lipopolysaccharide-Induced Memory Impairment by Modulation of NF-κB-Mediated BDNF/CREB Expression and Apoptosis in Spontaneously Hypertensive Rats. Mol. Neurobiol., 2018, 55(2), 1725-1739.
[http://dx.doi.org/10.1007/s12035-017-0450-5] [PMID: 28215000]
[142]
Volpe, M.; Musumeci, B.; De Paolis, P.; Savoia, C.; Morganti, A. Angiotensin II AT2 receptor subtype. J. Hypertens., 2003, 21(8), 1429-1443.
[http://dx.doi.org/10.1097/00004872-200308000-00001] [PMID: 12872031]
[143]
Li, J.; Culman, J.; Hörtnagl, H.; Zhao, Y.; Gerova, N.; Timm, M.; Blume, A.; Zimmermann, M.; Seidel, K.; Dirnagl, U.; Unger, T. Angiotensin AT2 receptor protects against cerebral ischemia‐induced neuronal injury. FASEB J., 2005, 19(6), 1-25.
[http://dx.doi.org/10.1096/fj.04-2960fje] [PMID: 15665034]
[144]
Iwai, M.; Liu, H.W.; Chen, R.; Ide, A.; Okamoto, S.; Hata, R.; Sakanaka, M.; Shiuchi, T.; Horiuchi, M. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation, 2004, 110(7), 843-848.
[http://dx.doi.org/10.1161/01.CIR.0000138848.58269.80] [PMID: 15289370]
[145]
Walther, T.; Olah, L.; Harms, C.; Maul, B.; Bader, M.; Hörtnagl, H.; Schultheiss, H.P.; Mies, G. Ischemic injury in experimental stroke depends on angiotensin II. FASEB J., 2002, 16(2), 169-176.
[http://dx.doi.org/10.1096/fj.01-0601com] [PMID: 11818364]
[146]
Costa-Besada, M.A.; Valenzuela, R.; Garrido-Gil, P.; Villar-Cheda, B.; Parga, J.A.; Lanciego, J.L.; Labandeira-Garcia, J.L. Paracrine and Intracrine Angiotensin 1-7/Mas Receptor Axis in the Substantia Nigra of Rodents, Monkeys, and Humans. Mol. Neurobiol., 2018, 55(7), 5847-5867.
[http://dx.doi.org/10.1007/s12035-017-0805-y] [PMID: 29086247]
[147]
Guimond, M.O.; Gallo-Payet, N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front. Endocrinol., 2012, 3, 164.
[148]
Bedecs, K.; Elbaz, N.; Sutren, M.; Masson, M.; Susini, C.; Strosberg, A.D.; Nahmias, C. Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem. J., 1997, 325(Pt 2), 449-454.
[http://dx.doi.org/10.1042/bj3250449]
[149]
Smeyne, R.J.; Vendrell, M.; Hayward, M.; Baker, S.J.; Miao, G.G.; Schilling, K.; Robertson, L.M.; Curran, T.; Morgan, J.I. Continuous c-fos expression precedes programmed cell death in vivo. Nature, 1993, 363(6425), 166-169.
[http://dx.doi.org/10.1038/363166a0] [PMID: 8483500]
[150]
Kostenis, E.; Milligan, G.; Christopoulos, A.; Sanchez-Ferrer, C.F.; Heringer-Walther, S.; Sexton, P.M.; Gembardt, F.; Kellett, E.; Martini, L.; Vanderheyden, P.; Schultheiss, H.P.; Walther, T. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation, 2005, 111(14), 1806-1813.
[http://dx.doi.org/10.1161/01.CIR.0000160867.23556.7D] [PMID: 15809376]
[151]
Canals, M.; Jenkins, L.; Kellett, E.; Milligan, G. Up-regulation of the angiotensin II type 1 receptor by the MAS proto-oncogene is due to constitutive activation of Gq/G11 by MAS. J. Biol. Chem., 2006, 281(24), 16757-16767.
[http://dx.doi.org/10.1074/jbc.M601121200] [PMID: 16611642]
[152]
Santos, E.L.; Reis, R.I.; Silva, R.G.; Shimuta, S.I.; Pecher, C.; Bascands, J.L.; Schanstra, J.P.; Oliveira, L.; Bader, M.; Paiva, A.C.M.; Costa-Neto, C.M.; Pesquero, J.B. Functional rescue of a defective angiotensin II AT1 receptor mutant by the Mas protooncogene. Regul. Pept., 2007, 141(1-3), 159-167.
[http://dx.doi.org/10.1016/j.regpep.2006.12.030] [PMID: 17320985]
[153]
Gallagher, P.E.; Ferrario, C.M.; Tallant, E.A. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(6), H2373-H2379.
[http://dx.doi.org/10.1152/ajpheart.00426.2008] [PMID: 18849338]
[154]
Xia, H.; Feng, Y.; Obr, T.D.; Hickman, P.J.; Lazartigues, E. Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension, 2009, 53(2), 210-216.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.123844] [PMID: 19124678]
[155]
Pernomian, L.; Gomes, M.S.; Restini, C.B.; de Oliveira, A.M. MAS-mediated antioxidant effects restore the functionality of angiotensin converting enzyme 2-angiotensin-(1-7)-MAS axis in diabetic rat carotid. Biomed Res. Int., 2014.
[156]
Xiao, L.; Haack, K.K.V.; Zucker, I.H. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am. J. Physiol. Cell Physiol., 2013, 304(11), C1073-C1079.
[http://dx.doi.org/10.1152/ajpcell.00364.2012] [PMID: 23535237]
[157]
Deshotels, M.R.; Xia, H.; Sriramula, S.; Lazartigues, E.; Filipeanu, C.M. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension, 2014, 64(6), 1368-1375.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03743] [PMID: 25225202]
[158]
Iwai, M.; Nakaoka, H.; Senba, I.; Kanno, H.; Moritani, T.; Horiuchi, M. Possible involvement of angiotensin-converting enzyme 2 and Mas activation in inhibitory effects of angiotensin II Type 1 receptor blockade on vascular remodeling. Hypertension, 2012, 60(1), 137-144.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.191452] [PMID: 22665126]
[159]
Pernomian, L.; do Prado, A.F.; Gomes, M.S.; Pernomian, L.; da Silva, C.; Gerlach, R.F.; de Oliveira, A.M. MAS receptors mediate vaso-protective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Eur. J. Pharmacol., 2015, 764, 173-188.
[160]
Ohshima, K.; Mogi, M.; Nakaoka, H.; Iwanami, J.; Min, L.J.; Kanno, H.; Tsukuda, K.; Chisaka, T.; Bai, H.Y.; Wang, X.L.; Ogimoto, A.; Higaki, J.; Horiuchi, M. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension, 2014, 63(3), e53-e59.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02426] [PMID: 24379178]
[161]
Schuchard, J.; Winkler, M.; Stölting, I.; Schuster, F.; Vogt, F.M.; Barkhausen, J.; Thorns, C.; Santos, R.A.; Bader, M.; Raasch, W. Lack of weight gain after angiotensin AT 1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1-7)/Mas-dependent pathway. Br. J. Pharmacol., 2015, 172(15), 3764-3778.
[http://dx.doi.org/10.1111/bph.13172] [PMID: 25906670]
[162]
Leonhardt, J.; Villela, D.C.; Teichmann, A.; Münter, L.M.; Mayer, M.C.; Mardahl, M.; Kirsch, S.; Namsolleck, P.; Lucht, K.; Benz, V.; Alenina, N.; Daniell, N.; Horiuchi, M.; Iwai, M.; Multhaup, G.; Schülein, R.; Bader, M.; Santos, R.A.; Unger, T.; Steckelings, U.M. Evidence for heterodimerization and functional interaction of the angiotensin type 2 Receptor and the receptor MAS. Hypertension, 2017, 69(6), 1128-1135.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08814] [PMID: 28461604]
[163]
Patel, S.; Hussain, T. Dimerization of AT2 and Mas Receptors in Control of Blood Pressure. Curr. Hypertens. Rep., 2018, 20(5), 41.
[http://dx.doi.org/10.1007/s11906-018-0845-3] [PMID: 29717388]
[164]
Safari, T.; Nematbakhsh, M.; Hilliard, L.M.; Evans, R.G.; Denton, K.M. Sex differences in the renal vascular response to angiotensin II involves the Mas receptor. Acta Physiol. (Oxf.), 2012, 206(2), 150-156.
[http://dx.doi.org/10.1111/j.1748-1716.2012.02468.x] [PMID: 22775972]
[165]
Patel, S.N.; Ali, Q.; Samuel, P.; Steckelings, U.M.; Hussain, T.; Angiotensin, I.I.; Angiotensin, II. Type 2 Receptor and Receptor Mas Are Colocalized and Functionally Interdependent in Obese Zucker Rat Kidney. Hypertension, 2017, 70(4), 831-838.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09679] [PMID: 28827476]
[166]
Montezano, A.C.; Nguyen Dinh Cat, A.; Rios, F.J.; Touyz, R.M. Angiotensin II and vascular injury. Curr. Hypertens. Rep., 2014, 16(6), 431.
[http://dx.doi.org/10.1007/s11906-014-0431-2] [PMID: 24760441]
[167]
Higuchi, S.; Ohtsu, H.; Suzuki, H.; Shirai, H.; Frank, G.D.; Eguchi, S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond.), 2007, 112(8), 417-428.
[http://dx.doi.org/10.1042/CS20060342] [PMID: 17346243]
[168]
Kamo, T.; Akazawa, H.; Komuro, I. Pleiotropic Effects of Angiotensin II Receptor Signaling in Cardiovascular Homeostasis and Aging. Int. Heart J., 2015, 56(3), 249-254.
[http://dx.doi.org/10.1536/ihj.14-429] [PMID: 25912907]
[169]
Tóth, A.D.; Turu, G.; Hunyady, L.; Balla, A. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract. Res. Clin. Endocrinol. Metab., 2018, 32(2), 69-82.
[http://dx.doi.org/10.1016/j.beem.2018.02.003] [PMID: 29678287]
[170]
Huang, X.C.; Richards, E.M.; Sumners, C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J. Biol. Chem., 1996, 271(26), 15635-15641.
[http://dx.doi.org/10.1074/jbc.271.26.15635] [PMID: 8663175]
[171]
Bhat, S.A.; Sood, A.; Shukla, R.; Hanif, K. AT2R Activation Prevents Microglia Pro-inflammatory Activation in a NOX-Dependent Manner: Inhibition of PKC Activation and p47phox Phosphorylation by PP2A. Mol. Neurobiol., 2019, 56(4), 3005-3023.
[http://dx.doi.org/10.1007/s12035-018-1272-9] [PMID: 30076526]
[172]
Rodriguez-Perez, A.I.; Borrajo, A.; Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia, 2015, 63(3), 466-482.
[http://dx.doi.org/10.1002/glia.22765] [PMID: 25377425]
[173]
Abadir, P.M.; Carey, R.M.; Siragy, H.M. Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension, 2003, 42(4), 600-604.
[http://dx.doi.org/10.1161/01.HYP.0000090323.58122.5C] [PMID: 12953015]
[174]
Savoia, C.; Ebrahimian, T.; He, Y.; Gratton, J.P.; Schiffrin, E.L.; Touyz, R.M. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J. Hypertens., 2006, 24(12), 2417-2422.
[http://dx.doi.org/10.1097/01.hjh.0000251902.85675.7e] [PMID: 17082724]
[175]
Hu, C.; Dandapat, A.; Chen, J.; Liu, Y.; Hermonat, P.L.; Carey, R.M.; Mehta, J.L. Over-expression of angiotensin II type 2 receptor (agtr2) reduces atherogenesis and modulates LOX-1, endothelial nitric oxide synthase and heme-oxygenase-1 expression. Atherosclerosis, 2008, 199(2), 288-294.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.11.006] [PMID: 18096165]
[176]
Dandapat, A.; Hu, C.P.; Chen, J.; Liu, Y.; Khan, J.A.; Remeo, F.; Carey, R.M.; Hermonat, P.L.; Mehta, J.L. Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. Biochem. Biophys. Res. Commun., 2008, 366(4), 871-877.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.061] [PMID: 18037370]
[177]
Dimitropoulou, C.; White, R.E.; Fuchs, L.; Zhang, H.; Catravas, J.D.; Carrier, G.O. Angiotensin II relaxes microvessels via the AT(2) receptor and Ca(2+)-activated K(+) (BK(Ca)) channels. Hypertension, 2001, 37(2), 301-307.
[http://dx.doi.org/10.1161/01.HYP.37.2.301] [PMID: 11230289]
[178]
Horiuchi, M.; Hayashida, W.; Kambe, T.; Yamada, T.; Dzau, V.J. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J. Biol. Chem., 1997, 272(30), 19022-19026.
[http://dx.doi.org/10.1074/jbc.272.30.19022] [PMID: 9228085]
[179]
Hashikawa-Hobara, N.; Hashikawa, N.; Inoue, Y.; Sanda, H.; Zamami, Y.; Takatori, S.; Kawasaki, H. Candesartan cilexetil improves angiotensin II type 2 receptor-mediated neurite outgrowth via the PI3K-Akt pathway in fructose-induced insulin-resistant rats. Diabetes, 2012, 61(4), 925-932.
[http://dx.doi.org/10.2337/db11-1468] [PMID: 22357959]
[180]
Sampaio, W.O.; Souza dos Santos, R.A.; Faria-Silva, R.; da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension, 2007, 49(1), 185-192.
[http://dx.doi.org/10.1161/01.HYP.0000251865.35728.2f] [PMID: 17116756]
[181]
Zhang, F.; Xu, Y.; Pan, Y.; Sun, S.; Chen, A.; Li, P.; Bao, C.; Wang, J.; Tang, H.; Han, Y. Effects of Angiotensin-(1-7) and Angiotensin II on Acetylcholine-Induced Vascular Relaxation in Spontaneously Hypertensive Rats. Oxid. Med. Cell. Longev., 2019.
[182]
Hoffmann, B.R.; Stodola, T.J.; Wagner, J.R.; Didier, D.N.; Exner, E.C.; Lombard, J.H.; Greene, A.S. Mechanisms of Mas1 Receptor-Mediated Signaling in the Vascular Endothelium. Arterioscler. Thromb. Vasc. Biol., 2017, 37(3), 433-445.
[http://dx.doi.org/10.1161/ATVBAHA.116.307787] [PMID: 28082260]
[183]
Moore, E.D.; Kooshki, M.; Metheny-Barlow, L.J.; Gallagher, P.E.; Robbins, M.E. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic. Biol. Med., 2013, 65, 1060.
[184]
Liu, M.; Shi, P.; Sumners, C. Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J. Neurochem., 2016, 136(1), 163-171.
[http://dx.doi.org/10.1111/jnc.13386] [PMID: 26448556]
[185]
Xiao, X.; Zhang, C.; Ma, X.; Miao, H.; Wang, J.; Liu, L.; Chen, S.; Zeng, R.; Chen, Y.; Bihl, J.C. Angiotensin-(1–7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Exp. Cell Res., 2015, 336(1), 58-65.
[http://dx.doi.org/10.1016/j.yexcr.2015.06.010] [PMID: 26101159]
[186]
Cerniello, F.M.; Silva, M.G.; Carretero, O.A.; Gironacci, M.M. Mas receptor is translocated to the nucleus upon agonist stimulation in brainstem neurons from spontaneously hypertensive rats but not normotensive rats. Cardiovasc. Res., 2020, 116(12), 1995-2008.
[http://dx.doi.org/10.1093/cvr/cvz332] [PMID: 31825460]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy