Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Serine Protease 27, a Prognostic Biomarker in Pan-cancer and Associated with the Aggressive Progression of Breast Cancer

Author(s): Yiying Xu, Yanyan Shen, Adheesh Bhandari, Suzita Hirachan, Ouchen Wang* and Erjie Xia*

Volume 31, Issue 15, 2024

Published on: 27 October, 2023

Page: [2073 - 2089] Pages: 17

DOI: 10.2174/0929867330666230324161329

Price: $65

conference banner
Abstract

Background: To create effective medicines, researchers must first identify the common or unique genes that drive oncogenic processes in human cancers. Serine protease 27 (PRSS27) has been recently defined as a possible driver gene in esophageal squamous cell carcinoma. However, no thorough pan-cancer study has been performed to date, including breast cancer.

Methods: Using the TCGA (The Cancer Genome Atlas), the GEO (Gene Expression Omnibus) dataset, and multiple bioinformatic tools, we investigated the function of PRSS27 in 33 tumor types. In addition, prognosis analysis of PRSS27 in breast cancer was carried out, as well as in vitro experiments to verify its role as an oncogene. We first explored the expression of PRSS27 in over 10 tumors and then we looked into PRSS27 genomic mutations.

Results: We discovered that PRSS27 has prognostic significance in breast cancer and other cancers' survival, and we developed a breast cancer prognostic prediction model by combining a defined set of clinical factors. Besides, we confirmed PRSS27 as an oncogene in breast cancer using some primary in vitro experiments.

Conclusion: Our pan-cancer survey has comprehensively reviewed the oncogenic function of PRSS27 in various human malignancies, suggesting that it may be a promising prognostic biomarker and tumor therapeutic target in breast cancer.

Keywords: PRSS27, pan-cancer, breast cancer, prognostic, IL-17 signaling pathway, oncogenic processes.

[1]
Bhagwandin, V.J.; Hau, L.W.; Mallen-St, C.J.; Wolters, P.J.; Caughey, G.H. Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J. Biol. Chem., 2003, 278(5), 3363-3371.
[http://dx.doi.org/10.1074/jbc.M209353200] [PMID: 12441343]
[2]
Kataoka, A.; Yamada, K.; Hagiwara, T.; Terayama, M.; Sugimoto, T.; Nohara, K.; Igari, T.; Yokoi, C.; Kawamura, Y.I. Expression status of serine protease 27: A prognostic marker for esophageal squamous cell carcinoma treated with preoperative chemotherapy/chemoradiotherapy. Ann. Surg. Oncol., 2021, 28(9), 5373-5381.
[http://dx.doi.org/10.1245/s10434-020-09550-y] [PMID: 33452606]
[3]
Raman, K.; Trivedi, N.N.; Raymond, W.W.; Ganesan, R.; Kirchhofer, D.; Verghese, G.M.; Craik, C.S.; Schneider, E.L.; Nimishakavi, S.; Caughey, G.H. Mutational tail loss is an evolutionary mechanism for liberating marapsins and other type I serine proteases from transmembrane anchors. J. Biol. Chem., 2013, 288(15), 10588-10598.
[http://dx.doi.org/10.1074/jbc.M112.449033] [PMID: 23447538]
[4]
Britt, K.L.; Cuzick, J.; Phillips, K.A. Key steps for effective breast cancer prevention. Nat. Rev. Cancer, 2020, 20(8), 417-436.
[http://dx.doi.org/10.1038/s41568-020-0266-x] [PMID: 32528185]
[5]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769.
[http://dx.doi.org/10.1016/S0140-6736(20)32381-3] [PMID: 33812473]
[7]
Borri, F.; Granaglia, A. Pathology of triple negative breast cancer. Semin. Cancer Biol., 2021, 72, 136-145.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.005] [PMID: 32544511]
[8]
Atakpa, E.C.; Thorat, M.A.; Cuzick, J.; Brentnall, A.R. Mammographic density, endocrine therapy and breast cancer risk: A prognostic and predictive biomarker review. Cochrane Database Syst. Rev., 2021, 10(10), CD013091.
[PMID: 34697802]
[9]
Zhao, J.; Chen, X.; Herjan, T.; Li, X. The role of interleukin-17 in tumor development and progression. J. Exp. Med., 2020, 217(1), e20190297.
[http://dx.doi.org/10.1084/jem.20190297] [PMID: 31727782]
[10]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[11]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[12]
Lyons, T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol., 2019, 20(11), 82.
[http://dx.doi.org/10.1007/s11864-019-0682-x] [PMID: 31754897]
[13]
Tutt, A.; Tovey, H.; Cheang, M.C.U.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.; Brown, R.; Chan, S.; Dowsett, M.; Flanagan, J.M.; Fox, L.; Grigoriadis, A.; Gutin, A.; Harper-Wynne, C.; Hatton, M.Q.; Hoadley, K.A.; Parikh, J.; Parker, P.; Perou, C.M.; Roylance, R.; Shah, V.; Shaw, A.; Smith, I.E.; Timms, K.M.; Wardley, A.M.; Wilson, G.; Gillett, C.; Lanchbury, J.S.; Ashworth, A.; Rahman, N.; Harries, M.; Ellis, P.; Pinder, S.E.; Bliss, J.M. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: The TNT Trial. Nat. Med., 2018, 24(5), 628-637.
[http://dx.doi.org/10.1038/s41591-018-0009-7] [PMID: 29713086]
[14]
Gerratana, L.; Basile, D.; Buono, G.; De Placido, S.; Giuliano, M.; Minichillo, S.; Coinu, A.; Martorana, F.; De Santo, I.; Del Mastro, L.; De Laurentiis, M.; Puglisi, F.; Arpino, G. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev., 2018, 68, 102-110.
[http://dx.doi.org/10.1016/j.ctrv.2018.06.005] [PMID: 29940524]
[15]
Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res. Treat., 2018, 169(3), 397-406.
[http://dx.doi.org/10.1007/s10549-018-4697-y] [PMID: 29417298]
[16]
Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; Weaver, R.; Traina, T.; Dalenc, F.; Aftimos, P.; Lynce, F.; Diab, S.; Cortés, J.; O’Shaughnessy, J.; Diéras, V.; Ferrario, C.; Schmid, P.; Carey, L.A.; Gianni, L.; Piccart, M.J.; Loibl, S.; Goldenberg, D.M.; Hong, Q.; Olivo, M.S.; Itri, L.M.; Rugo, H.S. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med., 2021, 384(16), 1529-1541.
[http://dx.doi.org/10.1056/NEJMoa2028485] [PMID: 33882206]
[17]
Voorwerk, L.; Slagter, M.; Horlings, H.M.; Sikorska, K.; van de Vijver, K.K.; de Maaker, M.; Nederlof, I.; Kluin, R.J.C.; Warren, S.; Ong, S.; Wiersma, T.G.; Russell, N.S.; Lalezari, F.; Schouten, P.C.; Bakker, N.A.M.; Ketelaars, S.L.C.; Peters, D.; Lange, C.A.H.; van Werkhoven, E.; van Tinteren, H.; Mandjes, I.A.M.; Kemper, I.; Onderwater, S.; Chalabi, M.; Wilgenhof, S.; Haanen, J.B.A.G.; Salgado, R.; de Visser, K.E.; Sonke, G.S.; Wessels, L.F.A.; Linn, S.C.; Schumacher, T.N.; Blank, C.U.; Kok, M. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med., 2019, 25(6), 920-928.
[http://dx.doi.org/10.1038/s41591-019-0432-4] [PMID: 31086347]
[18]
Li, W.; Danilenko, D.M.; Bunting, S.; Ganesan, R.; Sa, S.; Ferrando, R.; Wu, T.D.; Kolumam, G.A.; Ouyang, W.; Kirchhofer, D. The serine protease marapsin is expressed in stratified squamous epithelia and is up-regulated in the hyperproliferative epidermis of psoriasis and regenerating wounds. J. Biol. Chem., 2009, 284(1), 218-228.
[http://dx.doi.org/10.1074/jbc.M806267200] [PMID: 18948266]
[19]
Adachi, W.; Ulanovsky, H.; Li, Y.; Norman, B.; Davis, J.; Piatigorsky, J. Serial analysis of gene expression (SAGE) in the rat limbal and central corneal epithelium. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 3801-3810.
[http://dx.doi.org/10.1167/iovs.06-0216] [PMID: 16936091]
[20]
Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat. Rev. Clin. Oncol., 2022, 19(2), 91-113.
[http://dx.doi.org/10.1038/s41571-021-00565-2] [PMID: 34754128]
[21]
Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; Maiya, V.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 44-59.
[http://dx.doi.org/10.1016/S1470-2045(19)30689-8] [PMID: 31786121]
[22]
Winer, E.P.; Lipatov, O.; Im, S.A.; Goncalves, A.; Muñoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; Ohtani, S.; Turner, N.; Zambelli, S.; Harbeck, N.; Andre, F.; Dent, R.; Zhou, X.; Karantza, V.; Mejia, J.; Cortes, J. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. Lancet Oncol., 2021, 22(4), 499-511.
[http://dx.doi.org/10.1016/S1470-2045(20)30754-3] [PMID: 33676601]
[23]
Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; Hui, R.; Curigliano, G.; Toppmeyer, D.; O’Shaughnessy, J.; Loi, S.; Paluch-Shimon, S.; Tan, A.R.; Card, D.; Zhao, J.; Karantza, V.; Cortés, J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 397-404.
[http://dx.doi.org/10.1093/annonc/mdy517] [PMID: 30475950]
[24]
Jiang, T.; Wang, P.; Zhang, J.; Zhao, Y.; Zhou, J.; Fan, Y.; Shu, Y.; Liu, X.; Zhang, H.; He, J.; Gao, G.; Mu, X.; Bao, Z.; Xu, Y.; Guo, R.; Wang, H.; Deng, L.; Ma, N.; Zhang, Y.; Feng, H.; Yao, S.; Wu, J.; Chen, L.; Zhou, C.; Ren, S. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal Transduct. Target. Ther., 2021, 6(1), 355.
[http://dx.doi.org/10.1038/s41392-021-00751-9] [PMID: 34650034]
[25]
Yin, X.; Teng, X.; Ma, T.; Yang, T.; Zhang, J.; Huo, M.; Liu, W.; Yang, Y.; Yuan, B.; Yu, H.; Huang, W.; Wang, Y. RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ., 2022, 29(11), 2203-2217.
[http://dx.doi.org/10.1038/s41418-022-01010-2] [PMID: 35534547]
[26]
Qian, X.L.; Xu, P.; Zhang, Y.Q.; Song, Y.M.; Li, Y.Q.; Li, W.D.; Jiang, C.Y.; Shen, B.B.; Zhang, X.M.; Zhang, L.N.; Fu, L.; Guo, X.J. Increased number of intratumoral IL-17+ cells, a harbinger of the adverse prognosis of triple-negative breast cancer. Breast Cancer Res. Treat., 2020, 180(2), 311-319.
[http://dx.doi.org/10.1007/s10549-020-05540-6] [PMID: 31993861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy