Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Nano Lipid Carriers as a Promising Drug Delivery Carrier for Neurodegenerative Disorders - An Overview of Recent Advances

Author(s): Vishal Kumar and Sreeja C. Nair*

Volume 18, Issue 1, 2024

Published on: 19 April, 2023

Page: [2 - 21] Pages: 20

DOI: 10.2174/1872208317666230320164219

Price: $65

conference banner
Abstract

The last few decades have seen a rise in the number of deaths caused by neurological disorders. The blood-brain barrier (BBB), which is very complex and has multiple mechanisms, makes drug delivery to the brain challenging for many scientists. Lipid nanoparticles (LNPs) such as nanoemulsions, solid-lipid nanoparticles, liposomes, and nano lipid carriers (NLCs) exhibit enhanced bioavailability and flexibility among these nanocarriers. NLCs are found to be very effective. In the last few decades, they have been a center of attraction for controlled drug delivery. According to the current global status of specific neurological disorders, out of all LNPs, NLC significantly reduces the cross-permeability of drugs through the BBB due to their peculiar properties. They offer a host of advantages over other carriers because of their biocompatibility, safety, non-toxicity, non-irritating behavior, stability, high encapsulation efficiency, high drug loading, high drug targeting, control of drug release, and ease in manufacturing. The biocompatible lipid matrix is ideally suited as a drug carrier system due to the nano-size range. For certain neurological conditions such as Parkinsonism, Alzheimer’s, Epilepsy, Multiple sclerosis, and Brain cancer, we examined recent advances in NLCs to improve brain targeting of bioactive with special attention to formulation aspects and pharmacokinetic characteristics. This article also provides a brief overview of a critical approach for brain targeting, i.e., direct nose-to-brain drug delivery and some recent patents published on NLC”.

Keywords: Neurological disorder, blood-brain barrier, lipid matrix, nano lipid carrier, modified release, drug delivery.

Graphical Abstract
[1]
Agrawal M, Saraf S, Saraf S, et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321: 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[2]
Devkar TB, Tekade AR, Khandelwal KR. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf B Biointerfaces 2014; 122: 143-50.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.037] [PMID: 25033434]
[3]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[4]
Raab C, Simkó M, Gazsó A, Fiedeler U, Nentwich M. What are synthetic nanoparticles. Nano Trust Dossiers 2011; 22: 1-4.
[5]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[6]
Joseph SK, Arya MA, Thomas SA, Nair SC. State-of-the-art nanotechnology based drug delivery strategies to combat COVID-19. Int J Applied Pharm 2021; 3(13): 18-28.
[http://dx.doi.org/10.22159/ijap.2021v13i3.40865]
[7]
Li Q, Cai T, Huang Y, Xia X, Cole S, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017; 7(6): 122.
[http://dx.doi.org/10.3390/nano7060122] [PMID: 28554993]
[8]
Velmurugan R, Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl Nanosci 2016; 6(2): 159-73.
[http://dx.doi.org/10.1007/s13204-015-0434-6]
[9]
Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today 2020; 25(1): 185-94.
[http://dx.doi.org/10.1016/j.drudis.2019.10.005] [PMID: 31629966]
[10]
Sharma A, Baldi A. Nanostructured lipid carriers: A review. J Dev Drugs 2018; 7(2): 1-5.
[11]
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021; 11(4): 925-40.
[http://dx.doi.org/10.1016/j.apsb.2021.02.012] [PMID: 33996407]
[12]
Souto EB, Baldim I, Oliveira WP, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17(3): 357-77.
[http://dx.doi.org/10.1080/17425247.2020.1727883] [PMID: 32064958]
[13]
Singh HS, Sguizzato M, Pavoni G, et al. Ellagic acid containing nanostructured lipid carriers for topical application: A preliminary study. Molecules 2020; 25(6): 1449.
[http://dx.doi.org/10.3390/molecules25061449] [PMID: 32210106]
[14]
Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem 2021; 9: 580118.
[http://dx.doi.org/10.3389/fchem.2021.580118] [PMID: 33981670]
[15]
Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[16]
Aditya NP, Macedo AS, Doktorovova S, et al. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). Lebensm Wiss Technol 2014; 59(1): 115-21.
[http://dx.doi.org/10.1016/j.lwt.2014.04.058]
[17]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[18]
Lasoń E, Sikora E, Ogonowski J. Influence of process parameters on properties of Nanostructured Lipid Carriers (NLC) formulation. Acta Biochim Pol 2013; 60(4): 773-7.
[PMID: 24432330]
[19]
Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug Deliv 2013; 20(6): 247-51.
[http://dx.doi.org/10.3109/10717544.2013.822945] [PMID: 23869788]
[20]
Selvamuthukumar S, Velmurugan R. Nanostructured Lipid Carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[21]
Prastiwi N. Ervina, Lesbatta K. Application of solid lipid nanoparticles preparation in infection caused by antibiotic-resistant bacteria. Indonesian J Pharmacol Therapy 2021; 2(3)
[http://dx.doi.org/10.22146/ijpther.2318]
[22]
Natarajan J, Karri VV, Anindita D. Nanostructured lipid carrier (NLC): A promising drug delivery system. Global J Nanomed 2017; 1(5): 1-6.
[23]
Vikrant TK, Basavaraj KN. Nanostructured lipid carrier (NLC) drug delivery systems for treatment of neurodegenerative disorders. 1251/MUM/2012 2012.https://patentscope.wipo.int/search/en/detail.jsf?docId=IN211556782
[24]
Sachin SS, Neela MB, Manish SB. Debenone lipid nanocarrier composition for the treatment of neurodegenerative disorders. 276/MUM/2014, 2014.https://patentscope.wipo.int/search/en/detail.jsf?docId=IN211679334&_cid=P10-KHLPZD-02278-1
[25]
Yaghoubi A, Ghojazadeh M, Abolhasani S, Alikhah H, Khaki-Khatibi F. Correlation of serum levels of vitronectin, malondialdehyde and Hs-CRP with disease severity in coronary artery disease. J Cardiovasc Thorac Res 2015; 7(3): 113-7.
[http://dx.doi.org/10.15171/jcvtr.2015.24] [PMID: 26430499]
[26]
Beghi E. The epidemiology of epilepsy. Neuroepidemiology 2020; 54(2): 185-91.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[27]
Abbas H, Refai H, El Sayed N. Superparamagnetic iron oxide-loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J Pharm Sci 2018; 107(8): 2119-27.
[http://dx.doi.org/10.1016/j.xphs.2018.04.007] [PMID: 29665379]
[28]
Kumar AS, Kuruvila T, Kavya SG, Radhakrishnan R, Nair AJ, Kamalasanan K. Early detection of seizures in epilepsy using Point Of Care (POC) Systems. J Pharm Sci Res 2017; 9(3): 302.
[29]
Puglia C, Bonina F, Trapani G, Franco M, Ricci M. Evaluation of in vitro percutaneous absorption of lorazepam and clonazepam from hydro-alcoholic gel formulations. Int J Pharm 2001; 228(1-2): 79-87.
[http://dx.doi.org/10.1016/S0378-5173(01)00806-7] [PMID: 11576770]
[30]
Sharma N, Bhandari S, Deshmukh R, Yadav AK, Mishra N. Development and characterization of embelin-loaded nanolipid carriers for brain targeting. Artif Cells Nanomed Biotechnol. 2017; 45: pp. (3)409-13.
[http://dx.doi.org/10.3109/21691401.2016.1160407] [PMID: 27012597]
[31]
Lam T, Pouliot P, Avti PK, Lesage F, Kakkar AK. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 2013; 199-200: 95-113.
[http://dx.doi.org/10.1016/j.cis.2013.06.007] [PMID: 23891347]
[32]
Giblin KA, Blumenfeld H. Is epilepsy a preventable disorder? New evidence from animal models. Neuroscientist 2010; 16(3): 253-75.
[http://dx.doi.org/10.1177/1073858409354385] [PMID: 20479472]
[33]
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26(8): 824-45.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[34]
Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev 2001; 51(1-3): 5-19.
[http://dx.doi.org/10.1016/S0169-409X(01)00172-7] [PMID: 11516776]
[35]
Mahendran S, Thippeswamy BS, Veerapur VP, Badami S. Anticonvulsant activity of embelin isolated from Embelia ribes. Phytomedicine 2011; 18(2-3): 186-8.
[http://dx.doi.org/10.1016/j.phymed.2010.04.002] [PMID: 20605710]
[36]
Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv 2015; 12(2): 181-94.
[http://dx.doi.org/10.1517/17425247.2014.945416] [PMID: 25164097]
[37]
Arya MA, Manoj KMK, Sabitha M, Menon KN, Nair SC. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer’s disease. J Drug Deliv Sci Technol 2019; 51: 297-309.
[http://dx.doi.org/10.1016/j.jddst.2019.03.022]
[38]
Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 2011; 6: 363-71.
[PMID: 21499426]
[39]
Varshosaz J, Eskandari S, Tabakhian M. Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm Dev Technol 2010; 15(1): 89-96.
[http://dx.doi.org/10.3109/10837450903013568] [PMID: 19552542]
[40]
Costa CP, Cunha S, Moreira JN, et al. Quality by design (QbD) optimization of diazepam-loaded Nanostructured Lipid Carriers (NLC) for nose-to-brain delivery: Toxicological effect of surface charge on human neuronal cells. Int J Pharm 2021; 607: 120933.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120933] [PMID: 34324988]
[41]
Deshkar SS, Jadhav MS, Shirolkar SV. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery. Adv Pharm Bull 2020; 11(1): 150-62.
[http://dx.doi.org/10.34172/apb.2021.016] [PMID: 33747862]
[42]
Graver HT, Herold RC, Chung TY, Christner PJ, Pappas C, Rosenbloom J. Immunofluorescent localization of amelogenins in developing bovine teeth. Dev Biol 1978; 63(2): 390-401.
[http://dx.doi.org/10.1016/0012-1606(78)90143-4] [PMID: 346419]
[43]
Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer report 2016: Improving healthcare for people living with dementia: Coverage, quality and costs now and in the future Alzheimer’s Disease International. ADI London, UK 2016.
[44]
Benny A, Thomas J. Essential oils as treatment strategy for Alzheimerʼs disease: Current and future perspectives. Planta Med 2019; 85(3): 239-48.
[http://dx.doi.org/10.1055/a-0758-0188] [PMID: 30360002]
[45]
Agrawal M, Saraf S, Saraf S, et al. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv 2018; 15(6): 589-617.
[http://dx.doi.org/10.1080/17425247.2018.1471058] [PMID: 29733231]
[46]
Jojo GM, Kuppusamy G, De A, Karri VVSNR. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev Ind Pharm 2019; 45(7): 1061-72.
[http://dx.doi.org/10.1080/03639045.2019.1593439] [PMID: 30922126]
[47]
Meng F, Asghar S, Xu Y, et al. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting. Int J Pharm 2016; 506(1-2): 46-56.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.033] [PMID: 27094357]
[48]
Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47(1): 65-81.
[http://dx.doi.org/10.1016/S0169-409X(00)00122-8] [PMID: 11251246]
[49]
Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002; 10(4): 317-25.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[50]
Patel PA, Patil SC, Kalaria DR, Kalia YN, Patravale VB. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm 2013; 446(1-2): 16-23.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.014] [PMID: 23410989]
[51]
Nilsson BM, Hultman CM, Wiesel FA. Niacin skin-flush response and electrodermal activity in patients with schizophrenia and healthy controls. Prostaglandins Leukot Essent Fatty Acids 2006; 74(5): 339-46.
[http://dx.doi.org/10.1016/j.plefa.2006.02.002] [PMID: 16600583]
[52]
Compton MT, Walker EF. Physical manifestations of neurodevelopmental disruption: are minor physical anomalies part of the syndrome of schizophrenia? Schizophr Bull 2009; 35(2): 425-36.
[http://dx.doi.org/10.1093/schbul/sbn151] [PMID: 18990714]
[53]
Harris LW, Guest PC, Wayland MT, et al. Schizophrenia: Metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 2013; 38(6): 752-66.
[http://dx.doi.org/10.1016/j.psyneuen.2012.09.009] [PMID: 23084727]
[54]
Saraceno B. Nations for mental health: A new who action programme on mental health for underserved populations. Eur Psychiatry 1998; 13(S4): 164s.
[http://dx.doi.org/10.1016/S0924-9338(99)80120-5]
[55]
Yang AC, Tsai SJ. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 2017; 18(8): 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]
[56]
Aleman A, Lincoln TM, Bruggeman R, et al. Treatment of negative symptoms: Where do we stand, and where do we go? Schizophr Res 2017; 186: 55-62.
[http://dx.doi.org/10.1016/j.schres.2016.05.015] [PMID: 27293137]
[57]
Gadhave D, Choudhury H, Kokare C. Neutropenia and leukopenia protective intranasal olanzapine-loaded lipid-based nanocarriers engineered for brain delivery. Appl Nanosci 2019; 9(2): 151-68.
[http://dx.doi.org/10.1007/s13204-018-0909-3]
[58]
Gadhave DG, Tagalpallewar AA, Kokare CR. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS delivery: Optimization and hematological toxicity studies. AAPS PharmSciTech 2019; 20(1): 22.
[http://dx.doi.org/10.1208/s12249-018-1213-y] [PMID: 30604305]
[59]
Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini review. J Drug Target 2015; 23(9): 775-88.
[http://dx.doi.org/10.3109/1061186X.2015.1020809] [PMID: 25758751]
[60]
Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology 2005; 182(4): 494-8.
[http://dx.doi.org/10.1007/s00213-005-0117-1] [PMID: 16133138]
[61]
Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of ω-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 2003; 62(3): 195-204.
[http://dx.doi.org/10.1016/S0920-9964(02)00284-0] [PMID: 12837515]
[62]
Shah SP, Flanagan DR. Solubilization of salicylamide and acetaminophen by antihistamines in aqueous solution. J Pharm Sci 1990; 79(10): 889-92.
[http://dx.doi.org/10.1002/jps.2600791009] [PMID: 2280357]
[63]
Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008; 358(1-2): 285-91.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.029] [PMID: 18455333]
[64]
Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J Pharm Sci 2012; 101(7): 2271-80.
[http://dx.doi.org/10.1002/jps.23146] [PMID: 22488174]
[65]
Edinoff A, Sathivadivel N, McBride T, et al. Chronic pain treatment strategies in Parkinson’s disease. Neurol Int 2020; 12(3): 61-76.
[http://dx.doi.org/10.3390/neurolint12030014] [PMID: 33218135]
[66]
Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[67]
Gartziandia O, Herrán E, Ruiz-Ortega JA, et al. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol 2016; 12(12): 2220-80.
[http://dx.doi.org/10.1166/jbn.2016.2313] [PMID: 29372975]
[68]
Pardeshi CV, Belgamwar VS. Improved brain pharmacokinetics following intranasal administration of N,N,N-trimethyl chitosan tailored mucoadhesive NLCs. Mater Technol 2020; 35(5): 249-66.
[http://dx.doi.org/10.1080/10667857.2019.1674522]
[69]
Ribeiro MMB, Domingues MM, Freire JM, Santos NC, Castanho MARB. Translocating the blood-brain barrier using electrostatics. Front Cell Neurosci 2012; 6: 44.
[http://dx.doi.org/10.3389/fncel.2012.00044] [PMID: 23087614]
[70]
Elmowafy M, Shalaby K, Badran MM, Ali HM, Abdel-Bakky MS, Ibrahim HM. Multifunctional carbamazepine loaded Nanostructured Lipid Carrier (NLC) formulation. Int J Pharm 2018; 550(1-2): 359-71.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.062] [PMID: 30179701]
[71]
Dudhipala N, Gorre T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for parkinson’s disease: In vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics 2020; 12(5): 448.
[http://dx.doi.org/10.3390/pharmaceutics12050448] [PMID: 32414195]
[72]
Liu KS, Wen CJ, Yen TC, et al. Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting. Nanotechnology 2012; 23(9): 095103.
[http://dx.doi.org/10.1088/0957-4484/23/9/095103] [PMID: 22327243]
[73]
Herrán E, Requejo C, Ruiz-Ortega JA, et al. Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 2014; 9: 2677-87.
[PMID: 24920904]
[74]
Gabal YM, Kamel AO, Sammour OA, Elshafeey AH. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm 2014; 473(1-2): 442-57.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.025] [PMID: 25062866]
[75]
Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: Apomorphine as a model drug. Nanotechnology 2010; 21(40): 405101.
[http://dx.doi.org/10.1088/0957-4484/21/40/405101] [PMID: 20823498]
[76]
Guo J, Schlich M, Cryan JF, O’Driscoll CM. Targeted drug delivery via folate receptors for the treatment of brain cancer: Can the promise deliver? J Pharm Sci 2017; 106(12): 3413-20.
[http://dx.doi.org/10.1016/j.xphs.2017.08.009] [PMID: 28842300]
[77]
Savaskan N, Fan Z, Broggini T, Buchfelder M, Eyupoglu I. Neurodegeneration in the brain tumor microenvironment: Glutamate in the limelight. Curr Neuropharmacol 2015; 13(2): 258-65.
[http://dx.doi.org/10.2174/1570159X13666150122224158] [PMID: 26411769]
[78]
Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet 2012; 379(9830): 1984-96.
[http://dx.doi.org/10.1016/S0140-6736(11)61346-9] [PMID: 22510398]
[79]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[80]
Emami J, Yousefian H, Sadeghi H. Targeted nanostructured lipid carrier for brain delivery of artemisinin: design, preparation, characterization, optimization and cell toxicity. J Pharm Pharm Sci 2018; 21(1s): 225s-41s.
[http://dx.doi.org/10.18433/jpps30117] [PMID: 30266137]
[81]
Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK. Intranasal administration of nanostructured lipid carriers containing CNS acting drug: Pharmacodynamic studies and estimation in blood and brain. J Psychiatr Res 2012; 46(9): 1133-8.
[http://dx.doi.org/10.1016/j.jpsychires.2012.05.014] [PMID: 22749490]
[82]
Jia L, Zhang D, Li Z, et al. Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Colloids Surf B Biointerfaces 2010; 80(2): 213-8.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.008] [PMID: 20621458]
[83]
Khan A, Imam SS, Aqil M, et al. Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: Brain pharmacokinetic and scintigraphic analyses. Mol Pharm 2016; 13(11): 3773-82.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00586] [PMID: 27661966]
[84]
Chen Y, Pan L, Jiang M, Li D, Jin L. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo. Drug Deliv 2016; 23(4): 1383-92.
[http://dx.doi.org/10.3109/10717544.2015.1049719] [PMID: 26066035]
[85]
Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 2017; 140(3): 527-46.
[PMID: 27794524]
[86]
Russell RD, Black LJ, Sherriff JL, Begley A. Dietary responses to a multiple sclerosis diagnosis: A qualitative study. Eur J Clin Nutr 2019; 73(4): 601-8.
[http://dx.doi.org/10.1038/s41430-018-0252-5] [PMID: 29941913]
[87]
Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies. Drug Dev Ind Pharm 2019; 45(5): 839-51.
[http://dx.doi.org/10.1080/03639045.2019.1576724] [PMID: 30702966]
[88]
Kumar P, Sharma G, Kumar R, et al. Enhanced brain delivery of dimethyl fumarate employing tocopherol-acetate-based nanolipidic carriers: Evidence from pharmacokinetic, biodistribution, and cellular uptake studies. ACS Chem Neurosci 2017; 8(4): 860-5.
[http://dx.doi.org/10.1021/acschemneuro.6b00428] [PMID: 27983793]
[89]
Ghasemian E, Vatanara A, Navidi N, Rouini MR. Brain delivery of baclofen as a hydrophilic drug by nanolipid carriers: Characteristics and pharmacokinetics evaluation. J Drug Deliv Sci Technol 2017; 37: 67-73.
[http://dx.doi.org/10.1016/j.jddst.2016.06.012]
[90]
Nair SC, Vinayan KP, Mangalathillam S. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: formulation, drug release, permeation and in vivo pharmacokinetic studies. Pharmaceutics 2021; 13(10): 1640.
[http://dx.doi.org/10.3390/pharmaceutics13101640] [PMID: 34683933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy