Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Human-derived Biomaterials for Biomedical and Tissue Engineering Applications

Author(s): Arun Kumar Singh, Sonali Sundram and Rishabha Malviya*

Volume 29, Issue 8, 2023

Published on: 21 March, 2023

Page: [584 - 603] Pages: 20

DOI: 10.2174/1381612829666230320103412

Price: $65

conference banner
Abstract

Biomaterials have been utilised since the dawn of time to aid wound healing and to try to restore damaged tissues and organs. Many different materials are now commercially accessible for maintaining and restoring biological functioning, and many more are being researched. New biomaterials have to be developed to meet growing clinical demands. The aim of this study is to propose innovative biomaterials of human origin and their recent applications in tissue engineering and the biomedical field. Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent application of biomaterials to produce a dynamic scaffold resembling natural tissue. Various literature survey was carried out using PubMed, Scopus, Elsevier, google scholar, and others and it was summarized from the study that the extracellular matrix (ECM) offers the opportunity to create a biomaterial consisting of a microenvironment with interesting biological and biophysical properties for improving and regulating cell functions. Based on the literature study, biomaterials have become increasingly important to the development of tissue engineering, which aims to unlock the regeneration capacity of human tissues/organs in a state of degeneration and restore or reestablish normal biological function. Biomaterials have also become increasingly important to the success of biomedical devices. Hence, it can be concluded from the finding of the study that the advances in the understanding of biomaterials and their role in new tissue formation can open new prospects in the field of tissue engineering and regenerative medicine.

Keywords: Tissue engineering, biomaterials, cellular material, biomedicine, therapeutics, bioengineering.

[1]
Jarrige M, Frank E, Herardot E, et al. The future of regenerative medicine: Cell therapy using pluripotent stem cells and acellular therapies based on extracellular vesicles. Cells 2021; 10(2): 240.
[http://dx.doi.org/10.3390/cells10020240] [PMID: 33513719]
[2]
Montorsi M, Genchi GG, De Pasquale D, De Simoni G, Sinibaldi E, Ciofani G. Design, fabrication, and characterization of a multimodal reconfigurable bioreactor for bone tissue engineering. Biotechnol Bioeng 2022; 119(7): 1965-79.
[http://dx.doi.org/10.1002/bit.28100] [PMID: 35383894]
[3]
Blume C, Kraus X, Heene S, et al. Vascular implants - new aspects for in situ tissue engineering. Eng Life Sci 2022; 22(3-4): 344-60.
[http://dx.doi.org/10.1002/elsc.202100100] [PMID: 35382534]
[4]
Feinberg AW. Engineered tissue grafts: Opportunities and challenges in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med 2012; 4(2): 207-20.
[http://dx.doi.org/10.1002/wsbm.164] [PMID: 22012681]
[5]
Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346(6212): 941-5.
[http://dx.doi.org/10.1126/science.1253836] [PMID: 25414301]
[6]
Varner VD, Nelson CM. Toward the directed self-assembly of engineered tissues. Annu Rev Chem Biomol Eng 2014; 5(1): 507-26.
[http://dx.doi.org/10.1146/annurev-chembioeng-060713-040016] [PMID: 24797818]
[7]
Urciuolo F, Imparato G, Totaro A, Netti PA. Building a tissue in vitro from the bottom up: Implications in regenerative medicine. Methodist DeBakey Cardiovasc J 2013; 9(4): 213-7.
[http://dx.doi.org/10.14797/mdcj-9-4-213] [PMID: 24298313]
[8]
Liu JS, Gartner ZJ. Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol 2012; 22(12): 683-91.
[http://dx.doi.org/10.1016/j.tcb.2012.09.004] [PMID: 23067679]
[9]
Palmiero C, Imparato G, Urciuolo F, Netti P. Engineered dermal equivalent tissue in vitro by assembly of microtissue precursors. Acta Biomater 2010; 6(7): 2548-53.
[http://dx.doi.org/10.1016/j.actbio.2010.01.026] [PMID: 20102750]
[10]
Ratner BD, Zhang G. A history of biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Eds. Biomaterials Science. An Introduction to Materials in Medicine. 4th ed. Elsevier: Amsterdam, 2014.
[http://dx.doi.org/10.1016/B978-0-12-816137-1.00002-7]
[11]
Soto-Gutierrez A, Wertheim JA, Ott HC, Gilbert TW. Perspectives on whole-organ assembly: Moving toward transplantation on demand. J Clin Invest 2012; 122(11): 3817-23.
[http://dx.doi.org/10.1172/JCI61974] [PMID: 23114604]
[12]
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J R Soc Interface 2011; 8(55): 153-70.
[http://dx.doi.org/10.1098/rsif.2010.0223] [PMID: 20719768]
[13]
Hanson S, D’Souza RN, Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A 2014; 20(15-16): 2162-8.
[http://dx.doi.org/10.1089/ten.tea.2013.0359] [PMID: 25140989]
[14]
Gentleman E, Ball MD, Stevens MM. Medical sciences. Biomaterials II. Available from: https://www.eolss.net/ebooklib/home.aspx.
[15]
Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: Recent innovations and the transition to translation. Tissue Eng Part B Rev 2013; 19(1): 1-13.
[http://dx.doi.org/10.1089/ten.teb.2012.0723] [PMID: 23253031]
[16]
Chen FM, Zhao YM, Jin Y, Shi S. Prospects for translational regenerative medicine. Biotechnol Adv 2012; 30(3): 658-72.
[http://dx.doi.org/10.1016/j.biotechadv.2011.11.005] [PMID: 22138411]
[17]
Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: A year in review. Tissue Eng Part B Rev 2014; 20(1): 1-16.
[http://dx.doi.org/10.1089/ten.teb.2013.0668] [PMID: 24410501]
[18]
Zhou Y, Wu C, Chang J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater Today 2019; 24: 41-56.
[http://dx.doi.org/10.1016/j.mattod.2018.07.016]
[19]
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41(1): 1-25.
[http://dx.doi.org/10.1007/s10529-018-2611-7] [PMID: 30368691]
[20]
Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc 2016; 11(10): 1775-81.
[http://dx.doi.org/10.1038/nprot.2016.123] [PMID: 27583639]
[21]
Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. Materials 2019; 12(4): 568.
[http://dx.doi.org/10.3390/ma12040568] [PMID: 30769821]
[22]
Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials 2011; 32(12): 3189-209.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.032] [PMID: 21300401]
[23]
Williams DF. The biomaterials conundrum in tissue engineering. Tissue Eng Part A 2014; 20(7-8): 1129-31.
[http://dx.doi.org/10.1089/ten.tea.2013.0769] [PMID: 24417599]
[24]
Kim BS, Park IK, Hoshiba T, et al. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 2011; 36(2): 238-68.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.10.001]
[25]
Fonseca KB, Granja PL, Barrias CC. Engineering proteolytically-degradable artificial extracellular matrices. Prog Polym Sci 2014; 39(12): 2010-29.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.003]
[26]
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010; 123(24): 4195-200.
[http://dx.doi.org/10.1242/jcs.023820] [PMID: 21123617]
[27]
Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021; 13(7): 1105.
[http://dx.doi.org/10.3390/polym13071105] [PMID: 33808492]
[28]
Antrobus RM, Childs HR, Chan MC, Liu J, Brudnicki PA, Lu HH. Tissue engineering-bone mimics. Encyclopedia of Bone Biology. Elsevier Inc. 2020.
[29]
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering-Part II: Challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev 2013; 19(4): 327-52.
[http://dx.doi.org/10.1089/ten.teb.2012.0727] [PMID: 23249320]
[30]
Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KWH. Delivery of small molecules for bone regenerative engineering: Preclinical studies and potential clinical applications. Drug Discov Today 2014; 19(6): 794-800.
[http://dx.doi.org/10.1016/j.drudis.2014.01.012] [PMID: 24508820]
[31]
Martino S, D’Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv 2012; 30(1): 338-51.
[http://dx.doi.org/10.1016/j.biotechadv.2011.06.015] [PMID: 21740963]
[32]
Marino A, Filippeschi C, Mattoli V, Mazzolai B, Ciofani G. Biomimicry at the nanoscale: Current research and perspectives of two-photon polymerization. Nanoscale 2015; 7(7): 2841-50.
[http://dx.doi.org/10.1039/C4NR06500J] [PMID: 25519056]
[33]
Meyers MA, McKittrick J, Chen PY. Structural biological materials: Critical mechanics-materials connections. Science 2013; 339(6121): 773-9.
[http://dx.doi.org/10.1126/science.1220854] [PMID: 23413348]
[34]
Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009; 8(1): 15-23.
[http://dx.doi.org/10.1038/nmat2344] [PMID: 19096389]
[35]
Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med 2012; 4(160): 160rv12.
[http://dx.doi.org/10.1126/scitranslmed.3004890] [PMID: 23152327]
[36]
Fong ELS, Watson BM, Kasper FK, Mikos AG. Building bridges: Leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. Adv Mater 2012; 24(36): 4995-5013.
[http://dx.doi.org/10.1002/adma.201201762] [PMID: 22821772]
[37]
Cao S, Zhao Y, Hu Y, Zou L, Chen J. New perspectives: In-situ tissue engineering for bone repair scaffold. Compos, Part B Eng 2020; 202: 108445.
[http://dx.doi.org/10.1016/j.compositesb.2020.108445]
[38]
Holzapfel BM, Reichert JC, Schantz JT, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 2013; 65(4): 581-603.
[http://dx.doi.org/10.1016/j.addr.2012.07.009] [PMID: 22820527]
[39]
Renth AN, Detamore MS. Leveraging “raw materials” as building blocks and bioactive signals in regenerative medicine. Tissue Eng Part B Rev 2012; 18(5): 341-62.
[http://dx.doi.org/10.1089/ten.teb.2012.0080] [PMID: 22462759]
[40]
Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng Rep 2008; 62(4): 125-55.
[http://dx.doi.org/10.1016/j.mser.2008.04.004] [PMID: 19122836]
[41]
Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng Rep 2007; 57(1-6): 1-27.
[http://dx.doi.org/10.1016/j.mser.2007.04.001]
[42]
Burnouf T, Goubran HA, Chen TM, Ou KL, El-Ekiaby M, Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 2013; 27(2): 77-89.
[http://dx.doi.org/10.1016/j.blre.2013.02.001] [PMID: 23434399]
[43]
Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011; 13(1): 27-53.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124743] [PMID: 21417722]
[44]
Anitua E, Sánchez M, Orive G. Potential of endogenous regenerative technology for in situ regenerative medicine. Adv Drug Deliv Rev 2010; 62(7-8): 741-52.
[http://dx.doi.org/10.1016/j.addr.2010.01.001] [PMID: 20102730]
[45]
Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Prog Mater Sci 2021; 117: 100721.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100721]
[46]
Dutta RC, Dutta AK. Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 2009; 27(4): 334-9.
[http://dx.doi.org/10.1016/j.biotechadv.2009.02.002] [PMID: 19232387]
[47]
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35(24): 6143-56.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.064] [PMID: 24818883]
[48]
Edalat F, Sheu I, Manoucheri S, Khademhosseini A. Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 2012; 23(5): 820-5.
[http://dx.doi.org/10.1016/j.copbio.2012.05.007] [PMID: 22705446]
[49]
Elisseeff J, Ferran A, Hwang S, Varghese S, Zhang Z. The role of biomaterials in stem cell differentiation: Applications in the musculoskeletal system. Stem Cells Dev 2006; 15(3): 295-303.
[http://dx.doi.org/10.1089/scd.2006.15.295] [PMID: 16846368]
[50]
Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009; 21(32-33): 3368-93.
[http://dx.doi.org/10.1002/adma.200802009] [PMID: 19750143]
[51]
Lu L, Peter SJ, Lyman MD, et al. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 2000; 21(18): 1837-45.
[http://dx.doi.org/10.1016/S0142-9612(00)00047-8] [PMID: 10919687]
[52]
Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. J R Soc Interface 2007; 4(17): 999-1030.
[http://dx.doi.org/10.1098/rsif.2007.0220] [PMID: 17412675]
[53]
Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011; 32(28): 6692-709.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.078] [PMID: 21715002]
[54]
Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface 2009; 6(Suppl 3) (Suppl. 3): S311-24.
[PMID: 19324684]
[55]
Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 2010; 31(31): 7892-927.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.019] [PMID: 20684986]
[56]
Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010; 31(24): 6279-308.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.053] [PMID: 20493521]
[57]
Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release 2011; 149(2): 92-110.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.021] [PMID: 20974199]
[58]
Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 2012; 33(27): 6320-44.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.048] [PMID: 22695066]
[59]
Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 2014; 463(2): 127-36.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.015] [PMID: 24368109]
[60]
Stoppel WL, Ghezzi CE, McNamara SL, Iii LDB, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43(3): 657-80.
[http://dx.doi.org/10.1007/s10439-014-1206-2] [PMID: 25537688]
[61]
Chung WJ, Oh JW, Kwak K, et al. Biomimetic self-templating supramolecular structures. Nature 2011; 478(7369): 364-8.
[http://dx.doi.org/10.1038/nature10513] [PMID: 22012394]
[62]
Murphy CM, O’Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 2013; 26: 120-32.
[http://dx.doi.org/10.22203/eCM.v026a09] [PMID: 24052425]
[63]
Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007; 59(4-5): 207-33.
[http://dx.doi.org/10.1016/j.addr.2007.03.012] [PMID: 17482309]
[64]
Ko DY, Shinde UP, Yeon B, Jeong B. Recent progress of in situ formed gels for biomedical applications. Prog Polym Sci 2013; 38(3-4): 672-701.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.08.002]
[65]
Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 2014; 39(12): 1973-86.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[66]
Barnes CP, Pemble CW IV, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 2007; 13(7): 1593-605.
[http://dx.doi.org/10.1089/ten.2006.0292] [PMID: 17523878]
[67]
Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009; 30(12): 2252-8.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.068] [PMID: 19152974]
[68]
Ravindran S, Song Y, George A. Development of three-dimensional biomimetic scaffold to study epithelial-mesenchymal interactions. Tissue Eng Part A 2010; 16(1): 327-42.
[http://dx.doi.org/10.1089/ten.tea.2009.0110] [PMID: 19712044]
[69]
Seal B, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng Rep 2001; 34(4-5): 147-230.
[http://dx.doi.org/10.1016/S0927-796X(01)00035-3]
[70]
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23(1): 47-55.
[http://dx.doi.org/10.1038/nbt1055] [PMID: 15637621]
[71]
Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2(3): 366-77.
[http://dx.doi.org/10.1098/rsfs.2011.0123] [PMID: 23741612]
[72]
Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 2013; 38(10-11): 1487-503.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.001]
[73]
Liu X, Ma PX. The nanofibrous architecture of poly(l-lactic acid)-based functional copolymers. Biomaterials 2010; 31(2): 259-69.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.046] [PMID: 19783035]
[74]
Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367(9518): 1241-6.
[http://dx.doi.org/10.1016/S0140-6736(06)68438-9] [PMID: 16631879]
[75]
Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet 2011; 377(9772): 1175-82.
[http://dx.doi.org/10.1016/S0140-6736(10)62354-9] [PMID: 21388673]
[76]
Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev 2015; 82-83: 47-63.
[http://dx.doi.org/10.1016/j.addr.2014.11.020] [PMID: 25477305]
[77]
Ribeiro-Filho LA, Sievert KD. Acellular matrix in urethral reconstruction. Adv Drug Deliv Rev 2015; 82-83: 38-46.
[http://dx.doi.org/10.1016/j.addr.2014.11.019] [PMID: 25477304]
[78]
Nguyen MK, Jeon O, Krebs MD, Schapira D, Alsberg E. Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials 2014; 35(24): 6278-86.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.048] [PMID: 24831973]
[79]
Li Z, Tan BH. Towards the development of polycaprolactone based amphiphilic block copolymers: Molecular design, self- assembly and biomedical applications. Mater Sci Eng C 2014; 45: 620-34.
[http://dx.doi.org/10.1016/j.msec.2014.06.003] [PMID: 25491872]
[80]
Boffito M, Sirianni P, Di Rienzo AM, Chiono V. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: State of the art and future perspectives. J Biomed Mater Res A 2015; 103(3): 1276-90.
[http://dx.doi.org/10.1002/jbm.a.35253] [PMID: 24912941]
[81]
Vacanti NM, Cheng H, Hill PS, et al. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 2012; 13(10): 3031-8.
[http://dx.doi.org/10.1021/bm300520u] [PMID: 22920794]
[82]
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010; 31(17): 4639-56.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.044] [PMID: 20303169]
[83]
Li X, Xie J, Yuan X, Xia Y. Coating electrospun poly(epsilon- caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 2008; 24(24): 14145-50.
[http://dx.doi.org/10.1021/la802984a] [PMID: 19053657]
[84]
Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci USA 2012; 109(25): 10012-7.
[http://dx.doi.org/10.1073/pnas.1121605109] [PMID: 22665791]
[85]
Liu X, Holzwarth JM, Ma PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 2012; 12(7): 911-9.
[http://dx.doi.org/10.1002/mabi.201100466] [PMID: 22396193]
[86]
Rossi F, van Griensven M. Polymer functionalization as a powerful tool to improve scaffold performances. Tissue Eng Part A 2014; 20(15-16): 2043-51.
[http://dx.doi.org/10.1089/ten.tea.2013.0367] [PMID: 24206079]
[87]
Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2013; 2(1): 57-71.
[http://dx.doi.org/10.1002/adhm.201200197] [PMID: 23184739]
[88]
Resende RR, Fonseca EA, Tonelli FMP, et al. Scale/topography of substrates surface resembling extracellular matrix for tissue engineering. J Biomed Nanotechnol 2014; 10(7): 1157-93.
[http://dx.doi.org/10.1166/jbn.2014.1850] [PMID: 24804539]
[89]
Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011; 32(36): 9622-9.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.009] [PMID: 21944829]
[90]
Green DW, Goto TK, Kim KS, Jung HS. Calcifying tissue regeneration via biomimetic materials chemistry. J R Soc Interface 2014; 1-11.
[91]
Nakayama K. Membrane traffic: Editorial overview. J Biochem 2004; 136(6): 751-3.
[http://dx.doi.org/10.1093/jb/mvh183] [PMID: 15671484]
[92]
Charras G, Sahai E. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 2014; 15(12): 813-24.
[http://dx.doi.org/10.1038/nrm3897] [PMID: 25355506]
[93]
Yu YL, Shao YK, Ding YQ, et al. Decellularized kidney scaffold- mediated renal regeneration. Biomaterials 2014; 35(25): 6822-8.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.074] [PMID: 24855960]
[94]
Zhao N, Wang Z, Cai C, et al. Bioinspired materials: From low to high dimensional structure. Adv Mater 2014; 26(41): 6994-7017.
[http://dx.doi.org/10.1002/adma.201401718] [PMID: 25212698]
[95]
Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006; 27(7): 974-85.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.023] [PMID: 16055183]
[96]
Tran RT, Thevenot P, Zhang Y, Gyawali D, Tang L, Yang J. Scaffold sheet design strategy for soft tissue engineering. Materials 2010; 3(2): 1375-89.
[http://dx.doi.org/10.3390/ma3021375] [PMID: 21113339]
[97]
Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 2015; 46: 1-24.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.12.001]
[98]
Derby B. Printing and prototyping of tissues and scaffolds. Science 2012; 338(6109): 921-6.
[http://dx.doi.org/10.1126/science.1226340] [PMID: 23161993]
[99]
O’Brien C, Holmes B, Faucett S, Zhang LG. 3D printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 2015; 21: 103-14.
[http://dx.doi.org/10.1089/ten.teb.2014.0168] [PMID: 25084122]
[100]
Hosseini V, Kollmannsberger P, Ahadian S, et al. Fiber-assisted molding (FAM) of surfaces with tunable curvature to guide cell alignment and complex tissue architecture. Small 2014; 10(23): 4851-7.
[http://dx.doi.org/10.1002/smll.201400263] [PMID: 25070416]
[101]
Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012; 64(12): 1257-76.
[http://dx.doi.org/10.1016/j.addr.2012.05.006] [PMID: 22626978]
[102]
Uebersax L, Merkle HP, Meinel L. Biopolymer-based growth factor delivery for tissue repair: From natural concepts to engineered systems. Tissue Eng Part B Rev 2009; 15(3): 263-89.
[http://dx.doi.org/10.1089/ten.teb.2008.0668] [PMID: 19416020]
[103]
Nguyen MK, Alsberg E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 2014; 39(7): 1235-65.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.12.001] [PMID: 25242831]
[104]
Chen FM, Shelton RM, Jin Y, Chapple ILC. Localized delivery of growth factors for periodontal tissue regeneration: Role, strategies, and perspectives. Med Res Rev 2009; 29(3): 472-513.
[http://dx.doi.org/10.1002/med.20144] [PMID: 19260070]
[105]
Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. Nat Mater 2013; 12(11): 1004-17.
[http://dx.doi.org/10.1038/nmat3758] [PMID: 24150418]
[106]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[107]
Lee EJ, Tabor JJ, Mikos AG. Leveraging synthetic biology for tissue engineering applications. Inflamm Regen 2014; 34(1): 015-22.
[http://dx.doi.org/10.2492/inflammregen.34.015]
[108]
Azagarsamy MA, Alge DL, Radhakrishnan SJ, Tibbitt MW, Anseth KS. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules 2012; 13(8): 2219-24.
[http://dx.doi.org/10.1021/bm300646q] [PMID: 22746981]
[109]
Azagarsamy MA, Anseth KS. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew Chem Int Ed 2013; 52(51): 13803-7.
[http://dx.doi.org/10.1002/anie.201308174] [PMID: 24173699]
[110]
Vancoillie G, Frank D, Hoogenboom R. Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 2014; 39(6): 1074-95.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.02.005]
[111]
Chen FM, Lu H, Wu LA, Gao LN, An Y, Zhang J. Surface-engineering of glycidyl methacrylated dextran/gelatin microcapsules with thermo-responsive poly(N-isopropylacrylamide) gates for controlled delivery of stromal cell-derived factor-1α. Biomaterials 2013; 34(27): 6515-27.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.014] [PMID: 23726519]
[112]
Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self- assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater 2011; 10(5): 398-406.
[http://dx.doi.org/10.1038/nmat2999] [PMID: 21499313]
[113]
Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009; 462(7272): 433-41.
[http://dx.doi.org/10.1038/nature08602] [PMID: 19940913]
[114]
Cha C, Liechty WB, Khademhosseini A, Peppas NA. Designing biomaterials to direct stem cell fate. ACS Nano 2012; 6(11): 9353-8.
[http://dx.doi.org/10.1021/nn304773b] [PMID: 23136849]
[115]
Wang CH, Chen SY, Fu JP, et al. Reconstruction of trochanteric pressure sores with pedicled anterolateral thigh myocutaneous flaps. J Plast Reconstr Aesthet Surg 2011; 64(5): 671-6.
[http://dx.doi.org/10.1016/j.bjps.2010.08.042] [PMID: 20884307]
[116]
Siemionow M, Papay F, Alam D, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet 2009; 374(9685): 203-9.
[http://dx.doi.org/10.1016/S0140-6736(09)61155-7] [PMID: 19608265]
[117]
Daar AS. The future of replacement and restorative therapies: From organ transplantation to regenerative medicine. Transplant Proc 2013; 45(10): 3450-2.
[http://dx.doi.org/10.1016/j.transproceed.2013.09.011] [PMID: 24314929]
[118]
Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414(6859): 118-21.
[http://dx.doi.org/10.1038/35102181] [PMID: 11689957]
[119]
Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 2005; 46(11): 1531-44.
[http://dx.doi.org/10.1080/10428190500215076] [PMID: 16236607]
[120]
Flynn A, Barry F, O’Brien T. UC blood-derived mesenchymal stromal cells: An overview. Cytotherapy 2007; 9(8): 717-26.
[http://dx.doi.org/10.1080/14653240701584578] [PMID: 17917891]
[121]
Minteer D, Marra KG, Rubin JP. Adipose-derived mesenchymal stem cells: Biology and potential applications. Adv Biochem Eng Biotechnol 2012; 129: 59-71.
[http://dx.doi.org/10.1007/10_2012_146] [PMID: 22825719]
[122]
Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontol 2000 2015; 67(1): 251-67.
[http://dx.doi.org/10.1111/prd.12070] [PMID: 25494604]
[123]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[124]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[125]
Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res 2009; 88(9): 792-806.
[http://dx.doi.org/10.1177/0022034509340867] [PMID: 19767575]
[126]
Zhang J, An Y, Gao LN, Zhang YJ, Jin Y, Chen FM. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials 2012; 33(29): 6974-86.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.032] [PMID: 22789721]
[127]
Gao LN, An Y, Lei M, et al. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets. Biomaterials 2013; 34(38): 9937-51.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.017] [PMID: 24095254]
[128]
Yang H, Gao LN, An Y, et al. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 2013; 34(29): 7033-47.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.025] [PMID: 23768902]
[129]
Sun HH, Chen B, Zhu QL, et al. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials 2014; 35(35): 9459-72.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.003] [PMID: 25172527]
[130]
Mayo V, Sawatari Y, Huang CYC, Garcia-Godoy F. Neural crest-derived dental stem cells - Where we are and where we are going. J Dent 2014; 42(9): 1043-51.
[http://dx.doi.org/10.1016/j.jdent.2014.04.007] [PMID: 24769107]
[131]
Sedgley CM, Botero TM. Dental stem cells and their sources. Dent Clin North Am 2012; 56(3): 549-61.
[http://dx.doi.org/10.1016/j.cden.2012.05.004] [PMID: 22835537]
[132]
Vijayan S, Bartlett W, Bentley G, et al. Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft. J Bone Joint Surg Br 2012; 94-B(4): 488-92.
[http://dx.doi.org/10.1302/0301-620X.94B4.27117] [PMID: 22434464]
[133]
Goyal D, Goyal A, Keyhani S, Lee EH, Hui JHP. Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: A systematic review of level I and II studies. Arthroscopy 2013; 29(11): 1872-8.
[http://dx.doi.org/10.1016/j.arthro.2013.07.271] [PMID: 24075851]
[134]
Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther 2014; 44(2): 102-19.
[http://dx.doi.org/10.2519/jospt.2014.5055] [PMID: 24175609]
[135]
Atala A. Organ preservation, organ and cell transplantation, tissue engineering, and regenerative medicine: The terms may change, but the goals remain the same. Tissue Eng Part A 2014; 20(3-4): 445-6.
[PMID: 24367926]
[136]
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98(4): 1317-75.
[http://dx.doi.org/10.1002/jps.21528] [PMID: 18729202]
[137]
Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002; 84(3): 454-64.
[http://dx.doi.org/10.2106/00004623-200203000-00020] [PMID: 11886919]
[138]
Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005; 13(1): 77-86.
[http://dx.doi.org/10.5435/00124635-200501000-00010] [PMID: 15712985]
[139]
Kølle SFT, Fischer-Nielsen A, Mathiasen AB, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: A randomised placebo- controlled trial. Lancet 2013; 382(9898): 1113-20.
[http://dx.doi.org/10.1016/S0140-6736(13)61410-5] [PMID: 24075051]
[140]
Parrish JN, Metzinger SE. Autogenous fat grafting and breast augmentation: A review of the literature. Aesthet Surg J 2010; 30(4): 549-56.
[http://dx.doi.org/10.1177/1090820X10380859] [PMID: 20829253]
[141]
Graham Boyce R, Nuss DW, Kluka EA. The use of autogenous fat, fascia, and nonvascularized muscle grafts in the head and neck. Otolaryngol Clin North Am 1994; 27(1): 39-68.
[http://dx.doi.org/10.1016/S0030-6665(20)30715-5] [PMID: 8159427]
[142]
Wilshaw SP, Kearney J, Fisher J, Ingham E. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng Part A 2008; 14(4): 463-72.
[http://dx.doi.org/10.1089/tea.2007.0145] [PMID: 18370928]
[143]
Laurent R, Nallet A, Obert L, Nicod L, Gindraux F. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank 2014; 15(2): 267-75.
[http://dx.doi.org/10.1007/s10561-014-9437-x] [PMID: 24633398]
[144]
Uçakhan ÖÖ, Köklü G, Firat E. Nonpreserved human amniotic membrane transplantation in acute and chronic chemical eye injuries. Cornea 2002; 21(2): 169-72.
[http://dx.doi.org/10.1097/00003226-200203000-00008] [PMID: 11862088]
[145]
Hasegawa M, Fujisawa H, Hayashi Y, Yamashita J. Autologous amnion graft for repair of myelomeningocele: Technical note and clinical implication. J Clin Neurosci 2004; 11(4): 408-11.
[http://dx.doi.org/10.1016/j.jocn.2003.11.006] [PMID: 15080958]
[146]
Gutiérrez-Moreno S, Alsina-Gibert M, Sampietro-Colom L, Pedregosa-Fauste S, Ayala-Blanco P. Cost-benefit analysis of amniotic membrane transplantation for venous ulcers of the legs that are refractory to conventional treatment. Actas Dermo-Sifiliográficas 2011; 102(4): 284-8.
[http://dx.doi.org/10.1016/S1578-2190(11)70804-6] [PMID: 21440240]
[147]
Loeffelbein DJ, Rohleder NH, Eddicks M, et al. Evaluation of human amniotic membrane as a wound dressing for split-thickness skin-graft donor sites. BioMed Res Int 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/572183] [PMID: 25003117]
[148]
Memarzadeh F, Fahd AK, Shamie N, Chuck RS. Comparison of de-epithelialized amniotic membrane transplantation and conjunctival autograft after primary pterygium excision. Eye 2008; 22(1): 107-12.
[http://dx.doi.org/10.1038/sj.eye.6702453] [PMID: 16763656]
[149]
Taylan Şekeroğlu H, Erdem E, Dogan NC, Yagmur M, Ersoz R, Dogan A. Sutureless amniotic membrane transplantation combined with narrow-strip conjunctival autograft for pterygium. Int Ophthalmol 2011; 31(6): 433-8.
[http://dx.doi.org/10.1007/s10792-011-9488-y] [PMID: 22146880]
[150]
Sullivan HC, Atkins JH. Free autogenous gingival grafts. I. Principles of successful grafting. Periodontics 1968; 6(3): 121-9.
[PMID: 5240496]
[151]
Cortellini P, Tonetti M, Prato GP. The partly epithelialized free gingival graft (pe-fgg) at lower incisors. A pilot study with implications for alignment of the mucogingival junction. J Clin Periodontol 2012; 39(7): 674-80.
[http://dx.doi.org/10.1111/j.1600-051X.2012.01896.x] [PMID: 22587305]
[152]
Cairo F, Nieri M, Pagliaro U. Efficacy of periodontal plastic surgery procedures in the treatment of localized facial gingival recessions. A systematic review. J Clin Periodontol 2014; 41 (Suppl. 15): S44-62.
[http://dx.doi.org/10.1111/jcpe.12182] [PMID: 24641000]
[153]
Thoma DS, Buranawat B, Hämmerle CHF, Held U, Jung RE. Efficacy of soft tissue augmentation around dental implants and in partially edentulous areas: A systematic review. J Clin Periodontol 2014; 41 (Suppl. 15): S77-91.
[http://dx.doi.org/10.1111/jcpe.12220] [PMID: 24641003]
[154]
Kretlow JD, Shi M, Young S, et al. Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects. Tissue Eng Part C Methods 2010; 16(6): 1427-38.
[http://dx.doi.org/10.1089/ten.tec.2010.0046] [PMID: 20524844]
[155]
Thangavelu A, Santhosh Kumar K, Vaidhyanathan A, Balaji M, Narendar R. Versatility of full thickness skin-subcutaneous fat grafts as interpositional material in the management of temporomandibular joint ankylosis. Int J Oral Maxillofac Surg 2011; 40(1): 50-6.
[http://dx.doi.org/10.1016/j.ijom.2010.06.025] [PMID: 20952163]
[156]
Dimitroulis G. A critical review of interpositional grafts following temporomandibular joint discectomy with an overview of the dermis-fat graft. Int J Oral Maxillofac Surg 2011; 40(6): 561-8.
[http://dx.doi.org/10.1016/j.ijom.2010.11.020] [PMID: 21195585]
[157]
McNichols CH, Hatef DA, Cole P, Hollier LH Jr, Thornton JF. Contemporary techniques for the correction of temporal hollowing: Augmentation temporoplasty with the classic dermal fat graft. J Craniofac Surg 2012; 23(3): e234-8.
[http://dx.doi.org/10.1097/SCS.0b013e31824de5b8] [PMID: 22627443]
[158]
Burres S. Soft-tissue augmentation with Fascian. Clin Plast Surg 2001; 28(1): 101-10.
[http://dx.doi.org/10.1016/S0094-1298(20)32342-7] [PMID: 11248860]
[159]
Wong TY, Chung CH, Huang JS, Chen HA. The inverted temporalis muscle flap for intraoral reconstruction: Its rationale and the results of its application. J Oral Maxillofac Surg 2004; 62(6): 667-75.
[http://dx.doi.org/10.1016/j.joms.2003.08.034] [PMID: 15170276]
[160]
Kuo YR, Yeh MC, Shih HS, et al. Versatility of the anterolateral thigh flap with vascularized fascia lata for reconstruction of complex soft-tissue defects: Clinical experience and functional assessment of the donor site. Plast Reconstr Surg 2009; 124(1): 171-80.
[http://dx.doi.org/10.1097/PRS.0b013e3181a80594] [PMID: 19568063]
[161]
Parodi PC, Moretti L, Saggin G, De Biasio F, Alecci V, Vaienti L. Soft tissue and tendon reconstruction after achilles tendon rupture: Adipofascial sural turnover flap associated with cryopreserved gracilis tendon allograft for complicated soft tissue and achilles tendon losses. A case report and literature review. Ann Ital Chir 2006; 77(4): 361-7.
[PMID: 17139970]
[162]
Saint-Cyr M, Wong C, Buchel EW, Colohan S, Pederson WC. Free tissue transfers and replantation. Plast Reconstr Surg 2012; 130(6): 858e-78e.
[http://dx.doi.org/10.1097/PRS.0b013e31826da2b7] [PMID: 23190838]
[163]
Tevlin R, McArdle A, Atashroo D, et al. Biomaterials for craniofacial bone engineering. J Dent Res 2014; 93(12): 1187-95.
[http://dx.doi.org/10.1177/0022034514547271] [PMID: 25139365]
[164]
Kane R, Ma PX I. Mimicking the nanostructure of bone matrix to regenerate bone. Mater Today 2013; 16(11): 418-23.
[http://dx.doi.org/10.1016/j.mattod.2013.11.001] [PMID: 24688283]
[165]
Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: The reconstructive surgeon’s point of view. J Cell Mol Med 2006; 10(1): 7-19.
[http://dx.doi.org/10.1111/j.1582-4934.2006.tb00287.x] [PMID: 16563218]
[166]
Rosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 1998; 42(3): 467-90.
[http://dx.doi.org/10.1016/S0011-8532(22)00578-X] [PMID: 9700450]
[167]
Pape HC, Evans A, Kobbe P. Autologous bone graft: Properties and techniques. J Orthop Trauma 2010; 24 (Suppl. 1): S36-40.
[http://dx.doi.org/10.1097/BOT.0b013e3181cec4a1] [PMID: 20182233]
[168]
Sbordone C, Sbordone L, Toti P, Martuscelli R, Califano L, Guidetti F. Volume changes of grafted autogenous bone in sinus augmentation procedure. J Oral Maxillofac Surg 2011; 69(6): 1633-41.
[http://dx.doi.org/10.1016/j.joms.2010.12.004] [PMID: 21419549]
[169]
Sen MK, Miclau T. Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions? Injury 2007; 38(1): S75-80.
[http://dx.doi.org/10.1016/j.injury.2007.02.012] [PMID: 17383488]
[170]
Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: State of the art. J Oral Maxillofac Surg 2009; 67(5): 1121-7.
[http://dx.doi.org/10.1016/j.joms.2008.11.020] [PMID: 19375027]
[171]
Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin 2012; 28(4): 457-68.
[http://dx.doi.org/10.1016/j.hcl.2012.08.001] [PMID: 23101596]
[172]
Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bone Miner Res 1995; 10(8): 1272-81.
[http://dx.doi.org/10.1002/jbmr.5650100818] [PMID: 8585432]
[173]
Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J Mater Sci Mater Med 2014; 25(10): 2445-61.
[http://dx.doi.org/10.1007/s10856-014-5240-2] [PMID: 24865980]
[174]
Perlyn CA, Schmelzer R, Govier D, Marsh JL. Congenital scalp and calvarial deficiencies: Principles for classification and surgical management. Plast Reconstr Surg 2005; 115(4): 1129-41.
[http://dx.doi.org/10.1097/01.PRS.0000156217.33683.2B] [PMID: 15793456]
[175]
Johnson RG. Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine 2014; 39(9): 695-700.
[http://dx.doi.org/10.1097/BRS.0000000000000254] [PMID: 24503679]
[176]
Putzier M, Strube P, Funk JF, et al. Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: A randomized prospective study. Eur Spine J 2009; 18(5): 687-95.
[http://dx.doi.org/10.1007/s00586-008-0875-7] [PMID: 19148687]
[177]
Doi K, Tominaga S, Shibata T. Bone grafts with microvascular anastomoses of vascular pedicles. J Bone Joint Surg Am 1977; 59(6): 809-15.
[http://dx.doi.org/10.2106/00004623-197759060-00015] [PMID: 908705]
[178]
Dell PC, Burchardt H, Glowczewskie FP Jr. A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg Am 1985; 67(1): 105-12.
[http://dx.doi.org/10.2106/00004623-198567010-00013] [PMID: 3881445]
[179]
Stevenson S. Biology of bone grafts. Orthop Clin North Am 1999; 30(4): 543-52.
[http://dx.doi.org/10.1016/S0030-5898(05)70107-3] [PMID: 10471759]
[180]
Smolka W, Iizuka T. Arthroscopic lysis and lavage in different stages of internal derangement of the temporomandibular joint: Correlation of preoperative staging to arthroscopic findings and treatment outcome. J Oral Maxillofac Surg 2005; 63(4): 471-8.
[http://dx.doi.org/10.1016/j.joms.2004.07.021] [PMID: 15789318]
[181]
Doi K, Hattori Y. Vascularized bone graft from the supracondylar region of the femur. Microsurgery 2009; 29(5): 379-84.
[http://dx.doi.org/10.1002/micr.20671] [PMID: 19530087]
[182]
Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: A review. Indian J Med Res 2010; 132: 15-30.
[PMID: 20693585]
[183]
Liu X, Chu PK, Ding C. Surface nano-functionalization of biomaterials. Mater Sci Eng Rep 2010; 70(3-6): 275-302.
[http://dx.doi.org/10.1016/j.mser.2010.06.013]
[184]
Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: Bone replacement grafts. Dent Clin North Am 2010; 54(1): 55-71.
[http://dx.doi.org/10.1016/j.cden.2009.09.003] [PMID: 20103472]
[185]
Ross SE, Cohen DW. The fate of a free osseous tissue autograft. A clinical and histologic case report. Periodontics 1968; 6(4): 145-51.
[PMID: 4874507]
[186]
Hiatt WH, Schallhorn RG, Aaronian AJ. The induction of new bone and cementum formation. IV. Microscopic examination of the periodontium following human bone and marrow allograft, autograft and nongraft periodontal regenerative procedures. J Periodontol 1978; 49(10): 495-512.
[http://dx.doi.org/10.1902/jop.1978.49.10.495] [PMID: 366096]
[187]
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng Part B Rev 2010; 16(2): 219-55.
[http://dx.doi.org/10.1089/ten.teb.2009.0562] [PMID: 19860551]
[188]
Burkus JK, Heim SE, Gornet MF, Zdeblick TA. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 2003; 16(2): 113-22.
[http://dx.doi.org/10.1097/00024720-200304000-00001] [PMID: 12679664]
[189]
Canan LW Jr, da Silva Freitas R, Alonso N, Tanikawa DYS, Rocha DL, Coelho JCU. Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients. J Craniofac Surg 2012; 23(6): 1627-33.
[http://dx.doi.org/10.1097/SCS.0b013e31825c75ba] [PMID: 23147291]
[190]
Chen Z, Ba G, Shen T, Fu Q. Recombinant human bone morphogenetic protein-2 versus autogenous iliac crest bone graft for lumbar fusion: A meta-analysis of ten randomized controlled trials. Arch Orthop Trauma Surg 2012; 132(12): 1725-40.
[http://dx.doi.org/10.1007/s00402-012-1607-3] [PMID: 22941273]
[191]
Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics 2011; 34(12): e877-84.
[http://dx.doi.org/10.3928/01477447-20111021-09] [PMID: 22146205]
[192]
van Hout WMMT, Mink van der Molen AB, Breugem CC, Koole R, Van Cann EM. Reconstruction of the alveolar cleft: Can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2. Clin Oral Investig 2011; 15(3): 297-303.
[http://dx.doi.org/10.1007/s00784-011-0547-6] [PMID: 21465220]
[193]
Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 2006; 88(7): 1431-41.
[http://dx.doi.org/10.2106/JBJS.E.00381] [PMID: 16818967]
[194]
Hallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000 2008; 47(1): 172-92.
[http://dx.doi.org/10.1111/j.1600-0757.2008.00251.x]
[195]
Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J 2011; 11(6): 471-91.
[http://dx.doi.org/10.1016/j.spinee.2011.04.023] [PMID: 21729796]
[196]
Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: A systematic review and meta-analysis. Ann Intern Med 2013; 158(12): 890-902.
[http://dx.doi.org/10.7326/0003-4819-158-12-201306180-00006] [PMID: 23778906]
[197]
Luciani GB, Santini F, Mazzucco A. Autografts, homografts, and xenografts: Overview on stentless aortic valve surgery. J Cardiovasc Med 2007; 8(2): 91-6.
[http://dx.doi.org/10.2459/01.JCM.0000260208.98246.10] [PMID: 17299289]
[198]
Herberts CA, Park MVDZ, Pot JWGA, de Vries CGJCA. Results from a horizon scan on risks associated with transplantation of human organs, tissues and cells: From donor to patient. Cell Tissue Bank 2015; 16(1): 1-17.
[http://dx.doi.org/10.1007/s10561-014-9450-0] [PMID: 24789705]
[199]
Gaafar A, Iqniebi A, Sheereen A, et al. Study of the cytokine polymorphisms in correlation to rejection and graft survival in renal allograft donors and recipients from a homogenous Saudi population. Transpl Immunol 2014; 30(1): 34-9.
[http://dx.doi.org/10.1016/j.trim.2013.11.006] [PMID: 24316141]
[200]
Cassidy D, Beltz J, Jhanji V, Loughnan MS. Recent advances in corneal transplantation for keratoconus. Clin Exp Optom 2013; 96(2): 165-72.
[http://dx.doi.org/10.1111/cxo.12047] [PMID: 23437970]
[201]
Niederkorn JY. Corneal transplantation and immune privilege. Int Rev Immunol 2013; 32(1): 57-67.
[http://dx.doi.org/10.3109/08830185.2012.737877] [PMID: 23360158]
[202]
Ple-plakon PA, Shtein RM, Musch DC, Blachley T, Saponara F, Woodward MA. Tissue characteristics and reported adverse events after corneal transplantation. Cornea 2013; 32(10): 1339-43.
[http://dx.doi.org/10.1097/ICO.0b013e3182a0d154] [PMID: 23974898]
[203]
Omar N, Bou Chacra CT, Tabbara KF. Outcome of corneal transplantation in a private institution in Saudi Arabia. Clin Ophthalmol 2013; 7: 1311-8.
[PMID: 23847410]
[204]
Burd A, Chiu T. Allogenic skin in the treatment of burns. Clin Dermatol 2005; 23(4): 376-87.
[http://dx.doi.org/10.1016/j.clindermatol.2004.07.019] [PMID: 16023933]
[205]
Bajnrauh R, Nguyen EV, Reifler DM, Wilcox RM. Dressing ignition and facial burns following orbital exenteration. Ophthal Plast Reconstr Surg 2007; 23(5): 409-11.
[http://dx.doi.org/10.1097/IOP.0b013e318137a1a3] [PMID: 17881996]
[206]
Banks ND, Milner S. Persistence of human skin allograft in a burn patient without exogenous immunosuppression. Plast Reconstr Surg 2008; 121(4): 230e-1e.
[http://dx.doi.org/10.1097/01.prs.0000305391.98958.95] [PMID: 18349616]
[207]
Cerqueira MT, da Silva LP, Santos TC, et al. Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing. Tissue Eng Part A 2014; 20(9-10): 1369-78.
[http://dx.doi.org/10.1089/ten.tea.2013.0460] [PMID: 24299468]
[208]
Wainwright D, Madden M, Luterman A, et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil 1996; 17(2): 124-36.
[http://dx.doi.org/10.1097/00004630-199603000-00006] [PMID: 8675502]
[209]
Bondioli E, Fini M, Veronesi F, et al. Development and evaluation of a decellularized membrane from human dermis. J Tissue Eng Regen Med 2014; 8(4): 325-36.
[http://dx.doi.org/10.1002/term.1530] [PMID: 22689414]
[210]
Levin F, Turbin RE, Langer PD. Acellular human dermal matrix as a skin substitute for reconstruction of large periocular cutaneous defects. Ophthal Plast Reconstr Surg 2011; 27(1): 44-7.
[http://dx.doi.org/10.1097/IOP.0b013e3181e2f85e] [PMID: 21217334]
[211]
Rennert R, Sorkin M, Wong V, Gurtner G. Organ-level tissue engineering using bioreactor systems and stem cells: Implications for transplant surgery. Curr Stem Cell Res Ther 2013; 9(1): 2-9.
[http://dx.doi.org/10.2174/1574888X113086660069] [PMID: 24180421]
[212]
Ren X, Laugel MC. The next frontier in composite tissue allotransplantation. CNS Neurosci Ther 2013; 19(1): 1-4.
[http://dx.doi.org/10.1111/cns.12029] [PMID: 23157698]
[213]
Gordon CR, Zor F, Cetrulo C Jr, Brandacher G, Sacks J, Lee WPA. Concomitant face and hand transplantation: Perfect solution or perfect storm? Ann Plast Surg 2011; 67(3): 309-14.
[http://dx.doi.org/10.1097/SAP.0b013e31822a2c8f] [PMID: 21836456]
[214]
Devauchelle B, Badet L, Lengelé B, et al. First human face allograft: Early report. Lancet 2006; 368(9531): 203-9.
[http://dx.doi.org/10.1016/S0140-6736(06)68935-6] [PMID: 16844489]
[215]
Guo S, Han Y, Zhang X, et al. Human facial allotransplantation: A 2-year follow-up study. Lancet 2008; 372(9639): 631-8.
[http://dx.doi.org/10.1016/S0140-6736(08)61276-3] [PMID: 18722867]
[216]
Siemionow MZ, Papay F, Djohan R, et al. First U.S. near-total human face transplantation: A paradigm shift for massive complex injuries. Plast Reconstr Surg 2010; 125(1): 111-22.
[http://dx.doi.org/10.1097/PRS.0b013e3181c15c4c] [PMID: 19770815]
[217]
Meningaud JP, Benjoar MD, Hivelin M, Hermeziu O, Toure G, Lantieri L. Procurement of total human face graft for allotransplantation: A preclinical study and the first clinical case. Plast Reconstr Surg 2010; 126(4): 1181-90.
[http://dx.doi.org/10.1097/PRS.0b013e3181ec2089] [PMID: 20555296]
[218]
Mundinger GS, Drachenberg CB. Chronic rejection in vascularized composite allografts. Curr Opin Organ Transplant 2014; 19(3): 309-14.
[http://dx.doi.org/10.1097/MOT.0000000000000073] [PMID: 24811439]
[219]
Diaz-Siso JR, Bueno EM, Sisk GC, Marty FM, Pomahac B, Tullius SG. Vascularized composite tissue allotransplantation - state of the art. Clin Transplant 2013; 27(3): 330-7.
[http://dx.doi.org/10.1111/ctr.12117] [PMID: 23581799]
[220]
Kaufman CL, Ouseph R, Marvin MR, Manon-Matos Y, Blair B, Kutz JE. Monitoring and long-term outcomes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2013; 18(6): 652-8.
[http://dx.doi.org/10.1097/MOT.0000000000000025] [PMID: 24220047]
[221]
Tapias LF, Ott HC. Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant 2014; 19(2): 145-52.
[http://dx.doi.org/10.1097/MOT.0000000000000051] [PMID: 24480969]
[222]
Habibovic P, de Groot K. Osteoinductive biomaterials - properties and relevance in bone repair. J Tissue Eng Regen Med 2007; 1(1): 25-32.
[http://dx.doi.org/10.1002/term.5] [PMID: 18038389]
[223]
Buck BE, Malinin TI. Human bone and tissue allografts. Preparation and safety. Clin Orthop Relat Res 1994; (303): 8-17.
[PMID: 8194258]
[224]
Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am 1995; 77(11): 1742-54.
[http://dx.doi.org/10.2106/00004623-199511000-00017] [PMID: 7593087]
[225]
Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts. J Bone Joint Surg Am 1986; 68(8): 1264-74.
[http://dx.doi.org/10.2106/00004623-198668080-00018] [PMID: 3533947]
[226]
Boyce T, Edwards J, Scarborough N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 1999; 30(4): 571-81.
[http://dx.doi.org/10.1016/S0030-5898(05)70110-3] [PMID: 10471762]
[227]
Precheur HV. Bone graft materials. Dent Clin North Am 2007; 51(3): 729-746, viii.
[http://dx.doi.org/10.1016/j.cden.2007.03.004] [PMID: 17586153]
[228]
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics. Organogenesis 2012; 8(4): 114-24.
[http://dx.doi.org/10.4161/org.23306] [PMID: 23247591]
[229]
Holtzclaw D, Toscano N, Eisenlohr L, Callan D. The safety of bone allografts used in dentistry: A review. J Am Dent Assoc 2008; 139(9): 1192-9.
[http://dx.doi.org/10.14219/jada.archive.2008.0334] [PMID: 18762629]
[230]
Wang HL, Tsao YP. Mineralized bone allograft-plug socket augmentation: Rationale and technique. Implant Dent 2007; 16(1): 33-41.
[http://dx.doi.org/10.1097/ID.0b013e318031ece6] [PMID: 17356370]
[231]
Maria Soardi C, Spinato S, Zaffe D, Wang HL. Atrophic maxillary floor augmentation by mineralized human bone allograft in sinuses of different size: An histologic and histomorphometric analysis. Clin Oral Implants Res 2011; 22(5): 560-6.
[http://dx.doi.org/10.1111/j.1600-0501.2010.02034.x] [PMID: 21143532]
[232]
Ito H, Koefoed M, Tiyapatanaputi P, et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med 2005; 11(3): 291-7.
[http://dx.doi.org/10.1038/nm1190] [PMID: 15711561]
[233]
Zhang M, Powers RM Jr, Wolfinbarger L Jr. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 1997; 68(11): 1085-92.
[http://dx.doi.org/10.1902/jop.1997.68.11.1085] [PMID: 9407401]
[234]
Urist MR. Bone: Formation by autoinduction. Science 1965; 150(3698): 893-9.
[http://dx.doi.org/10.1126/science.150.3698.893] [PMID: 5319761]
[235]
Urist MR, Chang JJ, Lietze A, Huo YK, Brownell AG, DeLange RJ. Preparation and bioassay of bone morphogenetic protein and polypeptide Fragments. Methods Enzymol 1987; 146: 294-312.
[http://dx.doi.org/10.1016/S0076-6879(87)46031-X] [PMID: 2824970]
[236]
Hopp SG, Dahners LE, Gilbert JA. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: An experimental investigation in the rabbit. J Orthop Res 1989; 7(4): 579-84.
[http://dx.doi.org/10.1002/jor.1100070416] [PMID: 2544712]
[237]
Wozney JM. Bone morphogenic proteins and their gene expression. In: Masaki N, Ed. Cellular and Molecular Biology of Bone. Tokyo: Academic Press, Inc. Tokyo, 1993; pp. 131-67.
[http://dx.doi.org/10.1016/B978-0-08-092500-4.50008-5]
[238]
Ogihara S, Wang HL. Periodontal regeneration with or without limited orthodontics for the treatment of 2- or 3-wall infrabony defects. J Periodontol 2010; 81(12): 1734-42.
[http://dx.doi.org/10.1902/jop.2010.100127] [PMID: 20629545]
[239]
Yasuda H, Yano K, Wakitani S, Matsumoto T, Nakamura H, Takaoka K. Repair of critical long bone defects using frozen bone allografts coated with an rhBMP-2-retaining paste. J Orthop Sci 2012; 17(3): 299-307.
[http://dx.doi.org/10.1007/s00776-012-0196-x] [PMID: 22271007]
[240]
Anitua E, Tejero R, Alkhraisat MH, Orive G. Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs 2013; 27(2): 97-111.
[http://dx.doi.org/10.1007/s40259-012-0004-3] [PMID: 23329397]
[241]
Sandhu HS, Khan SN, Suh DY, Boden SD. Demineralized bone matrix, bone morphogenetic proteins, and animal models of spine fusion: An overview. Eur Spine J 2001; 10(Suppl 2) (Suppl. 2): S122-31.
[PMID: 11716009]
[242]
Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32(2): 462-84.
[http://dx.doi.org/10.1016/j.biotechadv.2013.12.012] [PMID: 24417915]
[243]
Sawkins MJ, Bowen W, Dhadda P, et al. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 2013; 9(8): 7865-73.
[http://dx.doi.org/10.1016/j.actbio.2013.04.029] [PMID: 23624219]
[244]
Tuli SM, Singh AD. The osteoninductive property of decalcified bone matrix. An experimental study. J Bone Joint Surg Br 1978; 60-B(1): 116-23.
[http://dx.doi.org/10.1302/0301-620X.60B1.342532] [PMID: 342532]
[245]
Soicher MA, Christiansen BA, Stover SM, Leach JK, Fyhrie DP. Remineralization of demineralized bone matrix (DBM) via> alternating solution immersion (ASI). J Mech Behav Biomed Mater 2013; 26: 109-18.
[http://dx.doi.org/10.1016/j.jmbbm.2013.05.007] [PMID: 23759125]
[246]
Wildemann B, Kadow-Romacker A, Haas NP, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A 2007; 81A(2): 437-42.
[http://dx.doi.org/10.1002/jbm.a.31085] [PMID: 17117475]
[247]
Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 1995; 18(12): 1153-8.
[http://dx.doi.org/10.3928/0147-7447-19951201-05] [PMID: 8749293]
[248]
Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: A review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005; 16(6): 981-9.
[http://dx.doi.org/10.1097/01.scs.0000179662.38172.dd] [PMID: 16327544]
[249]
MacIsaac ZM, Rottgers SA, Davit AJ III, Ford M, Losee JE, Kumar AR. Alveolar reconstruction in cleft patients: Decreased morbidity and improved outcomes with supplemental demineralized bone matrix and cancellous allograft. Plast Reconstr Surg 2012; 130(3): 625-32.
[http://dx.doi.org/10.1097/PRS.0b013e31825dcb75] [PMID: 22929248]
[250]
Acarturk TO, Hollinger JO. Commercially available demineralized bone matrix compositions to regenerate calvarial critical- sized bone defects. Plast Reconstr Surg 2006; 118(4): 862-73.
[http://dx.doi.org/10.1097/01.prs.0000232385.81219.87] [PMID: 16980846]
[251]
Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012; 57(2): 109-21.
[http://dx.doi.org/10.1016/j.archoralbio.2011.07.008] [PMID: 21855856]
[252]
Nampo T, Watahiki J, Enomoto A, et al. A new method for alveolar bone repair using extracted teeth for the graft material. J Periodontol 2010; 81(9): 1264-72.
[http://dx.doi.org/10.1902/jop.2010.100016] [PMID: 20476887]
[253]
Yagihashi K, Miyazawa K, Togari K, Goto S. Demineralized dentin matrix acts as a scaffold for repair of articular cartilage defects. Calcif Tissue Int 2009; 84(3): 210-20.
[http://dx.doi.org/10.1007/s00223-008-9205-7] [PMID: 19183824]
[254]
Bakhshalian N, Hooshmand S, Campbell SC, Kim JS, Brummel-Smith K, Arjmandi BH. Biocompatibility and microstructural analysis of osteopromotive property of allogenic demineralized dentin matrix. Int J Oral Maxillofac Implants 2013; 28(6): 1655-62.
[http://dx.doi.org/10.11607/jomi.2833] [PMID: 24278935]
[255]
Reis-Filho CR, Silva ER, Martins AB, et al. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats. Arch Oral Biol 2012; 57(5): 469-76.
[http://dx.doi.org/10.1016/j.archoralbio.2011.10.011] [PMID: 22041019]
[256]
Li J, Yang J, Zhong X, He F, Wu X, Shen G. Demineralized dentin matrix composite collagen material for bone tissue regeneration. J Biomater Sci Polym Ed 2013; 24(13): 1519-28.
[http://dx.doi.org/10.1080/09205063.2013.777227] [PMID: 23848446]
[257]
Gao L, Orth P, Cucchiarini M, Madry H. Autologous matrix-induced chondrogenesis; A systematic review of the clinical evidence. Am J Sports Med 2019; 47(1): 222-31.
[http://dx.doi.org/10.1177/0363546517740575] [PMID: 29161138]
[258]
Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering - In vivo and in vitro applications. Adv Drug Deliv Rev 2011; 63(4-5): 352-66.
[http://dx.doi.org/10.1016/j.addr.2011.01.005] [PMID: 21241756]
[259]
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98: 1-22.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.018] [PMID: 27177218]
[260]
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018; 3(7): 159-73.
[http://dx.doi.org/10.1038/s41578-018-0023-x]
[261]
Im GI, Kim HJ, Lee JH. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 2011; 32(19): 4385-92.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.054] [PMID: 21421267]
[262]
Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: A strategy for tissue engineering and medical devices. J Mater Chem B Mater Biol Med 2015; 3(42): 8224-49.
[http://dx.doi.org/10.1039/C5TB01370D] [PMID: 32262880]
[263]
Abhinash K, Anu J. Techniques in scaffold fabrication process for tissue engineering applications: A review. J Appl Biol Biotechnol 2022; 10(03): 163-76.
[264]
Murugan S, Parcha SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. J Mater Sci Mater Med 2021; 32(8): 93.
[http://dx.doi.org/10.1007/s10856-021-06564-0]
[265]
Subia B, Kundu J, Kundu S. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D, Ed. Tissue Engineering. IntechOpen 2010.
[http://dx.doi.org/10.5772/8581]
[266]
Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G. Synthesis and applications of fungal mycelium-based advanced functional materials. J Biores Biopro 2021; 6(1): 1-10.
[http://dx.doi.org/10.1016/j.jobab.2021.01.001]
[267]
Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 2018; 15(3): 155-74.
[http://dx.doi.org/10.1038/nrurol.2018.5] [PMID: 29434369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy