Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Multiple Natural Polymers in Drug and Gene Delivery Systems

Author(s): Zhengfa Jiang, Zongmian Song, Chen Cao, Miaoheng Yan, Zhendong Liu, Xingbo Cheng, Hongbo Wang, Qingnan Wang, Hongjian Liu* and Songfeng Chen*

Volume 31, Issue 13, 2024

Published on: 19 June, 2023

Page: [1691 - 1715] Pages: 25

DOI: 10.2174/0929867330666230316094540

Price: $65

conference banner
Abstract

Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.

Keywords: Natural polymers, drug delivery, gene delivery, controlled drug release, characterization methods, delivery forms.

[1]
Jo, Y. K.; Lee, D. Biopolymer microparticles prepared by microfluidics for biomedical applications. Small (Weinheim an der Bergstrasse, Germany), 2020, 16(9), e1903736.
[2]
Gobi, R.; Ravichandiran, P.; Babu, R.S.; Yoo, D.J. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: A review. Polymers, 2021, 13(12), 1962.
[http://dx.doi.org/10.3390/polym13121962] [PMID: 34199209]
[3]
Pattanashetti, N.A.; Heggannavar, G.B.; Kariduraganavar, M.Y. In smart biopolymers and their biomedical applications. International Conference on Sustainable and Intelligent Manufacturing (RESIM), Leiria, PORTUGAL Dec 14-17, 2016, pp. 263-279.
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Gopinath, V.; Kamath, S. M.; Priyadarshini, S.; Chik, Z.; Alarfaj, A. A.; Hirad, A. H. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed. Pharmacother., 2022, 146, 112492.
[6]
Nitta, S.; Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci., 2013, 14(1), 1629-1654.
[http://dx.doi.org/10.3390/ijms14011629] [PMID: 23344060]
[7]
Chambre, L.; Martín-Moldes, Z.; Parker, R.N.; Kaplan, D.L. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv. Drug Deliv. Rev., 2020, 160, 186-198.
[http://dx.doi.org/10.1016/j.addr.2020.10.008] [PMID: 33080258]
[8]
Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[9]
Quinlan, G.J.; Martin, G.S.; Evans, T.W. Albumin: Biochemical properties and therapeutic potential. Hepatology, 2005, 41(6), 1211-1219.
[http://dx.doi.org/10.1002/hep.20720] [PMID: 15915465]
[10]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-83.
[11]
Yu, L.; Hua, Z.; Luo, X.; Zhao, T.; Liu, Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(1), 188655.
[http://dx.doi.org/10.1016/j.bbcan.2021.188655] [PMID: 34780933]
[12]
De Simone, G.; di Masi, A.; Ascenzi, P. Serum albumin: A multifaced enzyme. Int. J. Mol. Sci., 2021, 22(18), 10086.
[http://dx.doi.org/10.3390/ijms221810086] [PMID: 34576249]
[13]
Wang, Z.; Ho, J.X.; Ruble, J.R.; Rose, J.; Rüker, F.; Ellenburg, M.; Murphy, R.; Click, J.; Soistman, E.; Wilkerson, L.; Carter, D.C. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(12), 5356-5374.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.032] [PMID: 23838380]
[14]
Zeeshan, F.; Madheswaran, T.; Panneerselvam, J.; Taliyan, R.; Kesharwani, P. Human serum albumin as multifunctional nanocarrier for cancer therapy. J. Pharm. Sci., 2021, 110(9), 3111-3117.
[http://dx.doi.org/10.1016/j.xphs.2021.05.001] [PMID: 33989679]
[15]
Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm., 2021, 18(5), 1862-1894.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00046] [PMID: 33787270]
[16]
Tao, H.; Wang, R.; Sheng, W.; Zhen, Y. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol., 2021, 187, 24-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.080] [PMID: 34284054]
[17]
Liu, Z.; Chen, X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev., 2016, 45(5), 1432-1456.
[http://dx.doi.org/10.1039/C5CS00158G] [PMID: 26771036]
[18]
Xu, R.; Fisher, M.; Juliano, R.L. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug. Chem., 2011, 22(5), 870-878.
[http://dx.doi.org/10.1021/bc1002295] [PMID: 21452893]
[19]
Al-Hajeili, M.; Azmi, A.S.; Choi, M. Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. OncoTargets Ther., 2014, 7, 187-192.
[PMID: 24523592]
[20]
Wiedenmann, N.; Valdecanas, D.; Hunter, N.; Hyde, S.; Buchholz, T.A.; Milas, L.; Mason, K.A. 130-nm albumin-bound paclitaxel enhances tumor radiocurability and therapeutic gain. Clin. Cancer Res., 2007, 13(6), 1868-1874.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2534] [PMID: 17363543]
[21]
Hu, H.; Quintana, J.; Weissleder, R.; Parangi, S.; Miller, M. Deciphering albumin-directed drug delivery by imaging. Adv. Drug Deliv. Rev., 2022, 185, 114237.
[http://dx.doi.org/10.1016/j.addr.2022.114237] [PMID: 35364124]
[22]
Du, J.; Zhao, X.; Li, B.; Mou, Y.; Wang, Y. DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids Surf. B Biointerfaces, 2018, 161, 279-287.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.036] [PMID: 29096372]
[23]
Miyakawa, N.; Nishikawa, M.; Takahashi, Y.; Ando, M.; Misaka, M.; Watanabe, Y.; Takakura, Y. Gene delivery of albumin binding peptide-interferon-gamma fusion protein with improved pharmacokinetic properties and sustained biological activity. J. Pharm. Sci., 2013, 102(9), 3110-3118.
[http://dx.doi.org/10.1002/jps.23493] [PMID: 23463584]
[24]
Wang, Y.; Chen, S.; Yang, X.; Zhang, S.; Cui, C. Preparation optimization of bovine serum albumin nanoparticles and its application for siRNA delivery. Drug Des. Devel. Ther., 2021, 15, 1531-1547.
[http://dx.doi.org/10.2147/DDDT.S299479] [PMID: 33883877]
[25]
Lei, C.; Liu, X. R.; Chen, Q. B.; Li, Y.; Zhou, J. L.; Zhou, L. Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release, 2021, 331, 416-433.
[26]
Wang, M.; Zhang, L.; Cai, Y.; Yang, Y.; Qiu, L.; Shen, Y.; Jin, J.; Zhou, J.; Chen, J. Bioengineered human serum albumin fusion protein as Target/Enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano, 2020, 14(12), 17405-17418.
[http://dx.doi.org/10.1021/acsnano.0c07610] [PMID: 33202141]
[27]
Lamichhane, S.; Lee, S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133.
[http://dx.doi.org/10.1007/s12272-020-01204-7] [PMID: 31916145]
[28]
Müller, W.E.G. The origin of metazoan complexity: porifera as integrated animals. Integr. Comp. Biol., 2003, 43(1), 3-10.
[http://dx.doi.org/10.1093/icb/43.1.3] [PMID: 21680404]
[29]
Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem., 2009, 78(1), 929-958.
[http://dx.doi.org/10.1146/annurev.biochem.77.032207.120833] [PMID: 19344236]
[30]
Xu, N.; Peng, X.L.; Li, H.R.; Liu, J.X.; Cheng, J.S.Y.; Qi, X.Y.; Ye, S.J.; Gong, H.L.; Zhao, X.H.; Yu, J.; Xu, G.; Wei, D.X. Marine-derived collagen as biomaterials for human health. Front. Nutr., 2021, 8, 702108.
[http://dx.doi.org/10.3389/fnut.2021.702108] [PMID: 34504861]
[31]
Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; Zeugolis, D.I. The Collagen Suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater., 2019, 31(1), 1801651.
[http://dx.doi.org/10.1002/adma.201801651] [PMID: 30126066]
[32]
Sarrigiannidis, S.O.; Rey, J.M.; Dobre, O.; González-García, C.; Dalby, M.J.; Salmeron-Sanchez, M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio, 2021, 10, 100098.
[http://dx.doi.org/10.1016/j.mtbio.2021.100098] [PMID: 33763641]
[33]
Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978.
[http://dx.doi.org/10.1101/cshperspect.a004978] [PMID: 21421911]
[34]
Fujioka, K.; Takada, Y.; Sato, S.; Miyata, T. Novel delivery system for proteins using collagen as a carrier material: the minipellet. J. Control. Release, 1995, 33(2), 307-315.
[http://dx.doi.org/10.1016/0168-3659(94)00107-6]
[35]
Higaki, M.; Azechi, Y.; Takase, T.; Igarashi, R.; Nagahara, S.; Sano, A.; Fujioka, K.; Nakagawa, N.; Aizawa, C.; Mizushima, Y. Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine, 2001, 19(23-24), 3091-3096.
[http://dx.doi.org/10.1016/S0264-410X(01)00039-1] [PMID: 11312003]
[36]
Gu, L.; Shan, T.; Ma, Y.; Tay, F.R.; Niu, L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol., 2019, 37(5), 464-491.
[http://dx.doi.org/10.1016/j.tibtech.2018.10.007] [PMID: 30447877]
[37]
Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol., 2020, 161, 550-560.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.075] [PMID: 32534089]
[38]
Wang, Z.; Liu, H.; Luo, W.; Cai, T.; Li, Z.; Liu, Y.; Gao, W.; Wan, Q.; Wang, X.; Wang, J.; Wang, Y.; Yang, X. Regeneration of skeletal system with genipin crosslinked biomaterials. J. Tissue Eng., 2020, 11, 2041731420974861.
[http://dx.doi.org/10.1177/2041731420974861] [PMID: 33294154]
[39]
Persadmehr, A.; Torneck, C.D.; Cvitkovitch, D.G.; Pinto, V.; Talior, I.; Kazembe, M.; Shrestha, S.; McCulloch, C.A.; Kishen, A. Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J. Endod., 2014, 40(5), 703-709.
[http://dx.doi.org/10.1016/j.joen.2013.11.004] [PMID: 24767568]
[40]
Li, Y.; He, Q.; Hu, X.; Liu, Y.; Cheng, X.; Li, X.; Deng, F. Improved performance of collagen scaffolds crosslinked by Traut’s reagent and Sulfo-SMCC. J. Biomater. Sci. Polym. Ed., 2017, 28(7), 629-647.
[http://dx.doi.org/10.1080/09205063.2017.1291296] [PMID: 28277011]
[41]
Milczek, E.M. Commercial applications for enzyme-mediated protein conjugation: New developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chem. Rev., 2018, 118(1), 119-141.
[http://dx.doi.org/10.1021/acs.chemrev.6b00832] [PMID: 28627171]
[42]
Eekhoff, J.D.; Fang, F.; Lake, S.P. Multiscale mechanical effects of native collagen cross-linking in tendon. Connect. Tissue Res., 2018, 59(5), 410-422.
[http://dx.doi.org/10.1080/03008207.2018.1449837] [PMID: 29873266]
[43]
Stachel, I.; Schwarzenbolz, U.; Henle, T.; Meyer, M. Cross-linking of type I collagen with microbial transglutaminase: Identification of cross-linking sites. Biomacromolecules, 2010, 11(3), 698-705.
[http://dx.doi.org/10.1021/bm901284x] [PMID: 20131754]
[44]
Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of collagen for biomaterials in skin wound healing. Bioengineering, 2019, 6(3), 56.
[http://dx.doi.org/10.3390/bioengineering6030056] [PMID: 31261996]
[45]
Bhattacharjee, P.; Ahearne, M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics, 2021, 13(3), 319.
[http://dx.doi.org/10.3390/pharmaceutics13030319] [PMID: 33671011]
[46]
Seong, Y.J.; Song, E.H.; Park, C.; Lee, H.; Kang, I.G.; Kim, H.E.; Jeong, S.H. Porous calcium phosphate–collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater. Sci. Eng. C, 2020, 109, 110480.
[http://dx.doi.org/10.1016/j.msec.2019.110480] [PMID: 32228926]
[47]
Paradowska-Stolarz, A.; Wieckiewicz, M.; Owczarek, A.; Wezgowiec, J. Natural polymers for the maintenance of oral health: review of recent advances and perspectives. Int. J. Mol. Sci., 2021, 22(19), 10337.
[http://dx.doi.org/10.3390/ijms221910337] [PMID: 34638678]
[48]
Vindin, H.; Mithieux, S. M.; Weiss, A. S. Elastin architecture. Matrix Biol., 2019, 84, 4-16.
[49]
Hedtke, T.; Schräder, C.U.; Heinz, A.; Hoehenwarter, W.; Brinckmann, J.; Groth, T.; Schmelzer, C.E.H. A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J., 2019, 286(18), 3594-3610.
[http://dx.doi.org/10.1111/febs.14929] [PMID: 31102572]
[50]
Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int. J. Mol. Sci., 2022, 23(3), 1415.
[http://dx.doi.org/10.3390/ijms23031415] [PMID: 35163339]
[51]
Saxena, R.; Nanjan, M.J. Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv., 2015, 22(2), 156-167.
[http://dx.doi.org/10.3109/10717544.2013.853210] [PMID: 24215207]
[52]
Jao, D.; Xue, Y.; Medina, J.; Hu, X. Protein-based drug-delivery materials. Materials, 2017, 10(5), 517.
[53]
DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein polymer-based nanoparticles: fabrication and medical applications. Int. J. Mol. Sci., 2018, 19(6), 1717.
[http://dx.doi.org/10.3390/ijms19061717] [PMID: 29890756]
[54]
Liu, W.; Dreher, M. R.; Furgeson, D. Y.; Peixoto, K. V.; Yuan, H.; Zalutsky, M. R.; Chilkoti, A. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J. Control. Release, 2006, 116(2), 170-8.
[55]
Meyer, D.E.; Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules, 2002, 3(2), 357-367.
[http://dx.doi.org/10.1021/bm015630n] [PMID: 11888323]
[56]
Fletcher, E.E.; Yan, D.; Kosiba, A.A.; Zhou, Y.; Shi, H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr. Purif., 2019, 153, 114-120.
[http://dx.doi.org/10.1016/j.pep.2018.09.006] [PMID: 30217600]
[57]
Chilkoti, A.; Dreher, M.R.; Meyer, D.E.; Raucher, D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev., 2002, 54(5), 613-630.
[http://dx.doi.org/10.1016/S0169-409X(02)00041-8] [PMID: 12204595]
[58]
Massodi, I.; Raucher, D. A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells. J. Drug Target., 2007, 15(9), 611-622.
[http://dx.doi.org/10.1080/10611860701502780] [PMID: 17968715]
[59]
Kelly, G.; Milligan, J. J.; Mastria, E. M.; Kim, S.; Zelenetz, S. R.; Dobbins, J.; Cai, L. Y.; Li, X.; Nair, S. K.; Chilkoti, A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release, 2022, 343, 267-276.
[60]
Kang, H. J.; Kumar, S.; D'Elia, A.; Dash, B.; Nanda, V.; Hsia, H. C.; Yarmush, M. L.; Berthiaume, F. Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. J. Control. Release, 2021, 333, 176-187.
[61]
Rodríguez-Cabello, J.C.; González de Torre, I.; Ibañez- Fonseca, A.; Alonso, M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug Deliv. Rev., 2018, 129, 118-133.
[http://dx.doi.org/10.1016/j.addr.2018.03.003] [PMID: 29551651]
[62]
Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60(15), 1650-1662.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[63]
Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol., 2021, 192, 298-322.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.013] [PMID: 34634326]
[64]
Lee, J.W.; Park, J.H.; Robinson, J.R. Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci., 2000, 89(7), 850-866.
[http://dx.doi.org/10.1002/1520-6017(200007)89:7<850::AID-JPS2>3.0.CO;2-G] [PMID: 10861586]
[65]
Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. Lebensm. Wiss. Technol., 2010, 43(6), 837-842.
[http://dx.doi.org/10.1016/j.lwt.2010.01.021]
[66]
Narain, R. Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels; John Wiley & Sons, 2011.
[http://dx.doi.org/10.1002/9780470944349]
[67]
Roldo, M.; Hornof, M.; Caliceti, P.; Bernkop-Schnürch, A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm., 2004, 57(1), 115-21.
[68]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2004, 12(1), 41-57.
[http://dx.doi.org/10.1080/10717540590889781] [PMID: 15801720]
[69]
Zhang, L.; Zhang, N. Advances of chitosan and its derivatives in drug delivery systems. Chin. J. New Drugs Clin. Remedies, 2014, 33(1), 9-14.
[70]
Strand, S.P.; Lelu, S.; Reitan, N.K.; de Lange Davies, C.; Artursson, P.; Vårum, K.M. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials, 2010, 31(5), 975-987.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.102] [PMID: 19857892]
[71]
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[72]
Maleki Dana, P.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Yousefi, B. Chitosan applications in studying and managing osteosarcoma. Int. J. Biol. Macromol., 2021, 169, 321-329.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.058] [PMID: 33310094]
[73]
Shahid-ul-Islam; Butola, B.S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol., 2019, 121, 905-912.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.102] [PMID: 30342136]
[74]
Chang, S.H.; Wu, C.H.; Tsai, G.J. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym., 2018, 181, 1026-1032.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.047] [PMID: 29253927]
[75]
Mohammadi, Z.; Eini, M.; Rastegari, A.; Tehrani, M.R. Chitosan as a machine for biomolecule delivery: A review. Carbohydr. Polym., 2021, 256, 117414.
[http://dx.doi.org/10.1016/j.carbpol.2020.117414] [PMID: 33483009]
[76]
Deineka, V.; Sulaieva, O.; Pernakov, N.; Radwan-Pragłowska, J.; Janus, L.; Korniienko, V.; Husak, Y.; Yanovska, A.; Liubchak, I.; Yusupova, A.; Piątkowski, M.; Zlatska, A.; Pogorielov, M. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater. Sci. Eng. C, 2021, 120, 111740.
[http://dx.doi.org/10.1016/j.msec.2020.111740] [PMID: 33545883]
[77]
Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[78]
Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 2010, 62(1), 59-82.
[http://dx.doi.org/10.1016/j.addr.2009.11.009] [PMID: 19925837]
[79]
Kim, K.; Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials, 2015, 52, 161-170.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.010] [PMID: 25818422]
[80]
Xiao, B.; Wang, X.; Qiu, Z.; Ma, J.; Zhou, L.; Wan, Y.; Zhang, S. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J. Biomed. Mater. Res. A, 2013, 101A(7), 1888-1897.
[http://dx.doi.org/10.1002/jbm.a.34493] [PMID: 23203540]
[81]
Rastogi, P.; Kandasubramanian, B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11(4), 042001.
[http://dx.doi.org/10.1088/1758-5090/ab331e] [PMID: 31315105]
[82]
Sanchez-Ballester, N.M.; Bataille, B.; Soulairol, I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr. Polym., 2021, 270, 118399.
[http://dx.doi.org/10.1016/j.carbpol.2021.118399] [PMID: 34364633]
[83]
Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 2012, 33(11), 3279-3305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007] [PMID: 22281421]
[84]
Cardoso, M.; Costa, R.; Mano, J. Marine origin polysaccharides in drug delivery systems. Mar. Drugs, 2016, 14(2), 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[85]
Mano, J.F. Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater., 2008, 10(6), 515-527.
[http://dx.doi.org/10.1002/adem.200700355]
[86]
Kim, S.; Jung, S. Biocompatible and self-recoverable succinoglycan dialdehyde-crosslinked alginate hydrogels for pH-controlled drug delivery. Carbohydr. Polym., 2020, 250, 116934.
[http://dx.doi.org/10.1016/j.carbpol.2020.116934] [PMID: 33049846]
[87]
Zhao, D.; Zhuo, R.X.; Cheng, S.X. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. Mol. Biosyst., 2012, 8(3), 753-759.
[http://dx.doi.org/10.1039/C1MB05337J] [PMID: 22159070]
[88]
Zhao, D.; Liu, C.J.; Zhuo, R.X.; Cheng, S.X. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol. Pharm., 2012, 9(10), 2887-2893.
[http://dx.doi.org/10.1021/mp3002123] [PMID: 22894610]
[89]
Deng, Y.; Shavandi, A.; Okoro, O.V.; Nie, L. Alginate modification via click chemistry for biomedical applications. Carbohydr. Polym., 2021, 270, 118360.
[http://dx.doi.org/10.1016/j.carbpol.2021.118360] [PMID: 34364605]
[90]
Mali, P.; Sherje, A.P. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr. Polym., 2022, 275, 118668.
[http://dx.doi.org/10.1016/j.carbpol.2021.118668] [PMID: 34742407]
[91]
Yang, J.; Li, J. Self-assembled cellulose materials for biomedicine: A review. Carbohydr. Polym., 2018, 181, 264-274.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.067] [PMID: 29253971]
[92]
George, J.; Sabapathi, S.N. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[93]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[94]
Zhong, L.L.; Gao, Y.; Wu, Y.R.; Zhang, L.P. Preparation of amphiphilic cellulose carrier and study of its drug release performance. Mater. Res. Innov., 2013, 17(sup1), 79-82.
[http://dx.doi.org/10.1179/1432891713Z.000000000186]
[95]
Sampath Udeni Gunathilake, T.M.; Ching, Y.C.; Chuah, C.H.; Rahman, N.A.; Liou, N.S. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int. J. Biol. Macromol., 2020, 158, 670-688.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.010] [PMID: 32389655]
[96]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[97]
Leonel, A.G.; Mansur, H.S.; Mansur, A.A.P.; Caires, A.; Carvalho, S.M.; Krambrock, K.; Outon, L.E.F.; Ardisson, J.D. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. Int. J. Biol. Macromol., 2019, 132, 677-691.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.006] [PMID: 30951776]
[98]
Chatterjee, S.; Chi-leung HUI, P. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules, 2019, 24(14), 2547.
[http://dx.doi.org/10.3390/molecules24142547] [PMID: 31336916]
[99]
Hatakeyama, H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chem. Pharm. Bull., 2017, 65(7), 612-617.
[http://dx.doi.org/10.1248/cpb.c17-00068] [PMID: 28674332]
[100]
Deng, X.; Shao, Z.; Zhao, Y. Development of porphyrin and titanium dioxide sonosensitizers for sonodynamic cancer therapy. Biomat. Transl., 2021, 2(1), 72-85.
[PMID: 35837259]
[101]
Park, S.H.; Shin, H.S.; Park, S.N. A novel pH-responsive hydrogel based on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of naringenin. Carbohydr. Polym., 2018, 200, 341-352.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.011] [PMID: 30177174]
[102]
Khan, S.; Anwar, N. Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation. Carbohydr. Polym., 2021, 257, 117617.
[http://dx.doi.org/10.1016/j.carbpol.2021.117617] [PMID: 33541645]
[103]
Wen, Y.; Oh, J.K. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf. B Biointerfaces, 2015, 133, 246-253.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.017] [PMID: 26119370]
[104]
Rahimian, K.; Wen, Y.; Oh, J.K. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in- situ disulfide crosslinked nanogels. Polymer (Guildf.), 2015, 72, 387-394.
[http://dx.doi.org/10.1016/j.polymer.2015.01.024]
[105]
Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M.W.; Shi, Z.; Yang, G. Fabrication of pH-electroactive Bacterial Cellulose/Polyaniline Hydrogel for the Development of a Controlled Drug Release System; ES Materials & Manufacturing, 2018.
[http://dx.doi.org/10.30919/esmm5f120]
[106]
Su, C.; Liu, J.; Yang, Z.; Jiang, L.; Liu, X.; Shao, W. UV- mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. Int. J. Biol. Macromol., 2020, 161, 1140-1148.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.094] [PMID: 32553960]
[107]
Pandey, A. Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environ. Chem. Lett., 2021, 19(3), 2043-2055.
[http://dx.doi.org/10.1007/s10311-021-01182-2]
[108]
Li, M.; Yin, F.; Song, L.; Mao, X.; Li, F.; Fan, C.; Zuo, X.; Xia, Q. Nucleic acid tests for clinical translation. Chem. Rev., 2021, 121(17), 10469-10558.
[http://dx.doi.org/10.1021/acs.chemrev.1c00241] [PMID: 34254782]
[109]
Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548.
[http://dx.doi.org/10.1093/nar/gkw236] [PMID: 27084936]
[110]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[111]
Chen, K.; Zhang, Y.; Zhu, L.; Chu, H.; Shao, X.; Asakiya, C.; Huang, K.; Xu, W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J. Control. Release, 2022, 341, 869-891.
[112]
Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, H.; Ding, B. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc., 2012, 134(32), 13396-13403.
[http://dx.doi.org/10.1021/ja304263n] [PMID: 22803823]
[113]
Mela, I.; Vallejo-Ramirez, P.P.; Makarchuk, S.; Christie, G.; Bailey, D.; Henderson, R.M.; Sugiyama, H.; Endo, M.; Kaminski, C.F. DNA nanostructures for targeted antimicrobial delivery. Angew. Chem. Int. Ed., 2020, 59(31), 12698-12702.
[http://dx.doi.org/10.1002/anie.202002740] [PMID: 32297692]
[114]
Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed., 2021, 60(5), 2594-2598.
[http://dx.doi.org/10.1002/anie.202009842] [PMID: 33089613]
[115]
Mikkilä, J.; Eskelinen, A.P.; Niemelä, E.H.; Linko, V.; Frilander, M.J.; Törmä, P.; Kostiainen, M.A. Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett., 2014, 14(4), 2196-2200.
[http://dx.doi.org/10.1021/nl500677j] [PMID: 24627955]
[116]
Du, Y.; Jiang, Q.; Beziere, N.; Song, L.; Zhang, Q.; Peng, D.; Chi, C.; Yang, X.; Guo, H.; Diot, G.; Ntziachristos, V.; Ding, B.; Tian, J. DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater., 2016, 28(45), 10000-10007.
[http://dx.doi.org/10.1002/adma.201601710] [PMID: 27679425]
[117]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[118]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[119]
Krissanaprasit, A.; Key, C.M.; Pontula, S.; LaBean, T.H. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev., 2021, 121(22), 13797-13868.
[http://dx.doi.org/10.1021/acs.chemrev.0c01332] [PMID: 34157230]
[120]
Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104.
[http://dx.doi.org/10.1088/1468-6996/11/1/014104] [PMID: 27877319]
[121]
Jurczak, E.; Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M.; Zielińska-Pisklak, M. Pharmaceutical hydrates analysis-overview of methods and recent advances. Pharmaceutics, 2020, 12(10), 959.
[http://dx.doi.org/10.3390/pharmaceutics12100959] [PMID: 33050621]
[122]
Rodríguez, I.; Gautam, R.; Tinoco, A.D. Using X-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics, 2020, 6(1), 1.
[http://dx.doi.org/10.3390/biomimetics6010001] [PMID: 33396786]
[123]
Samrot, A. V.; Sean, T. C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Ali, H. H.; Angalene, J. L. A.; Suresh Kumar, S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.104]
[124]
Tian, L.; Singh, A.; Singh, A.V. Synthesis and characterization of pectin-chitosan conjugate for biomedical application. Int. J. Biol. Macromol., 2020, 153, 533-538.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.313] [PMID: 32114170]
[125]
Lilo, T.; Morais, C.L.M.; Shenton, C.; Ray, A.; Gurusinghe, N. Revising Fourier-transform infrared (FT-IR) and Raman spectroscopy towards brain cancer detection. Photodiagn. Photodyn. Ther., 2022, 38, 102785.
[http://dx.doi.org/10.1016/j.pdpdt.2022.102785] [PMID: 35231616]
[126]
Zhang, S.; Kang, L.; Hu, S.; Hu, J.; Fu, Y.; Hu, Y.; Yang, X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int. J. Biol. Macromol., 2021, 167, 1598-1612.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.117] [PMID: 33220374]
[127]
Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol., 2022, 206, 175-187.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.104] [PMID: 35217087]
[128]
Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[129]
Paradowska, K.; Wawer, I. Solid-state NMR in the analysis of drugs and naturally occurring materials. J. Pharm. Biomed. Anal., 2014, 93, 27-42.
[http://dx.doi.org/10.1016/j.jpba.2013.09.032] [PMID: 24173236]
[130]
Wang, P.; Lv, X.; Zhang, B.; Wang, T.; Wang, C.; Sun, J.; Zhang, K.; Wu, Y.; Zhao, J.; Zhang, Y. Simultaneous determination of molar degree of substitution and its distribution fraction, degree of acetylation in hydroxypropyl chitosan by 1H NMR spectroscopy. Carbohydr. Polym., 2021, 263, 117950.
[http://dx.doi.org/10.1016/j.carbpol.2021.117950] [PMID: 33858567]
[131]
Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6(1), 359-391.
[http://dx.doi.org/10.3390/ma6010359] [PMID: 28809313]
[132]
Xia, Z.; Akim, L.G.; Argyropoulos, D.S. Quantitative (13)C NMR analysis of lignins with internal standards. J. Agric. Food Chem., 2001, 49(8), 3573-3578.
[http://dx.doi.org/10.1021/jf010333v] [PMID: 11513630]
[133]
Inbasekar, C.; Fathima, N.N. Collagen stabilization using ionic liquid functionalised cerium oxide nanoparticle. Int. J. Biol. Macromol., 2020, 147, 24-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.271] [PMID: 31904464]
[134]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[135]
Rozo, A.J.; Cox, M.H.; Devitt, A.; Rothnie, A.J.; Goddard, A.D. Biophysical analysis of lipidic nanoparticles. Methods, 2020, 180, 45-55.
[http://dx.doi.org/10.1016/j.ymeth.2020.05.001] [PMID: 32387313]
[136]
Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810.
[http://dx.doi.org/10.1007/s11095-010-0073-2] [PMID: 20204471]
[137]
Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution-a perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater., 2018, 19(1), 732-745.
[http://dx.doi.org/10.1080/14686996.2018.1517587] [PMID: 30369998]
[138]
Verma, M.L.; Dhanya, B.S.; Sukriti; Rani, V.; Thakur, M.; Jeslin, J.; Kushwaha, R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int. J. Biol. Macromol., 2020, 154, 390-412.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.105] [PMID: 32194126]
[139]
Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[140]
Gericke, M.; Schulze, P.; Heinze, T. Nanoparticles based on hydrophobic polysaccharide derivatives-formation principles, characterization techniques, and biomedical applications. Macromol. Biosci., 2020, 20(4), 1900415.
[http://dx.doi.org/10.1002/mabi.201900415] [PMID: 32090505]
[141]
Berbel Manaia, E.; Paiva Abuçafy, M.; Chiari-Andréo, B.G.; Lallo Silva, B.; Oshiro-Júnior, J.A.; Chiavacci, L. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed., 2017, 12, 4991-5011.
[http://dx.doi.org/10.2147/IJN.S133832] [PMID: 28761340]
[142]
Melo, M.N.; Pereira, F.M.; Rocha, M.A.; Ribeiro, J.G.; Junges, A.; Monteiro, W.F.; Diz, F.M.; Ligabue, R.A.; Morrone, F.B.; Severino, P.; Fricks, A.T. Chitosan and chitosan/PEG nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. Mater. Sci. Eng. C, 2021, 124, 112089.
[http://dx.doi.org/10.1016/j.msec.2021.112089] [PMID: 33947529]
[143]
Song, Y.; Cong, Y.; Wang, B.; Zhang, N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin. Drug Deliv., 2020, 17(4), 551-571.
[http://dx.doi.org/10.1080/17425247.2020.1737671] [PMID: 32116058]
[144]
Taylor, E.A.; Donnelly, E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone, 2020, 139, 115490.
[http://dx.doi.org/10.1016/j.bone.2020.115490] [PMID: 32569874]
[145]
Kumar, C.S. Raman spectroscopy for nanomaterials characterization; Springer Verlag, 2012.
[http://dx.doi.org/10.1007/978-3-642-20620-7]
[146]
Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem., 2018, 48(6), 503-516.
[http://dx.doi.org/10.1080/10408347.2018.1451299] [PMID: 29601210]
[147]
Jing, Y.; Li, J.; Zhang, Y.; Zhang, R.; Zheng, Y.; Hu, B.; Wu, L.; Zhang, D. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int. J. Biol. Macromol., 2021, 183, 1317-1326.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.178] [PMID: 33933541]
[148]
Mahnaj, T.; Ahmed, S.U.; Plakogiannis, F.M. Characterization of ethyl cellulose polymer. Pharm. Dev. Technol., 2013, 18(5), 982-989.
[http://dx.doi.org/10.3109/10837450.2011.604781] [PMID: 21861778]
[149]
Thakral, S.; Terban, M.W.; Thakral, N.K.; Suryanarayanan, R. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry. Adv. Drug Deliv. Rev., 2016, 100, 183-193.
[http://dx.doi.org/10.1016/j.addr.2015.12.013] [PMID: 26712710]
[150]
Panchal, J.; Kotarek, J.; Marszal, E.; Topp, E.M. Analyzing subvisible particles in protein drug products: A comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J., 2014, 16(3), 440-451.
[http://dx.doi.org/10.1208/s12248-014-9579-6] [PMID: 24570341]
[151]
Ding, Z.; Mo, M.; Zhang, K.; Bi, Y.; Kong, F. Preparation, characterization and biological activity of proanthocyanidin-chitosan nanoparticles. Int. J. Biol. Macromol., 2021, 188, 43-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.010] [PMID: 34364936]
[152]
Birk, S.E.; Boisen, A.; Nielsen, L.H. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv. Drug Deliv. Rev., 2021, 174, 30-52.
[http://dx.doi.org/10.1016/j.addr.2021.04.005] [PMID: 33845040]
[153]
Li, Y.; Thambi, T.; Lee, D.S. Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv. Healthc. Mater., 2018, 7(1), 1700886.
[http://dx.doi.org/10.1002/adhm.201700886] [PMID: 28941203]
[154]
Hu, Y.; Sun, Y.; Wan, C.; Dai, X.; Wu, S.; Lo, P.C.; Huang, J.; Lovell, J.F.; Jin, H.; Yang, K. Microparticles: Biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J. Nanobiotechnology, 2022, 20(1), 189.
[http://dx.doi.org/10.1186/s12951-022-01358-0] [PMID: 35418077]
[155]
Pinelli, F.; Sacchetti, A.; Perale, G.; Rossi, F. Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery? Ther. Deliv., 2020, 11(7), 401-404.
[http://dx.doi.org/10.4155/tde-2020-0030] [PMID: 32372721]
[156]
Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012.
[http://dx.doi.org/10.1021/acsnano.6b04268] [PMID: 27934069]
[157]
Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519.
[http://dx.doi.org/10.1124/pr.111.005363] [PMID: 22544864]
[158]
Yoo, J.; Kim, K.; Kim, S.; Park, H.H.; Shin, H.; Joo, J. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery. Nanoscale, 2022, 14(39), 14482-14490.
[http://dx.doi.org/10.1039/D2NR02995B] [PMID: 36134732]
[159]
Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm., 2004, 280(1-2), 241-251.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.016] [PMID: 15265563]
[160]
Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm., 2000, 194(1), 91-102.
[http://dx.doi.org/10.1016/S0378-5173(99)00370-1] [PMID: 10601688]
[161]
Pawar, A.; Thakkar, S.; Misra, M. A bird's eye view of nanoparticles prepared by electrospraying: Advancements in drug delivery field. J. Control. Release, 2018, 286, 179-200.
[162]
Hedayati, R.; Jahanshahi, M.; Attar, H. Fabrication and characterization of albumin-acacia nanoparticles based on complex coacervation as potent nanocarrier. J. Chem. Technol. Biotechnol., 2012, 87(10), 1401-1408.
[http://dx.doi.org/10.1002/jctb.3758]
[163]
Guo, J.; Lin, Y. One-dimensional micro/nanomotors for biomedicine: delivery, sensing and surgery. Biomat. Transl., 2020, 1(1), 18-32.
[PMID: 35837656]
[164]
Li, Q.; Ning, Z.; Ren, J.; Liao, W. Structural design and physicochemical foundations of hydrogels for biomedical applications. Curr. Med. Chem., 2018, 25(8), 963-981.
[http://dx.doi.org/10.2174/0929867324666170818111630] [PMID: 28820072]
[165]
Garg, T.; Singh, S.; Goyal, A.K. Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(5), 369-409.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007259] [PMID: 24099326]
[166]
Gao, Q.; He, Y.; Fu, J.; Liu, A.; Ma, L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61, 203-215.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.031] [PMID: 26004235]
[167]
Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J., 2015, 72, 602-619.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.016]
[168]
Hu, C.; Zhang, F.; Long, L.; Kong, Q.; Luo, R.; Wang, Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release, 2020, 324, 204-217.
[169]
Lan, B.; Zhang, L.; Yang, L.; Wu, J.; Li, N.; Pan, C.; Wang, X.; Zeng, L.; Yan, L.; Yang, C.; Ren, M. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J. Nanobiotechnol., 2021, 19(1), 130.
[http://dx.doi.org/10.1186/s12951-021-00869-6] [PMID: 33952251]
[170]
Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm., 2020, 575, 118883.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118883] [PMID: 31811925]
[171]
Bhagurkar, A.M.; Darji, M.; Lakhani, P.; Thipsay, P.; Bandari, S.; Repka, M.A. Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. J. Pharm. Pharmacol., 2019, 71(3), 293-305.
[http://dx.doi.org/10.1111/jphp.13046] [PMID: 30485903]
[172]
Zayed, G. M.; Rasoul, S. A.; Ibrahim, M. A.; Saddik, M. S.; Alshora, D. H. In vitro and in vivo characterization of domperidone-loaded fast dissolving buccal films. Saudi Pharm. J., 2020, 28(3), 266-273.
[173]
Wang, P.; Li, Y.; Zhang, C.; Feng, F.; Zhang, H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem., 2020, 308, 125599.
[http://dx.doi.org/10.1016/j.foodchem.2019.125599] [PMID: 31648098]
[174]
He, M.; Zhu, L.; Yang, N.; Li, H.; Yang, Q. Recent advances of oral film as platform for drug delivery. Int. J. Pharm., 2021, 604, 120759.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120759] [PMID: 34098053]
[175]
Stie, M. B.; Kalouta, K.; Vetri, V.; Foderà, V. Protein materials as sustainable non- and minimally invasive strategies for biomedical applications. J. Control. Release, 2022, 344, 12-25.
[176]
Adnan, M.; Santhosh Kumar, K.; Sreejith, L. Micellar nanocomposites hydrogels films for pH sensitive controlled drug delivery. Mater. Lett., 2020, 277, 128286.
[http://dx.doi.org/10.1016/j.matlet.2020.128286]
[177]
Speth, M.T.; Repnik, U.; Griffiths, G. Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials, 2016, 111, 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.027] [PMID: 27716523]
[178]
Paris, A.L.; Caridade, S.; Colomb, E.; Bellina, M.; Boucard, E.; Verrier, B.; Monge, C. Sublingual protein delivery by a mucoadhesive patch made of natural polymers. Acta Biomater., 2021, 128, 222-235.
[http://dx.doi.org/10.1016/j.actbio.2021.04.024] [PMID: 33878475]
[179]
Schwestka, J.; Stoger, E. Microparticles and nanoparticles from plants-the benefits of bioencapsulation. Vaccines, 2021, 9(4), 369.
[http://dx.doi.org/10.3390/vaccines9040369] [PMID: 33920425]
[180]
Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med., 2019, 30(10), 115.
[http://dx.doi.org/10.1007/s10856-019-6318-7] [PMID: 31599365]
[181]
Yao, Y.; Zhang, A.; Yuan, C.; Chen, X.; Liu, Y. Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomater. Sci., 2021, 9(13), 4523-4540.
[http://dx.doi.org/10.1039/D1BM00411E] [PMID: 34047308]
[182]
Seo, K.S.; Bajracharya, R.; Lee, S.H.; Han, H.K. Pharmaceutical application of tablet film coating. Pharmaceutics, 2020, 12(9), 853.
[http://dx.doi.org/10.3390/pharmaceutics12090853] [PMID: 32911720]
[183]
Moniz, T.; Costa Lima, S.A.; Reis, S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr. Polym., 2021, 266, 118098.
[http://dx.doi.org/10.1016/j.carbpol.2021.118098] [PMID: 34044917]
[184]
Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym., 2020, 230, 115658.
[http://dx.doi.org/10.1016/j.carbpol.2019.115658] [PMID: 31887899]
[185]
Mbese, Z.; Alven, S.; Aderibigbe, B.A. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers, 2021, 13(24), 4368.
[http://dx.doi.org/10.3390/polym13244368] [PMID: 34960918]
[186]
Hong, H.; Wang, X.; Song, X.; Fawal, G.E.; Wang, K.; Jiang, D.; Pei, Y.; Wang, Z.; Wang, H. Transdermal delivery of interleukin-12 gene targeting dendritic cells enhances the anti-tumour effect of programmed cell death protein 1 monoclonal antibody. Biomaterials Translational, 2021, 2(2), 151-164.
[PMID: 35836967]
[187]
Gullapalli, R.P.; Mazzitelli, C.L. Gelatin and non-gelatin capsule dosage forms. J. Pharm. Sci., 2017, 106(6), 1453-1465.
[http://dx.doi.org/10.1016/j.xphs.2017.02.006] [PMID: 28209365]
[188]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036] [PMID: 29288095]
[189]
Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A.W.G.; Al-Kinani, A.A.; Alany, R.G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv. Drug Deliv. Rev., 2021, 177, 113957.
[http://dx.doi.org/10.1016/j.addr.2021.113957] [PMID: 34481032]
[190]
Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2018, 115, 165-175.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[191]
Huang, B.; Liu, X.; Li, Z.; Zheng, Y.; Wai Kwok Yeung, K.; Cui, Z.; Liang, Y.; Zhu, S.; Wu, S. Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. Chem. Eng. J., 2021, 414, 128805.
[http://dx.doi.org/10.1016/j.cej.2021.128805]
[192]
Wang, S.; Gao, Z.; Liu, L.; Li, M.; Zuo, A.; Guo, J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur. J. Pharm., 2022, 168, 106085.
[http://dx.doi.org/10.1016/j.ejps.2021.106085]
[193]
Chen, M.; Tan, H.; Xu, W.; Wang, Z.; Zhang, J.; Li, S.; Zhou, T.; li, J.; Niu, X. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomater., 2022, 153, 159-177.
[http://dx.doi.org/10.1016/j.actbio.2022.09.036] [PMID: 36152907]
[194]
Ishida, K.; Yamaguchi, M. Role of albumin in osteoblastic cells: Enhancement of cell proliferation and suppression of alkaline phosphatase activity. Int. J. Mol. Med., 2004, 14(6), 1077-1081.
[http://dx.doi.org/10.3892/ijmm.14.6.1077] [PMID: 15547677]
[195]
Bharathi, R.; Ganesh, S. S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Abinaya, S.; Selvamurugan, N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int. J. Biol. Macromol., 2022, 222(Pt A), 132-153.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.058]
[196]
Ong, J.; Zhao, J.; Justin, A.W.; Markaki, A.E. Albumin-based hydrogels for regenerative engineering and cell transplantation. Biotechnol. Bioeng., 2019, 116(12), 3457-3468.
[http://dx.doi.org/10.1002/bit.27167] [PMID: 31520415]
[197]
Mansouri, S.; Lavigne, P.; Corsi, K.; Benderdour, M.; Beaumont, E.; Fernandes, J. C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur. J. Pharma. Biopharm., 2004, 57(1), 1-8.
[http://dx.doi.org/10.1016/S0939-6411(03)00155-3]
[198]
Tian, J.; Yu, J.; Sun, X. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol., 2008, 126(3-4), 220-229.
[http://dx.doi.org/10.1016/j.vetimm.2008.07.002] [PMID: 18722672]
[199]
Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharma. Biopharm., 2009, 71(3), 484-9.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.016]
[200]
Yalcin, E.; Kara, G.; Celik, E.; Pinarli, F.A.; Saylam, G.; Sucularli, C.; Ozturk, S.; Yilmaz, E.; Bayir, O.; Korkmaz, M.H.; Denkbas, E.B. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep. Biochem. Biotechnol., 2019, 49(7), 659-670.
[http://dx.doi.org/10.1080/10826068.2019.1599395] [PMID: 31066619]
[201]
Leng, Q.; Chen, L.; Lv, Y. RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics, 2020, 10(7), 3190-3205.
[http://dx.doi.org/10.7150/thno.42640] [PMID: 32194862]
[202]
Kaur, I.P.; Kakkar, S. Newer therapeutic vistas for antiglaucoma medicines. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(2), 165-202.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i2.20] [PMID: 21663575]
[203]
Chuan, D.; Jin, T.; Fan, R.; Zhou, L.; Guo, G. Chitosan for gene delivery: Methods for improvement and applications. Adv. Colloid Interface Sci., 2019, 268, 25-38.
[http://dx.doi.org/10.1016/j.cis.2019.03.007] [PMID: 30933750]
[204]
Song, P.; Lu, Z.; Jiang, T.; Han, W.; Chen, X.; Zhao, X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int. J. Biol. Macromol., 2022, 222(Pt A), 1078-1091.
[205]
Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy