Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry

Author(s): Amanda Ratto and John F. Honek*

Volume 31, Issue 10, 2024

Published on: 17 May, 2023

Page: [1172 - 1213] Pages: 42

DOI: 10.2174/0929867330666230313141452

Price: $65

Abstract

The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.

Keywords: Deltic acid, squaric, croconic, rhodizonic, oxocarbon acids, bioisosteres.

[1]
Ian Storer, R.; Aciro, C.; Jones, L.H. Squaramides: Physical properties, synthesis and applications. Chem. Soc. Rev., 2011, 40(5), 2330-2346.
[http://dx.doi.org/10.1039/c0cs00200c] [PMID: 21399835]
[2]
Lei, S.; Zhang, Y.; Blum, N.T.; Huang, P.; Lin, J. Recent advances in croconaine dyes for bioimaging and theranostics. Bioconjug. Chem., 2020, 31(9), 2072-2084.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00356] [PMID: 32786372]
[3]
Zwicker, V.E.; Yuen, K.K.Y.; Smith, D.G.; Ho, J.; Qin, L.; Turner, P.; Jolliffe, K.A. Deltamides and croconamides: Expanding the range of dual H‐bond donors for selective anion recognition. Chemistry, 2018, 24(5), 1140-1150.
[http://dx.doi.org/10.1002/chem.201704388] [PMID: 29119615]
[4]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[5]
Agnew-Francis, K.A.; Williams, C.M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev., 2020, 120(20), 11616-11650.
[http://dx.doi.org/10.1021/acs.chemrev.0c00416] [PMID: 32930577]
[6]
Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; Huryn, D.M.; Ballatore, C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem., 2016, 59(7), 3183-3203.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01963] [PMID: 26967507]
[7]
Mishiro, K.; Hu, F.; Paley, D.W.; Min, W.; Lambert, T.H. Macrosteres: The deltic guanidinium ion. Eur. J. Org. Chem., 2016, 2016(9), 1655-1659.
[http://dx.doi.org/10.1002/ejoc.201600137] [PMID: 27790071]
[8]
Marchetti, L.A.; Kumawat, L.K.; Mao, N.; Stephens, J.C.; Elmes, R.B.P. The versatility of squaramides: From supramolecular chemistry to chemical biology. Chem, 2019, 5(6), 1398-1485.
[http://dx.doi.org/10.1016/j.chempr.2019.02.027]
[9]
Lu, M.; Lu, Q.B.; Honek, J.F. Squarate-based carbocyclic nucleosides: Syntheses, computational analyses and anticancer/antiviral evaluation. Bioorg. Med. Chem. Lett., 2017, 27(2), 282-287.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.058] [PMID: 27913181]
[10]
West, R. Chemistry of the oxocarbons. Isr. J. Chem., 1980, 20(3-4), 300-307.
[http://dx.doi.org/10.1002/ijch.198000088]
[11]
Seitz, G.; Imming, P. Oxocarbons and pseudooxocarbons. Chem. Rev., 1992, 92(6), 1227-1260.
[http://dx.doi.org/10.1021/cr00014a004]
[12]
Eggerding, D.; West, R. Synthesis of dihydroxycyclopropenone (deltic acid). J. Am. Chem. Soc., 1975, 97(1), 207-208.
[http://dx.doi.org/10.1021/ja00834a047]
[13]
Eggerding, D.; West, R. Synthesis and properties of deltic acid (dihydroxycyclopropenone) and the deltate ion. J. Am. Chem. Soc., 1976, 98(12), 3641-3644.
[http://dx.doi.org/10.1021/ja00428a043]
[14]
Pericás, M.A.; Serratoso, F. Synthetic applications of di-tert-butoxyethyne: Synthesis of deltic and squaric acid. Tetrahedron Lett., 1977, 18(50), 4437-4438.
[http://dx.doi.org/10.1016/S0040-4039(01)83530-9]
[15]
Serratosa, F. Acetylene diethers: A logical entry to oxocarbons. Acc. Chem. Res., 1983, 16(5), 170-176.
[http://dx.doi.org/10.1021/ar00089a004]
[16]
West, R.; Chickos, J.; Osawa, E. Dichlorocyclopropenone. J. Am. Chem. Soc., 1968, 90(14), 3885-3886.
[http://dx.doi.org/10.1021/ja01016a064]
[17]
Dehmlow, E.V. Diäthoxy-cyclopropenon (Dreiecksäurediäthylester). Tetrahedron Lett., 1972, 13(13), 1271-1274.
[http://dx.doi.org/10.1016/S0040-4039(01)84565-2]
[18]
Farnum, D.G. Thurston, P.E. α-Elimination in 2-phenyltetrachloropropene. Synthesis of phenylhydroxycyclopropenone. J. Am. Chem. Soc., 1964, 86(19), 4206-4207.
[http://dx.doi.org/10.1021/ja01073a067]
[19]
Chickos, J.S.; Patton, E.; West, R. Aryltrichlorocyclopropenes and arylhydroxycyclopropenones. J. Org. Chem., 1974, 39(12), 1647-1650.
[http://dx.doi.org/10.1021/jo00925a009]
[20]
Farnum, D.G.; Chickos, J.; Thurston, P.E. The preparation and characterization of phenylhydroxycyclopropenone. J. Am. Chem. Soc., 1966, 88(13), 3075-3081.
[http://dx.doi.org/10.1021/ja00965a033]
[21]
Patton, E.; West, R. New aromatic anions. X. Dissociation constants of substituted oxocarbon acids. J. Am. Chem. Soc., 1973, 95(26), 8703-8707.
[http://dx.doi.org/10.1021/ja00807a033]
[22]
Ockey, D.A.; Gadek, T.R. Discovery of novel PTP1b inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 389-391.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.058] [PMID: 14698165]
[23]
Weidner, C.H.; Wadsworth, D.H.; Knop, C.S.; Oyefesso, A.I.; Hafer, B.L.; Hartman, R.J.; Mehlenbacher, R.C.; Hogan, S.C. Convenient and general synthesis of 2-alkoxy-3-arylcyclopropenones. J. Org. Chem., 1994, 59(15), 4319-4322.
[http://dx.doi.org/10.1021/jo00094a055]
[24]
Semmingsen, D.; Groth, P. Deltic acid, a novel compound. J. Am. Chem. Soc., 1987, 109(23), 7238-7239.
[http://dx.doi.org/10.1021/ja00257a081]
[25]
Chickos, J.S.; Berndt, A.F.; Claus, A.C. Crystal data on phenylhydroxycyclopropenone. J. Appl. Cryst., 1973, 6(4), 303-304.
[http://dx.doi.org/10.1107/S0021889873008770]
[26]
Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P.M. A theoretical study of aromaticity in squaramide and oxocarbons. Tetrahedron Lett., 2000, 41(12), 2001-2005.
[http://dx.doi.org/10.1016/S0040-4039(00)00084-8]
[27]
Schleyer, P.R.; Najafian, K.; Kiran, B.; Jiao, H. Are oxocarbon dianions aromatic? J. Org. Chem., 2000, 65(2), 426-431.
[http://dx.doi.org/10.1021/jo991267n] [PMID: 10813951]
[28]
Wang, H.J.; Schleyer, P.R.; Wu, J.I.; Wang, Y.; Wang, H.J. A study of aromatic three membered rings. Int. J. Quantum Chem., 2011, 111(5), 1031-1038.
[http://dx.doi.org/10.1002/qua.22453]
[29]
Tadić J.M.; Xu, L. Ab initio and density functional theory study of keto-enol equilibria of deltic acid in gas and aqueous solution phase: A bimolecular proton transfer mechanism. J. Org. Chem., 2012, 77(19), 8621-8626.
[http://dx.doi.org/10.1021/jo301575c] [PMID: 22954314]
[30]
Gelb, R.I.; Schwartz, L.M. Aqueous dissociation of dihydroxycyclopropenone (deltic acid). J. Chem. Soc. Perkin T 2, 1976, 1976(8), 930-932.
[31]
Yoshida, Z.; Konishi, H.; Tawara, Y.; Nishikawa, K.; Ogoshi, H. Novel alkaline hydrolysis of triaminocyclopropenium ion. new route to diaminocyclopropenone and diaminocyclopropenethione. Tetrahedron Lett., 1973, 14(28), 2619-2622.
[http://dx.doi.org/10.1016/S0040-4039(01)96160-X]
[32]
Mishiro, K.; Yushima, Y.; Kunishima, M. Phototriggered dehydration condensation using an aminocyclopropenone. Org. Lett., 2017, 19(18), 4912-4915.
[http://dx.doi.org/10.1021/acs.orglett.7b02383] [PMID: 28862452]
[33]
Row, R.D.; Shih, H.W.; Alexander, A.T.; Mehl, R.A.; Prescher, J.A. Cyclopropenones for metabolic targeting and sequential bioorthogonal labeling. J. Am. Chem. Soc., 2017, 139(21), 7370-7375.
[http://dx.doi.org/10.1021/jacs.7b03010] [PMID: 28478678]
[34]
Gale, P.A.; Pérez-Tomás, R.; Quesada, R. Anion transporters and biological systems. Acc. Chem. Res., 2013, 46(12), 2801-2813.
[http://dx.doi.org/10.1021/ar400019p] [PMID: 23551251]
[35]
Gale, P.A.; Davis, J.T.; Quesada, R. Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev., 2017, 46(9), 2497-2519.
[http://dx.doi.org/10.1039/C7CS00159B] [PMID: 28379234]
[36]
Tosolini, M.; Pengo, P.; Tecilla, P. Biological activity of trans-membrane anion carriers. Curr. Med. Chem., 2018, 25(30), 3560-3576.
[http://dx.doi.org/10.2174/0929867325666180309113222] [PMID: 29521206]
[37]
Ho, J.; Zwicker, V.E.; Yuen, K.K.Y.; Jolliffe, K.A. Quantum chemical prediction of equilibrium acidities of ureas, deltamides, squaramides, and croconamides. J. Org. Chem., 2017, 82(19), 10732-10736.
[http://dx.doi.org/10.1021/acs.joc.7b02083] [PMID: 28832145]
[38]
Weiss, R.; Hertel, M. A nitrogen analogue of deltic acid. J. Chem. Soc. Chem. Commun., 1980, (5), 223-224.
[http://dx.doi.org/10.1039/c39800000223]
[39]
Lambert, T.; Bandar, J. Aminocyclopropenium ions: Synthesis, properties, and applications. Synthesis, 2013, 45(18), 2485-2498.
[http://dx.doi.org/10.1055/s-0033-1338516]
[40]
Bandar, J.S.; Barthelme, A.; Mazori, A.Y.; Lambert, T.H. Structure–activity relationship studies of cyclopropenimines as enantioselective Brønsted base catalysts. Chem. Sci. (Camb.), 2015, 6(2), 1537-1547.
[http://dx.doi.org/10.1039/C4SC02402H] [PMID: 26504512]
[41]
Walst, K.J.; Yunis, R.; Bayley, P.M.; MacFarlane, D.R.; Ward, C.J.; Wang, R.; Curnow, O.J. Synthesis and physical properties of tris(dialkylamino)cyclopropenium bistriflamide ionic liquids. RSC Advances, 2015, 5(49), 39565-39579.
[http://dx.doi.org/10.1039/C5RA05254H]
[42]
Freyer, J.L.; Brucks, S.D.; Gobieski, G.S.; Russell, S.T.; Yozwiak, C.E.; Sun, M.; Chen, Z.; Jiang, Y.; Bandar, J.S.; Stockwell, B.R.; Lambert, T.H.; Campos, L.M. Clickable poly(ionic liquids): A materials platform for transfection. Angew. Chem. Int. Ed., 2016, 55(40), 12382-12386.
[http://dx.doi.org/10.1002/anie.201605214] [PMID: 27578602]
[43]
Brucks, S.D.; Freyer, J.L.; Lambert, T.H.; Campos, L.M. Influence of substituent chain branching on the transfection efficacy of cyclopropenium-based polymers. Polymers, 2017, 9(3), 79.
[http://dx.doi.org/10.3390/polym9030079]
[44]
Lugade, A.G.; Jacobson, J.W. Oxocarbonamide peptide nucleic acids for use as hybridization probes. Patent WO2008070525A1 2008.
[45]
Hausen, B.; Happle, R. Cyclopropenones for the local treatment of alopecia areata. EP62157A1 1982.
[46]
Arndt, G.; Seitz, G.; Kampchen, T. Polycarbonyl compounds. 31. Sulfur and selenium analogs of phenyl substituted deltic acid anions and their derivatives. Chem. Ber., 1981, 114(2), 660-672.
[http://dx.doi.org/10.1002/cber.19811140225]
[47]
Werz, D.B.; Gleiter, R.; Rominger, F. Selenium- and tellurium-substituted cyclopropenones and their facile ring-opening with methanol. Eur. J. Org. Chem., 2003, 2003(1), 151-154.
[http://dx.doi.org/10.1002/1099-0690(200301)2003:1<151:AID-EJOC151>3.0.CO;2-7]
[48]
Cohen, S.; Lacher, J.R.; Park, J.D. Diketocyclobutenediol. J. Am. Chem. Soc., 1959, 81(13), 3480.
[http://dx.doi.org/10.1021/ja01522a083]
[49]
Shimizu, I. Squaric acid. J. Synth. Org. Chem. Jpn., 1995, 53(4), 330-331.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.53.330]
[50]
Wurm, F.R.; Klok, H.A. Be squared: Expanding the horizon of squaric acid-mediated conjugations. Chem. Soc. Rev., 2013, 42(21), 8220-8236.
[http://dx.doi.org/10.1039/c3cs60153f] [PMID: 23873344]
[51]
Chasák, J.; Šlachtová, V.; Urban, M.; Brulíková, L. Squaric acid analogues in medicinal chemistry. Eur. J. Med. Chem., 2021, 209, 112872.
[http://dx.doi.org/10.1016/j.ejmech.2020.112872] [PMID: 33035923]
[52]
Mukkanti, A.; Periasamy, M. Methods of synthesis of cyclobutenediones. Arkivoc, 2005, (xi), 48-77.
[53]
Wurm, F.; Steinbach, T.; Klok, H.A. One-pot squaric acid diester mediated aqueous protein conjugation. Chem. Commun. (Camb.), 2013, 49(71), 7815-7817.
[http://dx.doi.org/10.1039/c3cc44039g] [PMID: 23884200]
[54]
Maahs, G.; Hegenberg, P. Syntheses and derivatives of squaric acid. Angew. Chem. Int. Ed. Engl., 1966, 5(10), 888-893.
[http://dx.doi.org/10.1002/anie.196608881]
[55]
Liu, H.; Tomooka, C.S.; Moore, H.W. An efficient general synthesis of squarate esters. Synth. Commun., 1997, 27(12), 2177-2180.
[http://dx.doi.org/10.1080/00397919708006826]
[56]
Tietze, L.F.; Arlt, M.; Beller, M. Gl üsenkamp, K.H.; Jähde, E.; Rajewsky, M.F. Anticancer agents, 15. squaric acid diethyl ester: A new coupling reagent for the formation of drug biopolymer conjugates. synthesis of squaric acid ester amides and diamides. Chem. Ber., 1991, 124(5), 1215-1221.
[http://dx.doi.org/10.1002/cber.19911240539]
[57]
Neuse, E.; Green, B. Amidierung von Quadratsäure-estern. Justus Liebigs Ann. Chem., 1973, 1973(4), 619-632.
[http://dx.doi.org/10.1002/jlac.197319730411]
[58]
López, C.; Vega, M.; Sanna, E.; Rotger, C.; Costa, A. Efficient microwave-assisted preparation of squaric acid monoamides in water. RSC Advances, 2013, 3(20), 7249-7253.
[http://dx.doi.org/10.1039/c3ra41369a]
[59]
Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. One-pot synthesis of unsymmetrical squaramides. RSC Advances, 2015, 5(42), 33450-33462.
[http://dx.doi.org/10.1039/C5RA05383H]
[60]
Chickos, J.S. Methylhydroxycyclobutenedione. J. Am. Chem. Soc., 1970, 92(19), 5749-5750.
[http://dx.doi.org/10.1021/ja00722a044]
[61]
Reed, M.W.; Pollart, D.J.; Perri, S.T.; Foland, L.D.; Moore, H.W. Synthesis of 4-substituted-3-alkoxy-3-cyclobutene-1,2-diones. J. Org. Chem., 1988, 53(11), 2477-2482.
[http://dx.doi.org/10.1021/jo00246a016]
[62]
Liebeskind, L.S.; Fengl, R.W.; Wirtz, K.R.; Shawe, T.T. An improved method for the synthesis of substituted cyclobutenediones. J. Org. Chem., 1988, 53(11), 2482-2488.
[http://dx.doi.org/10.1021/jo00246a017]
[63]
Liebeskind, L.S.; Fengl, R.W. 3-Stannylcyclobutenediones as nucleophilic cyclobutenedione equivalents. Synthesis of substituted cyclobutenediones and cyclobutenedione monoacetals and the beneficial effect of catalytic copper iodide on the Stille reaction. J. Org. Chem., 1990, 55(19), 5359-5364.
[http://dx.doi.org/10.1021/jo00306a012]
[64]
Kinney, W.A. Synthesis of alkyl substituted cyclobutenediones by free radical chemistry. Carbon for nitrogen replacement in the α-amino acid bioisostere 34-diamino-3-cyclobutene-1,2-dione. Tetrahedron Lett., 1993, 34(17), 2715-2718.
[http://dx.doi.org/10.1016/S0040-4039(00)73543-X]
[65]
Ehrhardt, H.; Hunig, S.; Putter, H. Amides and thioamides of squaric acid - Syntheses and reactions. Chem. Ber.-. Rec., 1977, 110(7), 2506-2523.
[66]
Deyà, P.M.; Frontera, A.; Suñer, G.A.; Quiñonero, D.; Garau, C.; Costa, A.; Ballester, P. Internal rotation in squaramide and related compounds. A theoretical ab initio study. Theor. Chem. Acc., 2002, 108(3), 157-167.
[http://dx.doi.org/10.1007/s00214-002-0373-7]
[67]
Thorpe, J.E. 1H nuclear magnetic resonance spectra of some squaramides. J. Chem. Soc. B, 1968, 435-436.
[http://dx.doi.org/10.1039/j29680000435]
[68]
Quiñonero, D.; Tomàs, S.; Frontera, A.; Garau, C.; Ballester, P.; Costa, A.; Deyà, P.M. OPLS all-atom force field for squaramides and squaric acid. Chem. Phys. Lett., 2001, 350(3-4), 331-338.
[http://dx.doi.org/10.1016/S0009-2614(01)01229-5]
[69]
Kang, Y.K.; Park, H.S. Internal rotation about the C–N bond of amides. J. Mol. Struct. THEOCHEM, 2004, 676(1-3), 171-176.
[http://dx.doi.org/10.1016/j.theochem.2004.01.024]
[70]
Gilli, G.; Bertolasi, V.; Gilli, P.; Ferretti, V. Associations of squaric acid and its anions as multiform building blocks of hydrogen-bonded molecular crystals. Acta Crystallogr. B, 2001, 57(6), 859-865.
[http://dx.doi.org/10.1107/S0108768101014963] [PMID: 11717486]
[71]
Liu, Y.; Lam, A.H.W.; Fowler, F.W.; Lauher, J.W. The squaramides. A new family of host molecules for crystal engineering. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2002, 389(1), 39-46.
[http://dx.doi.org/10.1080/713738914]
[72]
Mani, C.M.; Berthold, T.; Fechler, N. “Cubism” on the nanoscale: From squaric acid to porous carbon cubes. Small, 2016, 12(21), 2906-2912.
[http://dx.doi.org/10.1002/smll.201600284] [PMID: 27062376]
[73]
Ding, N.; Zhou, T.; Weng, W.; Lin, Z.; Liu, S.; Maitarad, P.; Wang, C.; Guo, J. Multivariate synthetic strategy for improving crystallinity of zwitterionic squaraine‐linked covalent organic frameworks with enhanced photothermal performance. Small, 2022, 18(24), 2201275.
[http://dx.doi.org/10.1002/smll.202201275] [PMID: 35585681]
[74]
Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. Optimizing the accuracy and computational cost in theoretical squaramide catalysis: The henry reaction. Chemistry, 2017, 23(61), 15336-15347.
[http://dx.doi.org/10.1002/chem.201702841] [PMID: 28768048]
[75]
Zhao, B.L.; Li, J.H.; Du, D.M. Squaramide‐catalyzed asymmetric reactions. Chem. Rec., 2017, 17(10), 994-1018.
[http://dx.doi.org/10.1002/tcr.201600140] [PMID: 28266131]
[76]
Matador, E.; de Gracia Retamosa, M.; Monge, D.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J.M. Bifunctional squaramide organocatalysts for the asymmetric addition of formaldehyde tert- butylhydrazone to simple aldehydes. Chemistry, 2018, 24(26), 6854-6860.
[http://dx.doi.org/10.1002/chem.201801052] [PMID: 29570872]
[77]
Modrocká, V.; Veverková, E. Mečiarová, M.; Šebesta, R. Bifunctional amine-squaramides as organocatalysts in michael/hemiketalization reactions of βγ-unsaturated α-ketoesters and αβ-unsaturated ketones with 4-hydroxycou-marins. J. Org. Chem., 2018, 83(21), 13111-13120.
[http://dx.doi.org/10.1021/acs.joc.8b01847] [PMID: 30277392]
[78]
Shukla, K. Khushboo; Mahto, P.; Singh, V.K. Enantioselective synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction using a bifunctional squaramide catalyst. Org. Biomol. Chem., 2022, 20(20), 4155-4160.
[http://dx.doi.org/10.1039/D2OB00633B] [PMID: 35521781]
[79]
Tong, C.; Liu, T.; Saez Talens, V.; Noteborn, W.E.M.; Sharp, T.H.; Hendrix, M.M.R.M.; Voets, I.K.; Mummery, C.L.; Orlova, V.V.; Kieltyka, R.E. Squaramide-based supramolecular materials for three-dimensional cell culture of human induced pluripotent stem cells and their derivatives. Biomacromolecules, 2018, 19(4), 1091-1099.
[http://dx.doi.org/10.1021/acs.biomac.7b01614] [PMID: 29528623]
[80]
Tong, C.; Wondergem, J.A.J.; van den Brink, M.; Kwakernaak, M.C.; Chen, Y.; Hendrix, M.M.R.M.; Voets, I.K.; Danen, E.H.J.; Le Dévédec, S.; Heinrich, D.; Kieltyka, R.E. Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial. ACS Appl. Mater. Interfaces, 2022, 14(15), 17042-17054.
[http://dx.doi.org/10.1021/acsami.1c24114] [PMID: 35403421]
[81]
Stucchi, S.; Colombo, D.; Guizzardi, R.; D’Aloia, A.; Collini, M.; Bouzin, M.; Costa, B.; Ceriani, M.; Natalello, A.; Pallavicini, P.; Cipolla, L. Squarate cross-linked gelatin hydrogels as three-dimensional scaffolds for biomedical applications. Langmuir, 2021, 37(48), 14050-14058.
[http://dx.doi.org/10.1021/acs.langmuir.1c02080] [PMID: 34806889]
[82]
Olewnik-Kruszkowska, E.; Gierszewska, M. Grabska-Zielińska, S.; Skopińska-Wiśniewska, J.; Jakubowska, E. Examining the impact of squaric acid as a crosslinking agent on the properties of chitosan-based films. Int. J. Mol. Sci., 2021, 22(7), 3329.
[http://dx.doi.org/10.3390/ijms22073329] [PMID: 33805101]
[83]
Huppertsberg, A.; Leps, C.; Alberg, I.; Rosenauer, C.; Morsbach, S.; Landfester, K.; Tenzer, S.; Zentel, R.; Nuhn, L. Squaric ester‐based nanogels induce no distinct protein corona but entrap plasma proteins into their porous hydrogel network. Macromol. Rapid Commun., 2022, 43(19), 2200318.
[http://dx.doi.org/10.1002/marc.202200318] [PMID: 35687083]
[84]
Pósa, S.P.; Dargó, G.; Nagy, S.; Kisszékelyi, P.; Garádi, Z.; Hámori, L.; Szakács, G.; Kupai, J.; Tóth, S. Cytotoxicity of cinchona alkaloid organocatalysts against MES-SA and MES-SA/Dx5 multidrug-resistant uterine sarcoma cell lines. Bioorg. Med. Chem., 2022, 67, 116855.
[http://dx.doi.org/10.1016/j.bmc.2022.116855] [PMID: 35640378]
[85]
Sleiman, M.H.; Ladame, S. Synthesis of squaraine dyes under mild conditions: applications for labelling and sensing of biomolecules. Chem. Commun. (Camb.), 2014, 50(40), 5288-5290.
[http://dx.doi.org/10.1039/c3cc47894g] [PMID: 24402188]
[86]
Lynch, D.E.; Hamilton, D.G. Croconaine dyes - the lesser known siblings of squaraines. Eur. J. Org. Chem., 2017, 2017(27), 3897-3911.
[http://dx.doi.org/10.1002/ejoc.201700218]
[87]
Yadav, Y.; Owens, E.; Nomura, S.; Fukuda, T.; Baek, Y.; Kashiwagi, S.; Choi, H.S.; Henary, M. Ultrabright and serum-stable squaraine dyes. J. Med. Chem., 2020, 63(17), 9436-9445.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00617] [PMID: 32787096]
[88]
Fukuda, T.; Yokomizo, S.; Casa, S.; Monaco, H.; Manganiello, S.; Wang, H.; Lv, X.; Ulumben, A.D.; Yang, C.; Kang, M.W.; Inoue, K.; Fukushi, M.; Sumi, T.; Wang, C.; Kang, H.; Bao, K.; Henary, M.; Kashiwagi, S.; Soo Choi, H. Fast and durable intraoperative near‐infrared imaging of ovarian cancer using ultrabright squaraine fluorophores. Angew. Chem. Int. Ed., 2022, 61(17), e202117330.
[http://dx.doi.org/10.1002/anie.202117330] [PMID: 35150468]
[89]
Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A. Squaraine dyes: A mine of molecular materials. J. Mater. Chem., 2008, 18(3), 264-274.
[http://dx.doi.org/10.1039/B707734C]
[90]
Avirah, R.R.; Jyothish, K.; Ramaiah, D. Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Org. Lett., 2007, 9(1), 121-124.
[http://dx.doi.org/10.1021/ol062691v] [PMID: 17192100]
[91]
Radaram, B.; Mako, T.; Levine, M. Sensitive and selective detection of cesium via fluorescence quenching. Dalton Trans., 2013, 42(46), 16276-16278.
[http://dx.doi.org/10.1039/c3dt52215f] [PMID: 24113779]
[92]
Gao, F.P.; Lin, Y.X.; Li, L.L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J.G.; Li, J.Y.; Würthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials, 2014, 35(3), 1004-1014.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.039] [PMID: 24169004]
[93]
Ramaiah, D.; Eckert, I.; Arun, K.T.; Weidenfeller, L.; Epe, B. Squaraine dyes for photodynamic therapy: Study of their cytotoxicity and genotoxicity in bacteria and mammalian cells. Photochem. Photobiol., 2002, 76(6), 672-677.
[http://dx.doi.org/10.1562/0031-8655(2002)076<0672:SDFPTS>2.0.CO;2] [PMID: 12511049]
[94]
Pairault, N.; Barat, R.; Tranoy-Opalinski, I.; Renoux, B.; Thomas, M.; Papot, S. Rotaxane-based architectures for biological applications. C. R. Chim., 2016, 19(1-2), 103-112.
[http://dx.doi.org/10.1016/j.crci.2015.05.012]
[95]
Gassensmith, J.J.; Baumes, J.M.; Smith, B.D. Discovery and early development of squaraine rotaxanes. Chem. Commun. (Camb.), 2009, (42), 6329-6338.
[http://dx.doi.org/10.1039/b911064j] [PMID: 19841772]
[96]
Smith, B.D. Smart molecules for imaging, sensing and health (SMITH). Beilstein J. Org. Chem., 2015, 11, 2540-2548.
[http://dx.doi.org/10.3762/bjoc.11.274] [PMID: 26734100]
[97]
Arunkumar, E.; Forbes, C.C.; Noll, B.C.; Smith, B.D. Squaraine-derived rotaxanes: Sterically protected fluorescent near-IR dyes. J. Am. Chem. Soc., 2005, 127(10), 3288-3289.
[http://dx.doi.org/10.1021/ja042404n] [PMID: 15755140]
[98]
Das, R.S.; Saha, P.C.; Sepay, N.; Mukherjee, A.; Chatterjee, S.; Guha, S. Design and synthesis of near-infrared mechanically interlocked molecules for specific targeting of mitochondria. Org. Lett., 2020, 22(15), 5839-5843.
[http://dx.doi.org/10.1021/acs.orglett.0c01922] [PMID: 32663029]
[99]
Barclay, M.S.; Roy, S.K.; Huff, J.S.; Mass, O.A.; Turner, D.B.; Wilson, C.K.; Kellis, D.L.; Terpetschnig, E.A.; Lee, J.; Davis, P.H.; Yurke, B.; Knowlton, W.B.; Pensack, R.D. Rotaxane rings promote oblique packing and extended lifetimes in DNA-templated molecular dye aggregates. Commun. Chem., 2021, 4(1), 19.
[http://dx.doi.org/10.1038/s42004-021-00456-8] [PMID: 35474961]
[100]
Adablah, J.E.; Wang, Y.; Donohue, M.; Roper, M.G. Profiling glucose-stimulated and M3 receptor-activated insulin secretion dynamics from islets of langerhans using an extended-lifetime fluorescence dye. Anal. Chem., 2020, 92(12), 8464-8471.
[http://dx.doi.org/10.1021/acs.analchem.0c01226] [PMID: 32429660]
[101]
Prohens, R.; Portell, A.; Font-Bardia, M.; Bauzá, A.; Frontera, A. H-Bonded anion–anion complex trapped in a squaramido-based receptor. Chem. Commun. (Camb.), 2018, 54(15), 1841-1844.
[http://dx.doi.org/10.1039/C7CC09241E] [PMID: 29250617]
[102]
Rostami, A.; Colin, A.; Li, X.Y.; Chudzinski, M.G.; Lough, A.J.; Taylor, M.S.N. N′-diarylsquaramides: General, high-yielding synthesis and applications in colorimetric anion sensing. J. Org. Chem., 2010, 75(12), 3983-3992.
[http://dx.doi.org/10.1021/jo100104g] [PMID: 20486682]
[103]
Marques, I.; Costa, P.M.R.; Q Miranda, M. Busschaert, N.; Howe, E.N.W.; Clarke, H.J.; Haynes, C.J.E.; Kirby, I.L.; Rodilla, A.M.; Pérez-Tomás, R.; Gale, P.A.; Félix, V. Full elucidation of the transmembrane anion transport mechanism of squaramides using in silico investigations. Phys. Chem. Chem. Phys., 2018, 20(32), 20796-20811.
[http://dx.doi.org/10.1039/C8CP02576B] [PMID: 29978159]
[104]
Bao, X.; Wu, X.; Berry, S.N.; Howe, E.N.W.; Chang, Y.T.; Gale, P.A. Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chem. Commun. (Camb.), 2018, 54(11), 1363-1366.
[http://dx.doi.org/10.1039/C7CC08706C] [PMID: 29354832]
[105]
Kumawat, L.K.; Wynne, C.; Cappello, E.; Fisher, P.; Brennan, L.E.; Strofaldi, A.; McManus, J.J.; Hawes, C.S.; Jolliffe, K.A.; Gunnlaugsson, T.; Elmes, R.B.P. Squaramide‐based self‐associating amphiphiles for anion recognition. ChemPlusChem, 2021, 86(8), 1058-1068.
[http://dx.doi.org/10.1002/cplu.202100275] [PMID: 34351081]
[106]
Picci, G.; Kubicki, M.; Garau, A.; Lippolis, V.; Mocci, R.; Porcheddu, A.; Quesada, R.; Ricci, P.C.; Scorciapino, M.A.; Caltagirone, C. Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chem. Commun. (Camb.), 2020, 56(75), 11066-11069.
[http://dx.doi.org/10.1039/D0CC04090H] [PMID: 32812561]
[107]
Zaleskaya, M.; Jagleniec, D. Romański, J. Macrocyclic squaramides as ion pair receptors and fluorescent sensors selective towards sulfates. Dalton Trans., 2021, 50(11), 3904-3915.
[http://dx.doi.org/10.1039/D0DT04273K] [PMID: 33635308]
[108]
Fernández-Moreira, V.; Alegre-Requena, J.V.; Herrera, R.P.; Marzo, I.; Gimeno, M.C. Synthesis of luminescent squaramide monoesters: Cytotoxicity and cell imaging studies in HeLa cells. RSC Advances, 2016, 6(17), 14171-14177.
[http://dx.doi.org/10.1039/C5RA24521D]
[109]
Yu, X.H.; Cai, X.J.; Hong, X.Q.; Tam, K.Y.; Zhang, K.; Chen, W.H. Synthesis and biological evaluation of aza-crown ether–squaramide conjugates as anion/cation symporters. Future Med. Chem., 2019, 11(10), 1091-1106.
[http://dx.doi.org/10.4155/fmc-2018-0595] [PMID: 31280669]
[110]
Tietze, L.F.; Schroeter, C.; Gabius, S.; Brinck, U.; Goerlach-Graw, A.; Gabius, H.J. Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjug. Chem., 1991, 2(3), 148-153.
[http://dx.doi.org/10.1021/bc00009a003] [PMID: 1932213]
[111]
Xu, P.; Kelly, M.; Vann, W.F.; Qadri, F.; Ryan, E.T. Kováč P. Conjugate vaccines from bacterial antigens by squaric acid chemistry: A closer look. ChemBioChem, 2017, 18(8), 799-815.
[http://dx.doi.org/10.1002/cbic.201600699] [PMID: 28182850]
[112]
Xu, P.; Trinh, M.N. Kováč P. Conjugation of carbohydrates to proteins using di(triethylene glycol monomethyl ether) squaric acid ester revisited. Carbohydr. Res., 2018, 456, 24-29.
[http://dx.doi.org/10.1016/j.carres.2017.10.012] [PMID: 29247910]
[113]
Pozsgay, V.; Dubois, E.P.; Pannell, L. Synthesis of kojidextrins and their protein conjugates. incidence of steric mismatch in oligosaccharide synthesis. J. Org. Chem., 1997, 62(9), 2832-2846.
[http://dx.doi.org/10.1021/jo962300y] [PMID: 11671646]
[114]
Ivancová, I.; Pohl, R.; Hubálek, M.; Hocek, M. Squaramate‐modified nucleotides and DNA for specific cross‐linking with lysine‐containing peptides and proteins. Angew. Chem. Int. Ed., 2019, 58(38), 13345-13348.
[http://dx.doi.org/10.1002/anie.201906737] [PMID: 31328344]
[115]
Meng, X.; Ji, C.; Su, C.; Shen, D.; Li, Y.; Dong, P.; Yuan, D.; Yang, M.; Bai, S.; Meng, D.; Fan, Z.; Yang, Y.; Yu, P.; Zhu, T. Synthesis and immunogenicity of PG-tb1 monovalent glycoconjugate. Eur. J. Med. Chem., 2017, 134, 140-146.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.058] [PMID: 28411454]
[116]
Anraku, K.; Sato, S.; Jacob, N.T.; Eubanks, L.M.; Ellis, B.A.; Janda, K.D. The design and synthesis of an α-Gal trisaccharide epitope that provides a highly specific anti-Gal immune response. Org. Biomol. Chem., 2017, 15(14), 2979-2992.
[http://dx.doi.org/10.1039/C7OB00448F] [PMID: 28294277]
[117]
Rudd, S.E.; Roselt, P.; Cullinane, C.; Hicks, R.J.; Donnelly, P.S. A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies. Chem. Commun. (Camb.), 2016, 52(80), 11889-11892.
[http://dx.doi.org/10.1039/C6CC05961A] [PMID: 27711378]
[118]
Sayeed, M.A.; Bufano, M.K.; Xu, P.; Eckhoff, G.; Charles, R.C.; Alam, M.M.; Sultana, T.; Rashu, M.R.; Berger, A.; Gonzalez-Escobedo, G.; Mandlik, A.; Bhuiyan, T.R.; Leung, D.T.; LaRocque, R.C.; Harris, J.B.; Calderwood, S.B.; Qadri, F.; Vann, W.F. Kováč P.; Ryan, E.T. A cholera conjugate vaccine containing o-specific polysaccharide (OSP) of V. cholerae O1 inaba and recombinant fragment of tetanus toxin heavy chain (OSP:rTTHc) induces serum, memory and lamina proprial responses against OSP and is protective in mice. PLoS Negl. Trop. Dis., 2015, 9(7), e0003881.
[http://dx.doi.org/10.1371/journal.pntd.0003881] [PMID: 26154421]
[119]
Böcker, S.; Laaf, D.; Elling, L. Galectin binding to neo-glycoproteins: LacDiNAc conjugated BSA as ligand for human galectin-3. Biomolecules, 2015, 5(3), 1671-1696.
[http://dx.doi.org/10.3390/biom5031671] [PMID: 26213980]
[120]
Palitzsch, B.; Hartmann, S.; Stergiou, N.; Glaffig, M.; Schmitt, E.; Kunz, H. A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper-cell epitopes. Angew. Chem. Int. Ed., 2014, 53(51), 14245-14249.
[http://dx.doi.org/10.1002/anie.201406843] [PMID: 25318465]
[121]
Wurm, F.; Dingels, C.; Frey, H.; Klok, H.A. Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates. Biomacromolecules, 2012, 13(4), 1161-1171.
[http://dx.doi.org/10.1021/bm300103u] [PMID: 22376203]
[122]
Dingels, C.; Wurm, F.; Klok, H.A.; Frey, H. Squaric acid ester amido mPEGs: New reagents for the PEGylation of proteins. Abstr. Pap. Am. Chem. Soc. 2011 241st National Meeting, March 28-31, 2011
[123]
Dingels, C.; Wurm, F.; Wagner, M.; Klok, H.A.; Frey, H. Squaric acid mediated chemoselective PEGylation of proteins: Reactivity of single-step-activated α-amino poly(ethylene glycol)s. Chemistry, 2012, 18(52), 16828-16835.
[http://dx.doi.org/10.1002/chem.201200182] [PMID: 23135990]
[124]
Tian, H.; Huang, Y.; He, J.; Zhang, M.; Ni, P. CD147 monoclonal antibody targeted reduction-responsive camptothecin polyphosphoester nanomedicine for drug delivery in hepatocellular carcinoma cells. ACS Appl. Bio Mater., 2021, 4(5), 4422-4431.
[http://dx.doi.org/10.1021/acsabm.1c00177] [PMID: 35006854]
[125]
Tevyashova, A.; Sztaricskai, F.; Batta, G.; Herczegh, P.; Jeney, A. Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties. Bioorg. Med. Chem. Lett., 2004, 14(18), 4783-4789.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.072] [PMID: 15324908]
[126]
Greifenstein, L.; Engelbogen, N.; Lahnif, H.; Sinnes, J.P.; Bergmann, R.; Bachmann, M.; Rösch, F. Synthesis, labeling and preclinical evaluation of a squaric acid containing PSMA inhibitor labeled with 68 Ga: A comparison with PSMA‐11 and PSMA‐617. ChemMedChem, 2020, 15(8), 695-704.
[http://dx.doi.org/10.1002/cmdc.201900559] [PMID: 32057189]
[127]
Moon, E.S.; Ballal, S.; Yadav, M.P.; Bal, C.; Van Rymenant, Y.; Stephan, S.; Bracke, A.; Van der Veken, P.; De Meester, I.; Roesch, F. Fibroblast Activation Protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics: A step to improve tumor uptake and retention time. Am. J. Nucl. Med. Mol. Imaging, 2021, 11(6), 476-491.
[PMID: 35003886]
[128]
World Health Organization (WHO). World Malaria Report 2020: 20 Years of Global Progress and Challenges; Geneva, Switzerland. , 2020.
[129]
Abd-Rahman, A.N.; Zaloumis, S.; McCarthy, J.S.; Simpson, J.A.; Commons, R.J. Scoping review of antimalarial drug candidates in Phase I and II drug development. Antimicrob. Agents Chemother., 2022, 66(2), e01659-e21.
[http://dx.doi.org/10.1128/aac.01659-21] [PMID: 34843390]
[130]
Tchekounou, C.; Zida, A.; Zongo, C.; Soulama, I.; Sawadogo, P.M.; Guiguemde, K.T.; Sangaré, I.; Guiguemde, R.T.; Traore, Y. Antimalarial drugs resistance genes of Plasmodium falciparum: A review. Ann. Parasitol., 2022, 68(2), 215-225.
[PMID: 35809349]
[131]
Glória, P.M.C.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Aza vinyl sulfones: Synthesis and evaluation as antiplasmodial agents. Bioorg. Med. Chem., 2011, 19(24), 7635-7642.
[http://dx.doi.org/10.1016/j.bmc.2011.10.018] [PMID: 22071522]
[132]
Guiguemde, W.A.; Shelat, A.A.; Bouck, D.; Duffy, S.; Crowther, G.J.; Davis, P.H.; Smithson, D.C.; Connelly, M.; Clark, J.; Zhu, F.; Jiménez-Díaz, M.B.; Martinez, M.S.; Wilson, E.B.; Tripathi, A.K.; Gut, J.; Sharlow, E.R.; Bathurst, I.; Mazouni, F.E.; Fowble, J.W.; Forquer, I.; McGinley, P.L.; Castro, S.; Angulo-Barturen, I.; Ferrer, S.; Rosenthal, P.J.; DeRisi, J.L.; Sullivan, D.J.; Lazo, J.S.; Roos, D.S.; Riscoe, M.K.; Phillips, M.A.; Rathod, P.K.; Van Voorhis, W.C.; Avery, V.M.; Guy, R.K. Chemical genetics of Plasmodium falciparum. Nature, 2010, 465(7296), 311-315.
[http://dx.doi.org/10.1038/nature09099] [PMID: 20485428]
[133]
Kumar, S.P.; Glória, P.M.C.; Gonçalves, L.M.; Gut, J.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Squaric acid: A valuable scaffold for developing antimalarials? MedChemComm, 2012, 3(4), 489-493.
[http://dx.doi.org/10.1039/c2md20011b]
[134]
Ribeiro, C.J.A.; Kumar, S.P.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. Eur. J. Med. Chem., 2013, 69, 365-372.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.037] [PMID: 24077527]
[135]
Ribeiro, C.J.A.; Espadinha, M.; Machado, M.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Prudêncio, M.; Moreira, R.; Santos, M.M.M. Novel squaramides with in vitro liver stage antiplasmodial activity. Bioorg. Med. Chem., 2016, 24(8), 1786-1792.
[http://dx.doi.org/10.1016/j.bmc.2016.03.005] [PMID: 26968650]
[136]
Lande, D.H.; Nasereddin, A.; Alder, A.; Gilberger, T.W.; Dzikowski, R.; Grünefeld, J.; Kunick, C. Synthesis and antiplasmodial activity of bisindolylcyclobutenediones. Molecules, 2021, 26(16), 4739.
[http://dx.doi.org/10.3390/molecules26164739] [PMID: 34443327]
[137]
Marín, C.; Ximenis, M.; Ramirez-Macías, I.; Rotger, C.; Urbanova, K.; Olmo, F.; Martín-Escolano, R.; Rosales, M.J.; Cañas, R.; Gutierrez-Sánchez, R.; Costa, A.; Sánchez-Moreno, M. Effective anti-leishmanial activity of minimalist squaramide-based compounds. Exp. Parasitol., 2016, 170, 36-49.
[http://dx.doi.org/10.1016/j.exppara.2016.07.013] [PMID: 27480054]
[138]
Olmo, F.; Rotger, C.; Ramírez-Macías, I.; Martínez, L.; Marín, C.; Carreras, L.; Urbanová, K.; Vega, M.; Chaves-Lemaur, G.; Sampedro, A.; Rosales, M.J.; Sánchez-Moreno, M.; Costa, A. Synthesis and biological evaluation of N,N′-squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease. J. Med. Chem., 2014, 57(3), 987-999.
[http://dx.doi.org/10.1021/jm4017015] [PMID: 24410674]
[139]
Quijia, C.R.; Bonatto, C.C.; Silva, L.P.; Andrade, M.A.; Azevedo, C.S.; Lasse Silva, C.; Vega, M.; de Santana, J.M.; Bastos, I.M.D.; Carneiro, M.L.B. Liposomes composed by membrane lipid extracts from macrophage cell line as a delivery of the trypanocidal N,N′-squaramide 17 towards Trypanosoma cruzi. Materials (Basel), 2020, 13(23), 5505.
[http://dx.doi.org/10.3390/ma13235505] [PMID: 33276688]
[140]
Niewiadomski, S.; Beebeejaun, Z.; Denton, H.; Smith, T.K.; Morris, R.J.; Wagner, G.K. Rationally designed squaryldiamides – a novel class of sugar-nucleotide mimics? Org. Biomol. Chem., 2010, 8(15), 3488-3499.
[http://dx.doi.org/10.1039/c004165c] [PMID: 20532300]
[141]
Golkowski, M.; Perera, G.K.; Vidadala, V.N.; Ojo, K.K.; Van Voorhis, W.C.; Maly, D.J.; Ong, S.E. Kinome chemoproteomics characterization of pyrrolo[3,4- c]pyrazoles as potent and selective inhibitors of glycogen synthase kinase 3. Mol. Omics, 2018, 14(1), 26-36.
[http://dx.doi.org/10.1039/C7MO00006E] [PMID: 29725679]
[142]
Martín-Escolano, R.; Marín, C.; Vega, M.; Martin-Montes, Á.; Medina-Carmona, E.; López, C.; Rotger, C.; Costa, A.; Sánchez-Moreno, M. Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg. Med. Chem., 2019, 27(5), 865-879.
[http://dx.doi.org/10.1016/j.bmc.2019.01.033] [PMID: 30728107]
[143]
Sato, K.; Seio, K.; Sekine, M. Synthesis and properties of a new oligonucleotide analogue containing an internucleotide squaryl amide linkage. Nucleic Acids Symp. Ser., 2001, 1(1), 121-122.
[http://dx.doi.org/10.1093/nass/1.1.121] [PMID: 12836294]
[144]
Sato, K.; Seio, K.; Sekine, M. Squaryl group as a new mimic of phosphate group in modified oligodeoxynucleotides: synthesis and properties of new oligodeoxynucleotide analogues containing an internucleotidic squaryldiamide linkage. J. Am. Chem. Soc., 2002, 124(43), 12715-12724.
[http://dx.doi.org/10.1021/ja027131f] [PMID: 12392419]
[145]
Soukarieh, F.; Nowicki, M.W.; Bastide, A.; Pöyry, T.; Jones, C.; Dudek, K.; Patwardhan, G.; Meullenet, F.; Oldham, N.J.; Walkinshaw, M.D.; Willis, A.E.; Fischer, P.M. Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur. J. Med. Chem., 2016, 124, 200-217.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.047] [PMID: 27592390]
[146]
Sato, K.; Tawarada, R.; Seio, K.; Sekine, M. Synthesis and structural properties of new oligodeoxynucleotide analogues containing a 2 ',5 '-internucleotidic squaryldiamide linkage capable of formation of a Watson-Crick base pair with adenine and a wobble base pair with guanine at the 3 '-downstream junction site. Eur. J. Org. Chem., 2004, 2004(10), 2142-2150.
[http://dx.doi.org/10.1002/ejoc.200300682]
[147]
Seio, K.; Miyashita, T.; Sato, K.; Sekine, M. Synthesis and properties of new nucleotide analogues possessing squaramide moieties as new phosphate isosters. Eur. J. Org. Chem., 2005, 2005(24), 5163-5170.
[http://dx.doi.org/10.1002/ejoc.200500520]
[148]
Berney, M.; Doherty, W.; Jauslin, W.T.T.; Manoj, M.; Dürr, E.M.; McGouran, J.F. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg. Med. Chem., 2021, 46, 116369.
[http://dx.doi.org/10.1016/j.bmc.2021.116369] [PMID: 34482229]
[149]
Saha, A.; Panda, S.; Paul, S.; Manna, D. Phosphate bioisostere containing amphiphiles: a novel class of squaramide-based lipids. Chem. Commun. (Camb.), 2016, 52(60), 9438-9441.
[http://dx.doi.org/10.1039/C6CC04089F] [PMID: 27377058]
[150]
Ishida, T.; Shinada, T.; Ohfune, Y. Synthesis of novel amino squaric acids via addition of dianion enolates derived from N-Boc amino acid esters. Tetrahedron Lett., 2005, 46(2), 311-314.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.044]
[151]
Shinada, T.; Ohfune, Y.; Ishida, T. Syntheses of alpha-amino squaric acids using an aminomalonate equivalent bearing a squaryl group. Synthesis, 2005, 2005(16), 2723-2729.
[http://dx.doi.org/10.1055/s-2005-872109]
[152]
Campbell, E.F.; Park, A.K.; Kinney, W.A.; Fengl, R.W.; Liebeskind, L.S. Synthesis of 3-hydroxy-3-cyclobutene-1,2-dione based amino acids. J. Org. Chem., 1995, 60(5), 1470-1472.
[http://dx.doi.org/10.1021/jo00110a060]
[153]
Martínez, L.; Martorell, G.; Sampedro, Á.; Ballester, P.; Costa, A.; Rotger, C. Hydrogen bonded squaramide-based foldable module induces both β- and α-turns in hairpin structures of α-peptides in water. Org. Lett., 2015, 17(12), 2980-2983.
[http://dx.doi.org/10.1021/acs.orglett.5b01268] [PMID: 26035233]
[154]
Martínez-Crespo, L.; Escudero-Adán, E.C.; Costa, A.; Rotger, C. The role of N-methyl squaramides in a hydrogen-bonding strategy to fold peptidomimetic compounds. Chemistry, 2018, 24(67), 17802-17813.
[http://dx.doi.org/10.1002/chem.201803930] [PMID: 30242922]
[155]
Narasimhan, S.K.; Sejwal, P.; Zhu, S.; Luk, Y.Y. Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces. Bioorg. Med. Chem., 2013, 21(8), 2210-2216.
[http://dx.doi.org/10.1016/j.bmc.2013.02.032] [PMID: 23490157]
[156]
Shinada, T.; Ishida, T.; Hayashi, K.; Yoshida, Y.; Shigeri, Y.; Ohfune, Y. Synthesis of leucine-enkephalin analogs containing α-amino squaric acid. Tetrahedron Lett., 2007, 48(43), 7614-7617.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.103]
[157]
Rotger, C.; Piña, M.N.; Vega, M.; Ballester, P.; Deyà, P.M.; Costa, A. Efficient macrocyclization of preorganized palindromic oligosquaramides. Angew. Chem. Int. Ed., 2006, 45(41), 6844-6848.
[http://dx.doi.org/10.1002/anie.200602790] [PMID: 17001726]
[158]
Villalonga, P.; Fernández de Mattos, S.; Ramis, G.; Obrador-Hevia, A.; Sampedro, A.; Rotger, C.; Costa, A. Cyclosquaramides as kinase inhibitors with anticancer activity. ChemMedChem, 2012, 7(8), 1472-1480.
[http://dx.doi.org/10.1002/cmdc.201200157] [PMID: 22777958]
[159]
Zhang, Q.; Xia, Z.; Mitten, M.J.; Lasko, L.M.; Klinghofer, V.; Bouska, J.; Johnson, E.F.; Penning, T.D.; Luo, Y.; Giranda, V.L.; Shoemaker, A.R.; Stewart, K.D.; Djuric, S.W.; Vasudevan, A. Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7615-7622.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.009] [PMID: 23103095]
[160]
Yen-Pon, E.; Li, B.; Acebrón-Garcia-de-Eulate, M.; Tomkiewicz-Raulet, C.; Dawson, J.; Lietha, D.; Frame, M.C.; Coumoul, X.; Garbay, C.; Etheve-Quelquejeu, M.; Chen, H. Structure-based design, synthesis, and characterization of the first irreversible inhibitor of focal adhesion kinase. ACS Chem. Biol., 2018, 13(8), 2067-2073.
[http://dx.doi.org/10.1021/acschembio.8b00250] [PMID: 29897729]
[161]
Koromilas, A.E. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. Biochim. Biophys. Acta. Gene Regul. Mech., 2015, 1849(7), 871-880.
[http://dx.doi.org/10.1016/j.bbagrm.2014.12.007] [PMID: 25497381]
[162]
Chen, T.; Takrouri, K.; Hee-Hwang, S.; Rana, S.; Yefidoff-Freedman, R.; Halperin, J.; Natarajan, A.; Morisseau, C.; Hammock, B.; Chorev, M.; Aktas, B.H. Explorations of substituted urea functionality for the discovery of new activators of the heme-regulated inhibitor kinase. J. Med. Chem., 2013, 56(23), 9457-9470.
[http://dx.doi.org/10.1021/jm400793v] [PMID: 24261904]
[163]
Kwak, J.; Kim, M.J.; Kim, S.; Park, G.B.; Jo, J.; Jeong, M.; Kang, S.; Moon, S.; Bang, S.; An, H.; Hwang, S.; Kim, M.S.; Yoo, J.W.; Moon, H.R.; Chang, W.; Chung, K.W.; Jeong, J.Y.; Yun, H. A bioisosteric approach to the discovery of novel N-aryl-N′-[4-(aryloxy)cyclohexyl]squaramide-based activators of eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation. Eur. J. Med. Chem., 2022, 239, 114501.
[http://dx.doi.org/10.1016/j.ejmech.2022.114501] [PMID: 35716517]
[164]
Patberg, M.; Isaak, A.; Füsser, F.; Ortiz Zacarías, N.V.; Vinnenberg, L.; Schulte, J.; Michetti, L.; Grey, L.; van der Horst, C.; Hundehege, P.; Koch, O.; Heitman, L.H.; Budde, T.; Junker, A. Piperazine squaric acid diamides, a novel class of allosteric P2X7 receptor antagonists. Eur. J. Med. Chem., 2021, 226, 113838.
[http://dx.doi.org/10.1016/j.ejmech.2021.113838] [PMID: 34571173]
[165]
Liu, Z.; Wang, Y.; Han, Y.; Liu, L.; Jin, J.; Yi, H.; Li, Z.; Jiang, J.; Boykin, D.W. Synthesis and antitumor activity of novel 3,4-diaryl squaric acid analogs. Eur. J. Med. Chem., 2013, 65, 187-194.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.046] [PMID: 23708012]
[166]
Quintana, M.; Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P.; Triola, G. Squaramides with cytotoxic activity against human gastric carcinoma cells HGC-27: synthesis and mechanism of action. MedChemComm, 2016, 7(3), 550-561.
[http://dx.doi.org/10.1039/C5MD00515A]
[167]
Ajith, C.; Gupta, S.; Kanwar, A.J. Efficacy and safety of the topical sensitizer squaric acid dibutyl ester in Alopecia areata and factors influencing the outcome. J. Drugs Dermatol., 2006, 5(3), 262-266.
[PMID: 16573260]
[168]
Hill, N.D.; Bunata, K.; Hebert, A.A. Treatment of alopecia areata with squaric acid dibutylester. Clin. Dermatol., 2015, 33(3), 300-304.
[http://dx.doi.org/10.1016/j.clindermatol.2014.12.001] [PMID: 25889130]
[169]
Choi, Y.S.; Erlich, T.H.; von Franque, M.; Rachmin, I.; Flesher, J.L.; Schiferle, E.B.; Zhang, Y.; Pereira da Silva, M.; Jiang, A.; Dobry, A.S.; Su, M.; Germana, S.; Lacher, S.; Freund, O.; Feder, E.; Cortez, J.L.; Ryu, S.; Babila Propp, T.; Samuels, Y.L.; Zakka, L.R.; Azin, M.; Burd, C.E.; Sharpless, N.E.; Liu, X.S.; Meyer, C.; Austen, W.G., Jr; Bojovic, B.; Cetrulo, C.L., Jr; Mihm, M.C.; Hoon, D.S.; Demehri, S.; Hawryluk, E.B.; Fisher, D.E. Topical therapy for regression and melanoma prevention of congenital giant nevi. Cell, 2022, 158(12), 2071-2085.
[http://dx.doi.org/10.1016/j.cell.2022.04.025]
[170]
Cole, R.J.; Kirksey, J.W.; Cutler, H.G.; Doupnik, B.L.; Peckham, J.C. Toxin from Fusarium moniliforme: Effects on plants and animals. Science, 1973, 179(4080), 1324-1326.
[http://dx.doi.org/10.1126/science.179.4080.1324] [PMID: 17835939]
[171]
Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review. Crit. Rev. Food Sci. Nutr., 2008, 48(1), 21-49.
[http://dx.doi.org/10.1080/10408390601062021] [PMID: 18274964]
[172]
Burka, L.T.; Doran, J.; Wilson, B.J. Enzyme inhibition and the toxic action of moniliformin and other vinylogous α-ketoacids. Biochem. Pharmacol., 1982, 31(1), 79-84.
[http://dx.doi.org/10.1016/0006-2952(82)90240-4] [PMID: 7059356]
[173]
Gathercole, P.S.; Thiel, P.G.; Hofmeyr, J.H.S. Inhibition of pyruvate dehydrogenase complex by moniliformin. Biochem. J., 1986, 233(3), 719-723.
[http://dx.doi.org/10.1042/bj2330719] [PMID: 3707519]
[174]
Pirrung, M.C.; Nauhaus, S.K.; Singh, B. Cofactor-directed, time-dependent inhibition of thiamine enzymes by the fungal toxin moniliformin. J. Org. Chem., 1996, 61(8), 2592-2593.
[http://dx.doi.org/10.1021/jo950451f] [PMID: 11667082]
[175]
Zhang, X.; Zuo, Z.; Tang, J.; Wang, K.; Wang, C.; Chen, W.; Li, C.; Xu, W.; Xiong, X.; Yuntai, K.; Huang, J.; Lan, X.; Zhou, H.B. Design, synthesis and biological evaluation of novel estrogen-derived steroid metal complexes. Bioorg. Med. Chem. Lett., 2013, 23(13), 3793-3797.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.088] [PMID: 23726343]
[176]
Zhang, Z.F.; Chen, J.; Han, X.; Zhang, Y.; Liao, H.B.; Lei, R.X.; Zhuang, Y.; Wang, Z.F.; Li, Z.; Chen, J.C.; Liao, W.J.; Zhou, H.B.; Liu, F.; Wan, Q. Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br. J. Pharmacol., 2017, 174(8), 641-656.
[http://dx.doi.org/10.1111/bph.13727] [PMID: 28127755]
[177]
Kinney, W.A.; Lee, N.E.; Garrison, D.T.; Podlesny, E.J., Jr; Simmonds, J.T.; Bramlett, D.; Notvest, R.R.; Kowal, D.M.; Tasse, R.P. Bioisosteric replacement of the. alpha.-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists. J. Med. Chem., 1992, 35(25), 4720-4726.
[http://dx.doi.org/10.1021/jm00103a010] [PMID: 1361582]
[178]
Kinney, W.A.; Abou-Gharbia, M.; Garrison, D.T.; Schmid, J.; Kowal, D.M.; Bramlett, D.R.; Miller, T.L.; Tasse, R.P.; Zaleska, M.M.; Moyer, J.A. Design and synthesis of [2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)- ethyl]phosphonic acid (EAA-090), a potent N-methyl-D-aspartate antagonist, via the use of 3-cyclobutene-1,2-dione as an achiral α-amino acid bioisostere. J. Med. Chem., 1998, 41(2), 236-246.
[http://dx.doi.org/10.1021/jm970504g] [PMID: 9457246]
[179]
Childers, W.E.J.; Abou-Gharbia, M.A.; Moyer, J.A.; Zaleska, M.M. EAA-090 - Neuroprotectant, Competitive NMDA antagonist. Drugs Future, 2002, 27(7), 633-638.
[http://dx.doi.org/10.1358/dof.2002.027.07.685790]
[180]
Chan, P.C.M.; Roon, R.J.; Koerner, J.F.; Taylor, N.J.; Honek, J.F. A 3-amino-4-hydroxy-3-cyclobutene-1,2-dione-containing glutamate analogue exhibiting high affinity to excitatory amino acid receptors. J. Med. Chem., 1995, 38(22), 4433-4438.
[http://dx.doi.org/10.1021/jm00022a007] [PMID: 7473569]
[181]
Urbahns, K.; Härter, M.; Albers, M.; Schmidt, D.; Stelte-Ludwig, B.; Brüggemeier, U.; Vaupel, A.; Keldenich, J.; Lustig, K.; Tsujishita, H.; Gerdes, C. Biphenyls as potent vitronectin receptor antagonists. Part 3: Squaric acid amides. Bioorg. Med. Chem. Lett., 2007, 17(22), 6151-6154.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.039] [PMID: 17910915]
[182]
Corzo, G.; Nakajima, T.; Ohfune, Y.; Shinada, T.; Nakagawa, Y.; Hayashi, K. Synthesis and paralytic activities of squaryl amino acid-containing polyamine toxins. Amino Acids, 2003, 24(3), 293-301.
[http://dx.doi.org/10.1007/s00726-002-0402-9] [PMID: 12707812]
[183]
Raval, S.; Raval, P.; Bandyopadhyay, D.; Soni, K.; Yevale, D.; Jogiya, D.; Modi, H.; Joharapurkar, A.; Gandhi, N.; Jain, M.R.; Patel, P.R. Design and synthesis of novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives as thyroid hormone receptor β (TR-β) selective ligands. Bioorg. Med. Chem. Lett., 2008, 18(14), 3919-3924.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.038] [PMID: 18585912]
[184]
Porter, J.R.; Archibald, S.C.; Childs, K.; Critchley, D.; Head, J.C.; Linsley, J.M.; Parton, T.A.H.; Robinson, M.K.; Shock, A.; Taylor, R.J.; Warrellow, G.J.; Alexander, R.P.; Langham, B. Squaric acid derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett., 2002, 12(7), 1051-1054.
[http://dx.doi.org/10.1016/S0960-894X(02)00075-6] [PMID: 11909715]
[185]
Ganellin, C.R.; Young, R.C. Pharmacologically active cyclo butenediones. U.S. Patent 4062863 1977 1977.
[186]
Algieri, A.A.; Crenshaw, R.R. 1,2-diaminocyclobutene-3,4-diones and a pharmaceutical composition containing them. Patent FR 2505835A1 1982.
[187]
Young, R.C.; Durant, G.J.; Emmett, J.C.; Ganellin, C.R.; Graham, M.J.; Mitchell, R.C.; Prain, H.D.; Roantree, M.L. Dipole moment in relation to hydrogen receptor histamine antagonist activity for cimetidine analogs. J. Med. Chem., 1986, 29(1), 44-49.
[http://dx.doi.org/10.1021/jm00151a007] [PMID: 3941412]
[188]
Cavanagh, R.L.; Buyniski, J.P. Effect of BMY-25368, a potent and long-acting histamine H2-receptor antagonist, on gastric secretion and aspirin-induced gastric lesions in the dog. Aliment. Pharmacol. Ther., 1989, 3(3), 299-313.
[http://dx.doi.org/10.1111/j.1365-2036.1989.tb00217.x] [PMID: 2577694]
[189]
Gavey, C.J.; Smith, J.T.L.; Nwokolo, C.U.; Pounder, R.E. The effect of SK&F 94482 (BMY-25368) on 24-hour intragastric acidity and plasma gastrin concentration in healthy subjects. Aliment. Pharmacol. Ther., 1989, 3(6), 557-564.
[http://dx.doi.org/10.1111/j.1365-2036.1989.tb00248.x] [PMID: 2577500]
[190]
Isobe, Y.; Nagai, H.; Muramatsu, M.; Aihara, H.; Otomo, S. Antisecretory and antilesional effect of a new histamine H2-receptor antagonist, IT-066, in rats. J. Pharmacol. Exp. Ther., 1990, 255(3), 1078-1082.
[PMID: 1979811]
[191]
Ito, A.; Kakizaki, M.; Nagase, H.; Murakami, S.; Yamada, H.; Mori, Y. Effects of H2-receptor antagonists on matrix metalloproteinases in rat gastric tissues with acetic acid-induced ulcer. J. Pharmacobiodyn., 1991, 14(6), 285-291.
[http://dx.doi.org/10.1248/bpb1978.14.285] [PMID: 1686058]
[192]
Muramatsu, M.; Hirose-Kijima, H.; Aihara, H.; Otomo, S. Time-dependent interaction of a new H2-receptor antagonist, IT-066, with the receptor in the atria of guinea pig. Jpn. J. Pharmacol., 1991, 57(1), 13-24.
[http://dx.doi.org/10.1254/jjp.57.13] [PMID: 1686920]
[193]
Naito, Y.; Yoshikawa, T.; Matsuyama, K.; Yagi, N.; Arai, M.; Nakamura, Y.; Kaneko, T.; Yoshida, N.; Kondo, M. Effect of a novel histamine H2 receptor antagonist, IT-066, on acute gastric injury induced by ischemia-reperfusion in rats, and its antioxidative properties. Eur. J. Pharmacol., 1995, 294(1), 47-54.
[http://dx.doi.org/10.1016/0014-2999(95)00512-9] [PMID: 8788415]
[194]
Kojima, K.; Nakajima, K.; Kurata, H.; Tabata, K.; Utsui, Y. Synthesis of a piperidinomethylthiophene derivative as H2-antagonist with inhibitory activity against Helicobacter pylori. Bioorg. Med. Chem. Lett., 1996, 6(15), 1795-1798.
[http://dx.doi.org/10.1016/0960-894X(96)00313-7]
[195]
Kijima, H.; Isobe, Y.; Muramatsu, M.; Yokomori, S.; Suzuki, M.; Higuchi, S. Structure-activity characterization of an H2-receptor antagonist, 3-amino-4-[4-[4-(1-piperidinomethyl)-2-pyridyloxy]-cis-2-+++butenylamino]-3-cyclobutene-1,2-dione hydrochloride (T-066), involved in the insurmountable antagonism against histamine-induced positive chronotropic action in guinea pig atria. Biochem. Pharmacol., 1998, 55(2), 151-157.
[http://dx.doi.org/10.1016/S0006-2952(97)00416-4] [PMID: 9448737]
[196]
Zhang, X.; Guo, R.; Kambara, H.; Ma, F.; Luo, H.R. The role of CXCR2 in acute inflammatory responses and its antagonists as anti-inflammatory therapeutics. Curr. Opin. Hematol., 2019, 26(1), 28-33.
[http://dx.doi.org/10.1097/MOH.0000000000000476] [PMID: 30407218]
[197]
Stadtmann, A.; Zarbock, A. CXCR2: From Bench to Bedside. Front. Immunol., 2012, 3, 263.
[http://dx.doi.org/10.3389/fimmu.2012.00263] [PMID: 22936934]
[198]
Jaffer, T.; Ma, D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl. Cancer Res., 2016, 5(S4), S616-S628.
[http://dx.doi.org/10.21037/tcr.2016.10.06]
[199]
Merritt, J.R.; Rokosz, L.L.; Nelson, K.H., Jr; Kaiser, B.; Wang, W.; Stauffer, T.M.; Ozgur, L.E.; Schilling, A.; Li, G.; Baldwin, J.J.; Taveras, A.G.; Dwyer, M.P.; Chao, J. Synthesis and structure–activity relationships of 3,4-diaminocyclobut-3-ene-1,2-dione CXCR2 antagonists. Bioorg. Med. Chem. Lett., 2006, 16(15), 4107-4110.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.082] [PMID: 16697193]
[200]
Gonsiorek, W.; Fan, X.; Hesk, D.; Fossetta, J.; Qiu, H.; Jakway, J.; Billah, M.; Dwyer, M.; Chao, J.; Deno, G.; Taveras, A.; Lundell, D.J.; Hipkin, R.W. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J. Pharmacol. Exp. Ther., 2007, 322(2), 477-485.
[http://dx.doi.org/10.1124/jpet.106.118927] [PMID: 17496166]
[201]
Biju, P.; Taveras, A.G.; Dwyer, M.P.; Yu, Y.; Chao, J.; Hipkin, R.W.; Fan, X.; Rindgen, D.; Fine, J.; Lundell, D. Fluoroalkyl α side chain containing 3,4-diamino-cyclobutenediones as potent and orally bioavailable CXCR2–CXCR1 dual antagonists. Bioorg. Med. Chem. Lett., 2009, 19(5), 1431-1433.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.033] [PMID: 19196511]
[202]
Che, J.X.; Wang, Z.L.; Dong, X.W.; Hu, Y.H.; Xie, X.; Hu, Y.Z. Bicyclo[2.2.1]heptane containing N, N ′-diarylsquaramide CXCR2 selective antagonists as anti-cancer metastasis agents. RSC Advances, 2018, 8(20), 11061-11069.
[http://dx.doi.org/10.1039/C8RA01806E] [PMID: 35541503]
[203]
McCleland, B.W.; Davis, R.S.; Palovich, M.R.; Widdowson, K.L.; Werner, M.L.; Burman, M.; Foley, J.J.; Schmidt, D.B.; Sarau, H.M.; Rogers, M.; Salyers, K.L.; Gorycki, P.D.; Roethke, T.J.; Stelman, G.J.; Azzarano, L.M.; Ward, K.W.; Busch-Petersen, J. Comparison of N,N′-diarylsquaramides and N,N′-diarylureas as antagonists of the CXCR2 chemokine receptor. Bioorg. Med. Chem. Lett., 2007, 17(6), 1713-1717.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.067] [PMID: 17236763]
[204]
Dwyer, M.P.; Biju, P. Discovery of 3,4-diaminocyclobut-3-ene-1,2-dione-based CXCR2 receptor antagonists for the treatment of inflammatory disorders. Curr. Top. Med. Chem., 2010, 10(13), 1339-1350.
[http://dx.doi.org/10.2174/156802610791561246] [PMID: 20536426]
[205]
Martin, B.; Lai, X.; Baettig, U.; Neumann, E.; Kuhnle, T.; Porter, D.; Robinson, R.; Hatto, J.; D’Souza, A.M.; Steward, O.; Watson, S.; Press, N.J. Early process development of a squaramide-based CXCR2 receptor antagonist. Org. Process Res. Dev., 2015, 19(8), 1038-1043.
[http://dx.doi.org/10.1021/acs.oprd.5b00072]
[206]
Liu, S.; Liu, Y.; Wang, H.; Ding, Y.; Wu, H.; Dong, J.; Wong, A.; Chen, S.H.; Li, G.; Chan, M.; Sawyer, N.; Gervais, F.G.; Henault, M.; Kargman, S.; Bedard, L.L.; Han, Y.; Friesen, R.; Lobell, R.B.; Stout, D.M. Design, synthesis, and evaluation of novel 3-amino-4-hydrazine-cyclobut-3-ene-1,2-diones as potent and selective CXCR2 chemokine receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(19), 5741-5745.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.014] [PMID: 19713110]
[207]
Dohme, M.S. Long-Term study of the effects of navarixin (SCH 527123, MK-7123) in participants with moderate to severe COPD (MK-7123-019). ClinicalTrials.gov Identifier: NCT01006616, Available from: https://www. clinicaltrials.gov/ct2/show/results/NCT01006616
[208]
Dohme, M.S. Efficacy and safety study of navarixin (MK-7123) in combination with pembrolizumab (MK-3475) in adults with selected advanced/metastatic solid tumors (MK-7123-034). ClinicalTrials.gov Identifier: NCT03473925, Available from: https://clinicaltrials.gov/ct2/show/results/NCT03473925#evnt
[209]
Lee, C.W.; Cao, H.; Ichiyama, K.; Rana, T.M. Design and synthesis of a novel peptidomimetic inhibitor of HIV-1 Tat–TAR interactions: Squaryldiamide as a new potential bioisostere of unsubstituted guanidine. Bioorg. Med. Chem. Lett., 2005, 15(19), 4243-4246.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.077] [PMID: 16054360]
[210]
Ghosh, A.K.; Williams, J.N.; Kovela, S.; Takayama, J.; Simpson, H.M.; Walters, D.E.; Hattori, S.; Aoki, M.; Mitsuya, H. Potent HIV-1 protease inhibitors incorporating squaramide-derived P2 ligands: Design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett., 2019, 29(18), 2565-2570.
[http://dx.doi.org/10.1016/j.bmcl.2019.08.006] [PMID: 31416666]
[211]
Palli, M.A.; McTavish, H.; Kimball, A.; Horn, T.D. Immunotherapy of recurrent herpes labialis with squaric acid. JAMA Dermatol., 2017, 153(8), 828-829.
[http://dx.doi.org/10.1001/jamadermatol.2017.0725] [PMID: 28538997]
[212]
McTavish, H.; Zerebiec, K.W.; Zeller, J.C.; Shekels, L.L.; Matson, M.A.; Kren, B.T. Immune characteristics correlating with HSV‐1 immune control and effect of squaric acid dibutyl ester on immune characteristics of subjects with frequent herpes labialis episodes. Immun. Inflamm. Dis., 2019, 7(1), 22-40.
[http://dx.doi.org/10.1002/iid3.241] [PMID: 30756512]
[213]
Chang, A.L.S.; Honari, G.; Guan, L.; Zhao, L.; Palli, M.A.; Horn, T.D.; Dudek, A.Z.; McTavish, H. A phase 2, multicenter, placebo-controlled study of single-dose squaric acid dibutyl ester to reduce frequency of outbreaks in patients with recurrent herpes labialis. J. Am. Acad. Dermatol., 2020, 83(6), 1807-1809.
[http://dx.doi.org/10.1016/j.jaad.2020.04.021] [PMID: 32289388]
[214]
Simon, V.; Ho, D.D.; Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 2006, 368(9534), 489-504.
[http://dx.doi.org/10.1016/S0140-6736(06)69157-5] [PMID: 16890836]
[215]
Fajardo-Ortiz, D.; Lopez-Cervantes, M.; Duran, L.; Dumontier, M.; Lara, M.; Ochoa, H.; Castano, V.M. The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One, 2017, 12(5), e0178293.
[http://dx.doi.org/10.1371/journal.pone.0178293] [PMID: 28542584]
[216]
Schwetz, T.A.; Fauci, A.S. The extended impact of human immunodeficiency virus/AIDS research. J. Infect. Dis., 2019, 219(1), 6-9.
[PMID: 30165415]
[217]
World Health Organization (WHO). HIV Drug Resistance Report 2021; World Health Organization: Geneva, Switzerland. 2020. Available from: http://www.who.int/hiv
[218]
Mitsuya, Y.; Liu, T.F.; Rhee, S.Y.; Fessel, W.J.; Shafer, R.W. Prevalence of darunavir resistance-associated mutations: patterns of occurrence and association with past treatment. J. Infect. Dis., 2007, 196(8), 1177-1179.
[http://dx.doi.org/10.1086/521624] [PMID: 17955436]
[219]
Tang, M.W.; Shafer, R.W. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs, 2012, 72(9), e1-e25.
[http://dx.doi.org/10.2165/11633630-000000000-00000] [PMID: 22686620]
[220]
Pandey, S.; Wilmer, E.N.; Morrell, D.S. Examining the efficacy and safety of squaric acid therapy for treatment of recalcitrant warts in children. Pediatr. Dermatol., 2015, 32(1), 85-90.
[http://dx.doi.org/10.1111/pde.12387] [PMID: 25040421]
[221]
Losol, E. Şentürk, N. Squaric acid dibutyl ester for the treatment of alopecia areata: A retrospective evaluation. Dermatol. Ther., 2021, 34(1), e14726.
[http://dx.doi.org/10.1111/dth.14726] [PMID: 33377267]
[222]
World Health Organization. Global Tuberculosis Report. , 2020. Geneva, Switzerland
[223]
World Health Organization. Global Tuberculosis Report. , 2021. Geneva, Switzerland
[224]
Fernandes, G.F.S.; Thompson, A.M.; Castagnolo, D.; Denny, W.A.; Dos Santos, J.L. Tuberculosis drug discovery: challenges and new horizons. J. Med. Chem., 2022, 65(11), 7489-7531.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00227] [PMID: 35612311]
[225]
Li, H.; Salinger, D.H.; Everitt, D.; Li, M.; Del Parigi, A.; Mendel, C.; Nedelman, J.R. Long-term effects on QT prolongation of pretomanid alone and in combinations in patients with tuberculosis. Antimicrob. Agents Chemother., 2019, 63(10), e00445-e19.
[http://dx.doi.org/10.1128/AAC.00445-19] [PMID: 31358590]
[226]
Dooley, K.E.; Rosenkranz, S.L.; Conradie, F.; Moran, L.; Hafner, R.; von Groote-Bidlingmaier, F.; Lama, J.R.; Shenje, J.; De Los Rios, J.; Comins, K.; Morganroth, J.; Diacon, A.H.; Cramer, Y.S.; Donahue, K.; Maartens, G.; Alli, O.; Gottesman, J.; Guevara, M.; Hikuam, C.; Hovind, L.; Karlsson, M.; McClaren, J.; McIlleron, H.; Murtaugh, W.; Rolls, B.; Shahkolahi, A.; Stone, L.; Tegha, G.; Tenai, J.; Upton, C.; Wimbish, C. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial. Lancet Infect. Dis., 2021, 21(7), 975-983.
[http://dx.doi.org/10.1016/S1473-3099(20)30770-2] [PMID: 33587897]
[227]
Szumowski, J.D.; Lynch, J.B. Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des. Devel. Ther., 2015, 9, 677-682.
[PMID: 25678771]
[228]
Khoshnood, S.; Goudarzi, M.; Taki, E.; Darbandi, A.; Kouhsari, E.; Heidary, M.; Motahar, M.; Moradi, M.; Bazyar, H. Bedaquiline: Current status and future perspectives. J. Glob. Antimicrob. Resist., 2021, 25, 48-59.
[http://dx.doi.org/10.1016/j.jgar.2021.02.017] [PMID: 33684606]
[229]
Divita, K.M.; Khatik, G.L. Current perspective of ATP synthase inhibitors in the management of the tuberculosis. Curr. Top. Med. Chem., 2021, 21(18), 1623-1643.
[http://dx.doi.org/10.2174/1568026621666210913122346] [PMID: 34517802]
[230]
Tantry, S.J.; Markad, S.D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A.K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N.V.; Narayan, A.; Naveen Kumar, C.N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R.E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V.K.; Mdluli, K.; Cooper, C.B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V.P.; Solapure, S.; Ravishankar, S.; Hameed, P. S. Discovery of imidazo[1,2- a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J. Med. Chem., 2017, 60(4), 1379-1399.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01358] [PMID: 28075132]
[231]
Li, P.; Wang, B.; Li, G.; Fu, L.; Zhang, D.; Lin, Z.; Huang, H.; Lu, Y. Design, synthesis and biological evaluation of diamino substituted cyclobut-3-ene-1,2-dione derivatives for the treatment of drug-resistant tuberculosis. Eur. J. Med. Chem., 2020, 206, 112538.
[http://dx.doi.org/10.1016/j.ejmech.2020.112538] [PMID: 32927218]
[232]
Sperling, O.; Fuchs, A.; Lindhorst, T.K. Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. Org. Biomol. Chem., 2006, 4(21), 3913-3922.
[http://dx.doi.org/10.1039/b610745a] [PMID: 17047870]
[233]
Lindhorst, T.K.; Bruegge, K.; Fuchs, A.; Sperling, O. A bivalent glycopeptide to target two putative carbohydrate binding sites on FimH. Beilstein J. Org. Chem., 2010, 6, 801-809.
[http://dx.doi.org/10.3762/bjoc.6.90] [PMID: 20978621]
[234]
Grabosch, C.; Hartmann, M.; Schmidt-Lassen, J.; Lindhorst, T.K. Squaric acid monoamide mannosides as ligands for the bacterial lectin FimH: covalent inhibition or not? ChemBioChem, 2011, 12(7), 1066-1074.
[http://dx.doi.org/10.1002/cbic.201000774] [PMID: 21472956]
[235]
Buurman, E.T.; Foulk, M.A.; Gao, N.; Laganas, V.A.; McKinney, D.C.; Moustakas, D.T.; Rose, J.A.; Shapiro, A.B.; Fleming, P.R. Novel rapidly diversifiable antimicrobial RNA polymerase switch region inhibitors with confirmed mode of action in Haemophilus influenzae. J. Bacteriol., 2012, 194(20), 5504-5512.
[http://dx.doi.org/10.1128/JB.01103-12] [PMID: 22843845]
[236]
Molodtsov, V.; Fleming, P.R.; Eyermann, C.J.; Ferguson, A.D.; Foulk, M.A.; McKinney, D.C.; Masse, C.E.; Buurman, E.T.; Murakami, K.S. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J. Med. Chem., 2015, 58(7), 3156-3171.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00050] [PMID: 25798859]
[237]
Li, G.; Tian, Y.; Zhu, W.G. The roles of histone deacetylases and their inhibitors in cancer Therapy. Front. Cell Dev. Biol., 2020, 8, 576946.
[http://dx.doi.org/10.3389/fcell.2020.576946] [PMID: 33117804]
[238]
Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[239]
Hanessian, S.; Vinci, V.; Auzzas, L.; Marzi, M.; Giannini, G. Exploring alternative Zn-binding groups in the design of HDAC inhibitors: Squaric acid, N-hydroxyurea, and oxazoline analogues of SAHA. Bioorg. Med. Chem. Lett., 2006, 16(18), 4784-4787.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.090] [PMID: 16870438]
[240]
Fournier, J.F.; Bhurruth-Alcor, Y.; Musicki, B.; Aubert, J.; Aurelly, M.; Bouix-Peter, C.; Bouquet, K.; Chantalat, L.; Delorme, M.; Drean, B.; Duvert, G.; Fleury-Bregeot, N.; Gauthier, B.; Grisendi, K.; Harris, C.S.; Hennequin, L.F.; Isabet, T.; Joly, F.; Lafitte, G.; Millois, C.; Morgentin, R.; Pascau, J.; Piwnica, D.; Rival, Y.; Soulet, C.; Thoreau, É.; Tomas, L. Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous t-cell lymphoma. Bioorg. Med. Chem. Lett., 2018, 28(17), 2985-2992.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.029] [PMID: 30122227]
[241]
Lauffer, B.E.L.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943.
[http://dx.doi.org/10.1074/jbc.M113.490706] [PMID: 23897821]
[242]
Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance p-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01457] [PMID: 29251920]
[243]
Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631.
[http://dx.doi.org/10.1124/dmd.113.056176] [PMID: 24492893]
[244]
Lu, X.; Yan, G.; Dawood, M.; Klauck, S.M.; Sugimoto, Y.; Klinger, A.; Fleischer, E.; Shan, L.; Efferth, T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem. Pharmacol., 2021, 194, 114677.
[http://dx.doi.org/10.1016/j.bcp.2021.114677] [PMID: 34265280]
[245]
Nelson, A.R.; Fingleton, B.; Rothenberg, M.L.; Matrisian, L.M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol., 2000, 18(5), 1135-1149.
[http://dx.doi.org/10.1200/JCO.2000.18.5.1135] [PMID: 10694567]
[246]
Onaran, M.B.; Comeau, A.B.; Seto, C.T. Squaric acid-based peptidic inhibitors of matrix metalloprotease-1. J. Org. Chem., 2005, 70(26), 10792-10802.
[http://dx.doi.org/10.1021/jo0517848] [PMID: 16356002]
[247]
Santamaria, S. ADAMTS‐5: A difficult teenager turning 20. Int. J. Exp. Pathol., 2020, 101(1-2), 4-20.
[http://dx.doi.org/10.1111/iep.12344] [PMID: 32219922]
[248]
Sandy, J.D.; Flannery, C.R.; Neame, P.J.; Lohmander, L.S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J. Clin. Invest., 1992, 89(5), 1512-1516.
[http://dx.doi.org/10.1172/JCI115742] [PMID: 1569188]
[249]
Apte, S.S. Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem. J., 2016, 473(1), e1-e4.
[http://dx.doi.org/10.1042/BJ20151072] [PMID: 26657033]
[250]
Alcaraz, M.J.; Guillén, M.I.; Ferrándiz, M.L. Emerging therapeutic agents in osteoarthritis. Biochem. Pharmacol., 2019, 165, 4-16.
[http://dx.doi.org/10.1016/j.bcp.2019.02.034] [PMID: 30826327]
[251]
Charton, J.; Leroux, F.; Delaroche, S.; Landry, V.; Deprez, B.P.; Deprez-Poulain, R.F. Synthesis of a 200-member library of squaric acid N-hydroxylamide amides (vol 18, pg 4968, 2008). Bioorg. Med. Chem. Lett., 2009, 19(1), 283-283.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.116] [PMID: 19932024]
[252]
Noll, D.M.; Mason, T.M.; Miller, P.S. Formation and repair of interstrand cross-links in DNA. Chem. Rev., 2006, 106(2), 277-301.
[http://dx.doi.org/10.1021/cr040478b] [PMID: 16464006]
[253]
Hashimoto, S.; Anai, H.; Hanada, K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ., 2016, 38(1), 9.
[http://dx.doi.org/10.1186/s41021-016-0037-9] [PMID: 27350828]
[254]
Sengerová, B.; Allerston, C.K.; Abu, M.; Lee, S.Y.; Hartley, J.; Kiakos, K.; Schofield, C.J.; Hartley, J.A.; Gileadi, O.; McHugh, P.J. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases. J. Biol. Chem., 2012, 287(31), 26254-26267.
[http://dx.doi.org/10.1074/jbc.M112.367243] [PMID: 22692201]
[255]
Baddock, H.T.; Yosaatmadja, Y.; Newman, J.A.; Schofield, C.J.; Gileadi, O.; McHugh, P.J. The SNM1A DNA repair nuclease. DNA Repair (Amst.), 2020, 95, 102941.
[http://dx.doi.org/10.1016/j.dnarep.2020.102941] [PMID: 32866775]
[256]
Allerston, C.K.; Lee, S.Y.; Newman, J.A.; Schofield, C.J.; McHugh, P.J.; Gileadi, O. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Res., 2015, 43(22), 11047-11060.
[http://dx.doi.org/10.1093/nar/gkv1256] [PMID: 26582912]
[257]
Dürr, E.M.; Doherty, W.; Lee, S.Y.; El-Sagheer, A.H.; Shivalingam, A.; McHugh, P.J.; Brown, T.; McGouran, J.F. Squaramide-based 5′-phosphate replacements bind to the DNA repair exonuclease SNM1A. ChemistrySelect, 2018, 3(45), 12824-12829.
[http://dx.doi.org/10.1002/slct.201803375] [PMID: 31414040]
[258]
Zamanova, S.; Shabana, A.M.; Mondal, U.K.; Ilies, M.A. Carbonic anhydrases as disease markers. Expert Opin. Ther. Pat., 2019, 29(7), 509-533.
[http://dx.doi.org/10.1080/13543776.2019.1629419] [PMID: 31172829]
[259]
Mboge, M.; Mahon, B.; McKenna, R.; Frost, S. Carbonic anhydrases: Role in pH control and cancer. Metabolites, 2018, 8(1), 19.
[http://dx.doi.org/10.3390/metabo8010019] [PMID: 29495652]
[260]
Supuran, C.T. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(6), 671-686.
[http://dx.doi.org/10.1080/17460441.2020.1743676] [PMID: 32208982]
[261]
Arrighi, G.; Puerta, A.; Petrini, A.; Hicke, F.J.; Nocentini, A.; Fernandes, M.X.; Padrón, J.M.; Supuran, C.T.; Fernández-Bolaños, J.G.; López, Ó. Squaramide-tethered sulfonamides and coumarins: synthesis, inhibition of tumor-associated CAs IX and XII and docking simulations. Int. J. Mol. Sci., 2022, 23(14), 7685.
[http://dx.doi.org/10.3390/ijms23147685] [PMID: 35887037]
[262]
Lovering, F.; Kirincich, S.; Wang, W.; Combs, K.; Resnick, L.; Sabalski, J.E.; Butera, J.; Liu, J.; Parris, K.; Telliez, J.B. Identification and SAR of squarate inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg. Med. Chem., 2009, 17(9), 3342-3351.
[http://dx.doi.org/10.1016/j.bmc.2009.03.041] [PMID: 19364658]
[263]
Meng, W.; Swenson, L.L.; Fitzgibbon, M.J.; Hayakawa, K.; ter Haar, E.; Behrens, A.E.; Fulghum, J.R.; Lippke, J.A. Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J. Biol. Chem., 2002, 277(40), 37401-37405.
[http://dx.doi.org/10.1074/jbc.C200418200] [PMID: 12171911]
[264]
Fiege, B.; Rabbani, S.; Preston, R.C.; Jakob, R.P.; Zihlmann, P.; Schwardt, O.; Jiang, X.; Maier, T.; Ernst, B. The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. ChemBioChem, 2015, 16(8), 1235-1246.
[http://dx.doi.org/10.1002/cbic.201402714] [PMID: 25940742]
[265]
Scharenberg, M.; Schwardt, O.; Rabbani, S.; Ernst, B. Target selectivity of FimH antagonists. J. Med. Chem., 2012, 55(22), 9810-9816.
[http://dx.doi.org/10.1021/jm3010338] [PMID: 23088608]
[266]
Tomàs, S.; Prohens, R.; Vega, M.; Rotger, M.C.; Deyà, P.M.; Ballester, P.; Costa, A. Squaramido-based receptors: design, synthesis, and application to the recognition of tetraalkylammonium compounds. J. Org. Chem., 1996, 61(26), 9394-9401.
[http://dx.doi.org/10.1021/jo9614147]
[267]
Rotger, M.C.; Piña, M.N.; Frontera, A.; Martorell, G.; Ballester, P.; Deyà, P.M.; Costa, A. Conformational preferences and self-template macrocyclization of squaramide-based foldable modules. J. Org. Chem., 2004, 69(7), 2302-2308.
[http://dx.doi.org/10.1021/jo035546t] [PMID: 15049622]
[268]
Bauer, H. Gmelins Krokonsure. Naturwissenschaften, 1978, 65(9), 487-488.
[http://dx.doi.org/10.1007/BF00702841]
[269]
Hettegger, H.; Hosoya, T.; Rosenau, T. Chemistry of the redox series from hexahydroxybenzene to cyclohexanehexaone. Curr. Org. Synth., 2015, 13(1), 86-100.
[http://dx.doi.org/10.2174/1570179412666150710182456]
[270]
Bou, A.; Pericàs, M.A.; Serratosa, F. Synthetic applications of di-tert-butoxyethyne, II: New syntheses of squaric, semisquaric and croconic acids. Tetrahedron Lett., 1982, 23(3), 361-364.
[http://dx.doi.org/10.1016/S0040-4039(00)86831-8]
[271]
Braga, D.; Maini, L.; Grepioni, F. Croconic acid and alkali metal croconate salts: some new insights into an old story. Chemistry, 2002, 8(8), 1804-1812.
[http://dx.doi.org/10.1002/1521-3765(20020415)8:8<1804:AID-CHEM1804>3.0.CO;2-C] [PMID: 11933108]
[272]
Dunitz, J.D.; Seiler, P.; Czechtizky, W. Crystal structure of potassium croconate dihydrate, after 175 years. Angew. Chem. Int. Ed., 2001, 40(9), 1779-1780.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1779:AID-ANIE17790>3.0.CO;2-6] [PMID: 11353510]
[273]
Gonçalves, N.S.; Santos, P.S.; Vencato, I. Lithium croconate dihydrate. Acta Crystallogr. C, 1996, 52(3), 622-624.
[http://dx.doi.org/10.1107/S0108270195011887]
[274]
Braga, D.; Maini, L.; Grepioni, F. Crystallization from hydrochloric acid affords the solid-state structure of croconic acid (175 years after its discovery) and a novel hydrogen-bonded network. CrystEngComm, 2001, 3(6), 27-29.
[http://dx.doi.org/10.1039/b100020i]
[275]
Lam, C.K.; Cheng, M.F.; Li, C.L.; Zhang, J.P.; Chen, X.M.; Li, W.K.; Mak, T.C.W. Stabilization of D 5h and C 2v valence tautomers of the croconate dianion. Chem. Commun. (Camb.), 2004, (4), 448-449.
[http://dx.doi.org/10.1039/B312545A] [PMID: 14765252]
[276]
Ramachandran, C.N.; Ruckenstein, E. Density functional theoretical studies of the isomers of croconic acid and their dimers. Comput. Theor. Chem., 2011, 973(1-3), 28-32.
[http://dx.doi.org/10.1016/j.comptc.2011.06.024]
[277]
Gelb, R.I.; Schwartz, L.M.; Laufer, D.A.; Yardley, J.O. The structure of aqueous croconic acid. J. Phys. Chem., 1977, 81(13), 1268-1274.
[http://dx.doi.org/10.1021/j100528a010]
[278]
Schwartz, L.M.; Gelb, R.I.; Yardley, J.O. Aqueous dissociation of croconic acid. J. Phys. Chem., 1975, 79(21), 2246-2251.
[http://dx.doi.org/10.1021/j100588a009]
[279]
Kravchenko, M.S.; Fumarova, M.S. Group detection and semiquantitative determination of alkali metals with croconic acid. J. Anal. Chem., 1995, 50(12), 1179-1182.
[280]
Jia, Y.Q.; Feng, S.S.; Shen, M.L.; Lu, L.P. Construction of multifunctional materials based on Tb 3+ and croconic acid, directed by K + cations: synthesis, structures, fluorescence, magnetic and ferroelectric behaviors. CrystEngComm, 2016, 18(28), 5344-5352.
[http://dx.doi.org/10.1039/C6CE00308G]
[281]
Lam, C.K.; Mak, T.C.W. Rhodizonate and croconate dianions as divergent hydrogen-bond acceptors in the self-assembly of supramolecular structures. Chem. Commun. (Camb.), 2001, (17), 1568-1569.
[http://dx.doi.org/10.1039/b104386m] [PMID: 12240385]
[282]
Salidu, M.; Artizzu, F.; Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Marchiò, L.; Concas, G.; Congiu, F. Self-assembly supramolecular architectures of chromium(III) complexes using croconate as building block. Dalton Trans., 2009, (3), 557-563.
[http://dx.doi.org/10.1039/B810216N] [PMID: 19122914]
[283]
Gómez-García, C.J.; Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Faulmann, C.; Canadell, E. A chirality-induced alpha phase and a novel molecular magnetic metal in the BEDT-TTF/tris(croconate)ferrate(III) hybrid molecular system. Chem. Commun. (Camb.), 2006, (47), 4931-4933.
[http://dx.doi.org/10.1039/B610408H] [PMID: 17136251]
[284]
Cai, Y.; Luo, S.; Zhu, Z.; Gu, H. Ferroelectric mechanism of croconic acid: A first-principles and Monte Carlo study. J. Chem. Phys., 2013, 139(4), 044702.
[http://dx.doi.org/10.1063/1.4813500] [PMID: 23901998]
[285]
Sui, Y.; Luo, Q.Y.; Zhao, G.; Hong, X.K.; Liu, Y.J.; Mi, J. Preparation and properties of PVDF composite films modified with organic ferroelectric croconic acid. Ferroelectrics, 2017, 506(1), 165-173.
[http://dx.doi.org/10.1080/00150193.2017.1282758]
[286]
Hu, L.; Feng, R.; Wang, J.; Bai, Z.; Jin, W.; Zhang, L.; Nie, Q.M.; Qiu, Z.J.; Tian, P.; Cong, C.; Zheng, L.; Liu, R. Space-charge-stabilized ferroelectric polarization in self-oriented croconic acid films. Adv. Funct. Mater., 2018, 28(11), 1705463.
[http://dx.doi.org/10.1002/adfm.201705463]
[287]
Luo, C.; Huang, R.; Kevorkyants, R.; Pavanello, M.; He, H.; Wang, C. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett., 2014, 14(3), 1596-1602.
[http://dx.doi.org/10.1021/nl500026j] [PMID: 24548267]
[288]
Luo, C.; Zhu, Y.; Xu, Y.; Liu, Y.; Gao, T.; Wang, J.; Wang, C. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power Sources, 2014, 250, 372-378.
[http://dx.doi.org/10.1016/j.jpowsour.2013.10.131]
[289]
Deruiter, J.; Jacyno, J.M.; Cutler, H.G.; Davis, R.A. Studies on aldose reductase inhibitors from fungi. 2. Moniliformin and small ring analogs. J. Enzyme Inhib., 1993, 7(4), 249-256.
[http://dx.doi.org/10.3109/14756369309040767]
[290]
Williams, R.F.X. Transition-metal complexes with organo-chalcogen ligands. 1. Synthesis of dithiocroconate dianion. Phosphorus Sulfur Related Elements, 1976, 2(1-3), 141-146.
[http://dx.doi.org/10.1080/03086647608078939]
[291]
Jeppesen, A.; Nielsen, B.E.; Larsen, D.; Akselsen, O.M.; Sølling, T.I.; Brock-Nannestad, T.; Pittelkow, M. Croconamides: a new dual hydrogen bond donating motif for anion recognition and organocatalysis. Org. Biomol. Chem., 2017, 15(13), 2784-2790.
[http://dx.doi.org/10.1039/C7OB00441A] [PMID: 28272644]
[292]
Busschaert, N.; Elmes, R.B.P.; Czech, D.D.; Wu, X.; Kirby, I.L.; Peck, E.M.; Hendzel, K.D.; Shaw, S.K.; Chan, B.; Smith, B.D.; Jolliffe, K.A.; Gale, P.A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. (Camb.), 2014, 5(9), 3617-3626.
[http://dx.doi.org/10.1039/C4SC01629G] [PMID: 26146535]
[293]
Busschaert, N.; Gale, P.A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed., 2013, 52(5), 1374-1382.
[http://dx.doi.org/10.1002/anie.201207535] [PMID: 23283851]
[294]
Davis, J.T.; Okunola, O.; Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev., 2010, 39(10), 3843-3862.
[http://dx.doi.org/10.1039/b926164h] [PMID: 20820462]
[295]
Akhtar, N.; Saha, A.; Kumar, V.; Pradhan, N.; Panda, S.; Morla, S.; Kumar, S.; Manna, D. Diphenylethylenediamine-based potent anionophores: Transmembrane chloride ion transport and apoptosis inducing activities. ACS Appl. Mater. Interfaces, 2018, 10(40), 33803-33813.
[http://dx.doi.org/10.1021/acsami.8b06664] [PMID: 30221925]
[296]
Skujins, S.; Webb, G.A. Spectroscopic and structural studies of some oxocarbon condensation products—I. Tetrahedron, 1969, 25(17), 3935-3945.
[http://dx.doi.org/10.1016/S0040-4020(01)82926-4]
[297]
Eistert, B.; Fink, H.; Werner, H.K. Phenazin-Derivate aus Rhodizonsäure. Justus Liebigs Ann. Chem., 1962, 657(1), 131-141.
[http://dx.doi.org/10.1002/jlac.19626570118]
[298]
Rillaers, G.A.; Depoorter, H. Spektrale Sensibilisierung. German Patent DE1930224A1, January 15, 1970.
[299]
Song, X.; Foley, J.W. A new water-soluble near-infrared croconium dye. Dyes Pigments, 2008, 78(1), 60-64.
[http://dx.doi.org/10.1016/j.dyepig.2007.10.006]
[300]
Hamilton, A.L.; West, R.M.; Briggs, M.S.J.; Cummins, W.J.; Bruce, I.E. European Patent EP0898596B1, April 21, 1997.
[301]
Harmatys, K.M.; Battles, P.M.; Peck, E.M.; Spence, G.T.; Roland, F.M.; Smith, B.D. Selective photothermal inactivation of cells labeled with near-infrared croconaine dye. Chem. Commun. (Camb.), 2017, 53(71), 9906-9909.
[http://dx.doi.org/10.1039/C7CC05196D] [PMID: 28828431]
[302]
Chen, Q.; Liu, X.; Zeng, J.; Cheng, Z.; Liu, Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016, 98, 23-30.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.041] [PMID: 27177219]
[303]
Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268.
[http://dx.doi.org/10.1093/annonc/mdl104] [PMID: 16740598]
[304]
Tang, L.; Zhang, F.; Yu, F.; Sun, W.; Song, M.; Chen, X.; Zhang, X.; Sun, X. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials, 2017, 129, 28-36.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.009] [PMID: 28324863]
[305]
Tang, L.; Sun, X.; Liu, N.; Zhou, Z.; Yu, F.; Zhang, X.; Sun, X.; Chen, X. Radiolabeled angiogenesis-targeting croconaine nanoparticles for trimodality imaging guided photothermal therapy of glioma. ACS Appl. Nano Mater., 2018, 1(4), 1741-1749.
[http://dx.doi.org/10.1021/acsanm.8b00195] [PMID: 30506043]
[306]
Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed; John Wiley & Sons, Ltd., 2009.
[307]
Guha, S.; Shaw, G.K.; Mitcham, T.M.; Bouchard, R.R.; Smith, B.D. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH. Chem. Commun. (Camb.), 2016, 52(1), 120-123.
[http://dx.doi.org/10.1039/C5CC08317F] [PMID: 26502996]
[308]
Zhao, B.; Back, M.H. The photochemistry of the rhodizonate dianion in aqueous solution. Can. J. Chem., 1991, 69(3), 528-532.
[http://dx.doi.org/10.1139/v91-079]
[309]
Zhao, B.; Back, M.H. The flash photolysis of aqueous solutions of rhodizonic and croconic acids. Int. J. Chem. Kinet., 1994, 26(1), 25-36.
[http://dx.doi.org/10.1002/kin.550260105]
[310]
Murakami, K.; Haneda, M.; Naruse, M.; Yoshino, M. Prooxidant action of rhodizonic acid: Transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2′-deoxyguanosine formation in DNA. Toxicol. In Vitro, 2006, 20(6), 910-914.
[http://dx.doi.org/10.1016/j.tiv.2006.01.009] [PMID: 16504460]
[311]
Wu, M.; Burton, J.D.; Tsymbal, E.Y.; Zeng, X.C.; Jena, P. Multiferroic materials based on organic transition-metal molecular nanowires. J. Am. Chem. Soc., 2012, 134(35), 14423-14429.
[http://dx.doi.org/10.1021/ja304199x] [PMID: 22881120]
[312]
Chen, S.; Enders, A.; Zeng, X.C. Influence of structural fluctuations, proton transfer, and electric field on polarization switching of supported two-dimensional hydrogen-bonded oxocarbon monolayers. Chem. Mater., 2015, 27(13), 4839-4847.
[http://dx.doi.org/10.1021/acs.chemmater.5b01717]
[313]
Misiołek, A.W.; Jackson, J.E. Building blocks for molecule-based magnets: a theoretical study of triplet-singlet gaps in the dianion of rhodizonic acid 1,4-dimethide and its derivatives. J. Am. Chem. Soc., 2001, 123(20), 4774-4780.
[http://dx.doi.org/10.1021/ja0021417] [PMID: 11457287]
[314]
McCaffrey, V.P.; Gentner, R.; Misiolek, A.W.; Jackson, J.E. Rhodizonic acid derivatives as molecular magnets: synthetic, spectroscopic and theoretical studies. Abstr. Pap. Amer. Chem. Soc., 2002, 224, U204-U204.
[315]
Wu, D.; Li, H.; Li, R.; Hu, Y.; Hu, X. In situ growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries. Chem. Commun. (Camb.), 2018, 54(81), 11415-11418.
[http://dx.doi.org/10.1039/C8CC06317F] [PMID: 30246824]
[316]
Tian, J.; Cao, D.; Zhou, X.; Hu, J.; Huang, M.; Li, C. High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano, 2018, 12(4), 3424-3435.
[http://dx.doi.org/10.1021/acsnano.7b09177] [PMID: 29617114]
[317]
Saxena, O.C. Titrimetric microdetermination of yttrium and scandium: Disodium salt of rhodizonic acid as complexing agent. Microchem. J., 1972, 17(1), 68-71.
[http://dx.doi.org/10.1016/0026-265X(72)90038-0]
[318]
Uhl, W.; Prott, M. Insertion of rhodizonic acid into the gallium-gallium and indium-indium bonds of digallane(4) and diindane(4) compounds. Z. Anorg. Allg. Chem., 2002, 628(11), 2259-2263.
[http://dx.doi.org/10.1002/1521-3749(200211)628:11<2259:AID-ZAAC2259>3.0.CO;2-C]
[319]
Wang, C.C.; Kuo, C.T.; Chou, P.T.; Lee, G.H. Rhodizonate metal complexes with a 2D chairlike M6 metal-organic framework: [M(C6O6)(bpym)(H2O)].n H2O. Angew. Chem. Int. Ed., 2004, 43(34), 4507-4510.
[http://dx.doi.org/10.1002/anie.200460278] [PMID: 15340955]
[320]
Dooronbekov, Zh.; Kasatkin, IuN.; Fedorov, N.A. The effect of the sodium salt of rhodizonic acid on the excretion of radioactive strontium from the organism. Med. Radiol. (Mosk.), 1960, 5, 76-79.
[PMID: 13723839]
[321]
Seris, J.L. On some biochemical properties of rhodizonic acid. Glutathione and homocysteine. C. R. Hebd. Seances Acad. Sci., 1961, 252, 3672-3674.
[PMID: 13750246]
[322]
Bru, A.; Seris, J.L.; Regis, H.; Soubiran, J.; Lucot, H. Protective effect of rhodizonic acid and certain of its derivatives on the radiosensitivity of yeasts in culture. J. Radiol. Electrol. Med. Nucl., 1967, 48(10), 555-558.
[PMID: 5585302]
[323]
Takeuchi, S.; Inoue, Y. Hypoglycemic actions of tetrahydroxyquinone, rhodizonic acid and trichinoyl in mice and rabbits. Jpn. J. Pharmacol., 1968, 18(3), 312-320.
[http://dx.doi.org/10.1254/jjp.18.312] [PMID: 5304400]
[324]
Moiroux, J.; Escourrou, D.; Fleury, M.B. 324 - Electrochemical behavior of carbonyl compounds and aci-reductones in relation to electron transport in biological processes: Rhodizonic acid and its reduction product in aqueous acid media. Bioelectrochem. Bioenerg., 1980, 7(2), 333-344.
[http://dx.doi.org/10.1016/0302-4598(80)87009-7]
[325]
Naish, S.; Riley, P.A. Effect of rhodizonic acid on the lag period of tyrosinase. Yale J. Biol. Med., 1984, 57(3), 400.
[326]
De Souza-Pinto, N.C.; Vercesi, A.E.; Hoffmann, M.E. Mechanism of tetrahydroxy-1,4-quinone cytotoxicity: Involvement of Ca22+ and H2O2 in the impairment of DNA replication and mitochondrial function. Free Radic. Biol. Med., 1996, 20(5), 657-666.
[http://dx.doi.org/10.1016/0891-5849(95)02179-5] [PMID: 8721612]
[327]
Kuniyoshi, A. Experimental and clinical studies of the antidiabetic action of dipotassium rhodizonate (CPK-2). Nippon Ika Daigaku Zasshi, 1970, 37(4), 310-323.
[http://dx.doi.org/10.1272/jnms1923.37.310] [PMID: 5478470]
[328]
Douglas, K.T.; Nadvi, I.N. Inhibition of glyoxalase I: a possible transition-state analogue inhibitor approach to potential antineoplastic agents? FEBS Lett., 1979, 106(2), 393-396.
[http://dx.doi.org/10.1016/0014-5793(79)80539-6] [PMID: 499526]
[329]
Godin, J. Therapeutic antioxidant formulation comprising catechol, quinone, rhodizonic acid salts and sulfite. Patent US20070149623A1, 2007.
[330]
Braga, D.; Cojazzi, G.; Maini, L.; Grepioni, F. Reversible solid-state interconversion of rhodizonic acid H2C6O6 into H6C6O8 and the solid-state structure of the rhodizonate dianion C6O62− (aromatic or non-aromatic?). New J. Chem., 2001, 25(10), 1221-1223.
[http://dx.doi.org/10.1039/B107317F]
[331]
Fleury, M.B.; Molle, G. Spectrophotometric study on ionization and hydration equilibrium given by rhodizonic acid in aqueous solution. CR. Acad. Sci. C. Chim., 1971, 273(10), 605-608.
[332]
Gelb, R.I.; Schwartz, L.M.; Laufer, D.A. The structure of aqueous rhodizonic acid. J. Phys. Chem., 1978, 82(18), 1985-1988.
[http://dx.doi.org/10.1021/j100507a006]
[333]
Wong, Z.X.; Abdallah, H.H. Gas-phase acidity and liquid phase pK(a) calculations of some cyclic oxocarbon acids (CnOnH2 (n=3, 4, 5, 6)): A theoretical investigation. Acta Chim. Slov., 2012, 59(2), 273-280.
[PMID: 24061240]
[334]
Lu, F.; Rheingold, A.L.; Miller, J.S. Characterization of the elusive rhodizonate ring-contraction decarbonylation C5O4(OH)CO2Me2- intermediate to croconate. Chemistry, 2013, 19(44), 14795-14797.
[http://dx.doi.org/10.1002/chem.201303190] [PMID: 24123324]
[335]
Bettermann, H.; Dasting, I.; Wolff, U. Kinetic investigations of the laser-induced photolysis of sodium rhodizonate in aqueous solutions. Spectrochim. Acta A, 1997, 53(2), 233-245.
[336]
Quiñonero, D.; Garau, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P.M. Quantification of aromaticity in oxocarbons: the problem of the fictitious “nonaromatic” reference system. Chemistry, 2002, 8(2), 433-438.
[http://dx.doi.org/10.1002/1521-3765(20020118)8:2<433:AID-CHEM433>3.0.CO;2-T] [PMID: 11843155]
[337]
Cowan, J.A.; Howard, J.A.K. Dipotassium rhodizonate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2004, 60(4), m511-m513.
[http://dx.doi.org/10.1107/S160053680400529X]
[338]
Odani, T.; Kubota, T. Nonaqueous electrolyte and nonaqueous electrolyte battery using the same. Patent US20080226983A1, 2008.
[339]
Morley, J.O. Theoretical studies on the electronic structure and nonlinear properties of dicyanomethylene substituted squaramides, croconamides and rhodizonamides. J. Mol. Struct. Theochem, 1995, 357(1-2), 49-57.
[http://dx.doi.org/10.1016/0166-1280(95)04279-F]
[340]
Farminer, A.R.; Skujins, S.; Webb, G.A. Spectroscopic and structural studies of some oxocarbon condensation products. J. Mol. Struct., 1971, 10(1), 111-119.
[http://dx.doi.org/10.1016/0022-2860(71)87065-5]
[341]
Aoyama, M.; Kawamura, H.; Matsunami, S.; Onishima, Y. Preparation of dipyrazino[2,3-a:2',3'-c]phenazine derivatives as organic electroluminescence materials. Patent JP2007230974A, 2007.
[342]
Yeh, M.C.; Liao, S.C.; Chao, S.H.; Ong, C.W. Synthesis of polyphilic hexaazatrinaphthylenes and mesomorphic properties. Tetrahedron, 2010, 66(46), 8888-8892.
[http://dx.doi.org/10.1016/j.tet.2010.09.064]
[343]
Ito, M.; Chihara, K.; Nakamoto, K.; Kano, Y.; Okada, S.; Nagashima, H. Electrode active material containing pyrazine derivative and aqueous electrolyte sodium or magnesium ion secondary battery using same. Patent WO2015147326A1, 2015.
[344]
Martin, R. Electrodes for energy storage devices. WO2015097197A1, 2015.
[345]
Wend, G.R.; Ledig, K.W. Phenazinone compositions for treating amebiasis. Patent US3495006A, 1970.
[346]
Wendt, G.R.; Ledig, K.W. Amebicidal 11,12-dihydroxydibenzo[a,c]phenazine-10,13-dione and 4,5-dihydro-9,10-dihydroxyindeno[4,3a,3-a,b]phenazine-8,11-dione. Patent US3501476A, 1970.
[347]
Pushkareva, Z.V.; Alekseeva, L.V. Synthesis of substances containing fragments of folic acid. III. The synthesis of some pteridine derivatives. Zh. Obshch. Khim., 1962, 32, 1058-1062.
[348]
Endo, H.; Tada, M.; Katagiri, K. Antitumor activity of phenazine derivatives against sarcoma 180 in mice. VII. Phenazinequinone derivatives. Sci. Rep. Res. Inst. Tohoku Univ. Ser. C, 1967, 14(3-4), 175-176.
[PMID: 5616568]
[349]
Schieven, G.L. Phosphotyrosine phosphatase inhibitors or tyrosine kinase activators for controlling cellular proliferation. Patent US5877210A, 1999.
[350]
Zhao, Y.; Bai, H.; Jiang, X.; Li, S. Method for preparation of 6-acyl-3-substituted methylene pyrone compounds and their medicinal application. Patent CN1990478A, 2007.

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy