Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Anti-colorectal Cancer Activity of Quinazoline Derivatives: A Comprehensive Review

Author(s): Madan Singh, Vivek Chandraker, Chandrabose Karthikeyan and Narayana Subbiah Hari Narayana Moorthy*

Volume 21, Issue 8, 2024

Published on: 11 April, 2023

Page: [1287 - 1301] Pages: 15

DOI: 10.2174/1570180820666230310112000

Price: $65

Abstract

Introduction and Objective: The identification of a bioactive template (or lead) is one of the important features of modern drug discovery. Natural products, synthetic and biotechnological sources, serve as important templates for the development of novel bioactive molecules. Quinazoline is one of the heterocyclic templates present in many natural and synthetic drugs and exhibits various biological activities, including anticancer, by blocking the pharmacological pathway of different targets.

Methodology: In this study, the data was collected from the literature and patents to examine the anticolorectal cancer efficacy of quinazoline compounds and their mechanism of actions. According to the published literature and patents, the benzene and/or pyrimidine rings of the quinazoline have been substituted with amino groups or substituted amino groups to develop novel analogues endowed with anticancer properties. The anti-colorectal cancer activity of quinazolines was due to the flexible chain containing terminal phenyl and/or heterocyclic rings (thiazole, pyrazole, piperidine, piperazine, etc.).

Results: These quinazoline derivatives were found to inhibit the growth of colorectal cancer cells by modulating the expression of specific genes and proteins involved in cancer progression, such as receptor tyrosine kinases, epidermal growth factor receptors, dihydrofolate reductase, topoisomerases, histone deacetylase, and apoptotic proteins.

Conclusion: These findings suggest that the quinazoline nucleus may be exploited to identify new anticolorectal cancer agents with suitable pharmacokinetic profiles.

Keywords: Anticolorectal cancer, quinazoline, apoptosis, tyrosine kinase, HCT-116, EGFR.

Next »
Graphical Abstract
[1]
Cancer. World Health Organization (WHO)., Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on 25/07/2023)
[2]
Abbas, S.E.; Barsoum, F.F.; Georgey, H.H.; Mohammed, E.R. Synthesis and antitumor activity of certain 2,3,6-trisubstituted quinazolin-4(3H)-one derivatives. Bull. Fac. Pharm. Cairo Univ., 2013, 51(2), 273-282.
[http://dx.doi.org/10.1016/j.bfopcu.2013.08.003]
[3]
Griess, P. Ueber die einwirkung des cyans auf anthranilsaure. Berichte, 1869, 2, 415-418.
[4]
Griess, P. Ueber die einwirkung von cyan auf amidobenzoesaure und anthranilsaure in wasseriger losung. Ber. Dtsch. Chem. Ges., 1878, 11(2), 1985-1988.
[http://dx.doi.org/10.1002/cber.187801102203]
[5]
Bischler, A.; Lang, M. ZurKenntniss der phenmiazin derivate. Ber. Dtsch. Chem. Ges., 1895, 28(1), 279-293.
[http://dx.doi.org/10.1002/cber.18950280169]
[6]
Gabriel, S.; Colman, J. ZurKenntniss des pyrimidins und methylirter pyrimidine. Ber. Dtsch. Chem. Ges., 1903, 36(3), 3379-3385.
[http://dx.doi.org/10.1002/cber.190303603123]
[7]
Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95-110.
[http://dx.doi.org/10.1186/1752-153X-7-95] [PMID: 23731671]
[8]
Ravez, S.; Castillo-Aguilera, O.; Depreux, P.; Goossens, L. Quinazoline derivatives as anticancer drugs: A patent review (2011 – present). Expert Opin. Ther. Pat., 2015, 25(7), 789-804.
[http://dx.doi.org/10.1517/13543776.2015.1039512] [PMID: 25910402]
[9]
Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorg. Med. Chem., 2016, 24(11), 2361-2381.
[http://dx.doi.org/10.1016/j.bmc.2016.03.031] [PMID: 27112448]
[10]
Eguchi, S. Quinazoline alkaloids and related chemistry bioactive heterocycles I; Springer Berlin: Heidelberg, 2006, Vol. 6, pp. 113-156.
[http://dx.doi.org/10.1007/7081_022]
[11]
Dempcy, R.O.; Skibo, E.B. Rational design of quinazoline-based irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase. Biochemistry, 1991, 30(34), 8480-8487.
[http://dx.doi.org/10.1021/bi00098a028] [PMID: 1909177]
[12]
Skelton, L.A.; Ormerod, M.G.; Titley, J.; Kimbell, R.; Brunton, L.A.; Jackman, A.L. A novel class of lipophilic quinazoline-based folic acid analogues: Cytotoxic agents with a folate-independent locus. Br. J. Cancer, 1999, 79(11-12), 1692-1701.
[http://dx.doi.org/10.1038/sj.bjc.6690270] [PMID: 10206279]
[13]
Martin, G.J.; Moss, J.; Avakian, S. Folic acid activity of N-(4-(4-quinazoline)-benzoyl)glutamic acid. J. Biol. Chem., 1947, 167(3), 737.
[http://dx.doi.org/10.1016/S0021-9258(17)30957-2] [PMID: 20287905]
[14]
Marzaro, G.; Guiotto, A.; Chilin, A. Quinazoline derivatives as potential anticancer agents: A patent review (2007 – 2010). Expert Opin. Ther. Pat., 2012, 22(3), 223-252.
[http://dx.doi.org/10.1517/13543776.2012.665876] [PMID: 22404097]
[15]
Ravani, R.M.; Patel, L.J. Synthesis and screening of quinazoline analogues as cytotoxic agents. Int. J. Pharm. Sci. Drug Res., 2016, 8(2), 91-97.
[http://dx.doi.org/10.25004/IJPSDR.2016.080205]
[16]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 395637.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[17]
Rajput, R.; Mishra, A.P. A review on biological activity of quinazolinones. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 66-70.
[18]
Pati, B.; Banerjee, S. Quinazolines: An illustrated review. J. Adv. Pharm. Educ. Res., 2013, 3(3), 136-151.
[19]
Vijayakumar, B.; Prasanthi, P.; Teja, K.M.; Makesh, K.; Reddy, K.; Nishanthi, P.; Nishanthi, M. Quinazoline derivatives and pharmacological activities: A review. Int. J. Med. Chem. Anal., 2013, 3(1), 10-21.
[20]
Connell, R.D. A case study of the gefitinib patent estate. Expert Opin. Ther. Pat., 2004, 14(12), 1763-1771.
[http://dx.doi.org/10.1517/13543776.14.12.1763]
[21]
Marvania, B.; Lee, P.C.; Chaniyara, R.; Dong, H.; Suman, S.; Kakadiya, R.; Chou, T.C.; Lee, T.C.; Shah, A.; Su, T.L. Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorg. Med. Chem., 2011, 19(6), 1987-1998.
[http://dx.doi.org/10.1016/j.bmc.2011.01.055] [PMID: 21356592]
[22]
Jampilek, J.; Musiol, R.; Finster, J.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Dohnal, J.; Polanski, J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules, 2009, 14(10), 4246-4265.
[http://dx.doi.org/10.3390/molecules14104246] [PMID: 19924061]
[23]
Laddha, S.S.; Bhatnagar, S.P. A new therapeutic approach in Parkinson’s disease: Some novel quinazoline derivatives as dual selective phosphodiesterase 1 inhibitors and anti-inflammatory agents. Bioorg. Med. Chem., 2009, 17(19), 6796-6802.
[http://dx.doi.org/10.1016/j.bmc.2009.08.041] [PMID: 19744861]
[24]
McLaughlin, N.P.; Evans, P. Dihydroxylation of vinyl sulfones: Stereoselective synthesis of (+)- and (-)-febrifugine and halofuginone. J. Org. Chem., 2010, 75(2), 518-521.
[http://dx.doi.org/10.1021/jo902396m] [PMID: 20000346]
[25]
Selvam, T.P.; Kumar, P.V.; Kumar, A.S.; Emerson, I.A. Study of inhibitory mechanism and binding mode of the thiazoloquinazoline compounds to HIV-1 integrase by docking. J. Pharm. Res., 2010, 3, 1637-1647.
[26]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[27]
Abida, Nayyar P.; Rana, A.; Imran, M. An updated review: Newer quinazoline derivatives under clinical trial. Int. J. Pharmaceut. Biol. Arch., 2011, 2(6), 1651-1657.
[28]
Das, D.; Hong, J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur. J. Med. Chem., 2019, 170, 55-72.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.004] [PMID: 30878832]
[29]
Neupane, R.; Malla, S.; Sami, M.; Balaji, A.D.S.; Kumari, S.; Singh, D.; Moorthy, N.S.H.N.; Trivedi, P.; Ashby, C.R.; Karthikeyan, C.; Tiwari, A.K. Identification of 4-anilinoquinazoline derivative, DW-8, that produces in vitro antiproliferative efficacy in colon cancer cells. Molecules, 2021, 26(15), 4417.
[http://dx.doi.org/10.3390/molecules26154417] [PMID: 34361570]
[30]
Karthikeyan, C.; Amawi, H.; Viana, A.G.; Sanglard, L.; Hussein, N.; Saddler, M.; Ashby, C.R., Jr; Moorthy, N.S.H.N.; Trivedi, P.; Tiwari, A.K. lH-Pyrazolo[3,4-b]quinolin-3-amine derivatives inhibit growth of colon cancer cells via apoptosis and sub G1 cell cycle arrest. Bioorg. Med. Chem. Lett., 2018, 28(13), 2244-2249.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.045] [PMID: 29853331]
[31]
Manivannan, E.; Amawi, H.; Hussein, N.; Karthikeyan, C.; Fetcenko, A.; Narayana Moorthy, N.S.H.; Trivedi, P.; Tiwari, A.K. Design and discovery of silybin analogues as antiproliferative compounds using a ring disjunctive – Based, natural product lead optimization approach. Eur. J. Med. Chem., 2017, 133, 365-378.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.033] [PMID: 28411546]
[32]
Singh, S.; Karthikeyan, C.; Moorthy, N.S.H.N. Recent advances in the development of fatty acid synthase inhibitors as anticancer agents. Mini Rev. Med. Chem., 2020, 20(18), 1820-1837.
[http://dx.doi.org/10.2174/1389557520666200811100845] [PMID: 32781957]
[33]
Amawi, H.; Hussein, N.; Boddu, S.H.S.; Karthikeyan, C.; Williams, F.E.; Ashby, C.R., Jr; Raman, D.; Trivedi, P.; Tiwari, A.K. Novel thienopyrimidine derivative, RP-010, Induces β-catenin fragmentation and is efficacious against prostate cancer cells. Cancers, 2019, 11(5), 711.
[http://dx.doi.org/10.3390/cancers11050711] [PMID: 31126091]
[34]
Len, J.M.; Hussein, N.; Malla, S.; Mcintosh, K.; Patidar, R.; Elangovan, M.; Chandrabose, K.; Moorthy, N.S.H.N.; Pandey, M.; Raman, D.; Trivedi, P.; Tiwari, A.K.; Tiwari, A.K. A novel dialkylamino-functionalized chalcone, DML6, inhibits ovarian cancer cell proliferation, in vitro, via induction of oxidative stress, intrinsic apoptosis and mitotic catastrophe. Molecules, 2021, 26(14), 4214.
[http://dx.doi.org/10.3390/molecules26144214] [PMID: 34299490]
[35]
Joshi, G.; Kalra, S.; Yadav, U.P.; Sharma, P.; Singh, P.K.; Amrutkar, S.; Ansari, A.J.; Kumar, S.; Sharon, A.; Sharma, S.; Sawant, D.M.; Banerjee, U.C.; Singh, S.; Kumar, R. E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase. Bioorg. Chem., 2020, 94, 103409.
[http://dx.doi.org/10.1016/j.bioorg.2019.103409] [PMID: 31732194]
[36]
Zhang, K.; Lai, F.; Lin, S.; Ji, M.; Zhang, J.; Zhang, Y.; Jin, J.; Fu, R.; Wu, D.; Tian, H.; Xue, N.; Sheng, L.; Zou, X.; Li, Y.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. J. Med. Chem., 2019, 62(15), 6992-7014.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00390] [PMID: 31117517]
[37]
Nelson, W.J.; Nusse, R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 2004, 303(5663), 1483-1487.
[http://dx.doi.org/10.1126/science.1094291] [PMID: 15001769]
[38]
Li, Y.; Lu, W.; Saini, S.K.; Moukha-Chafiq, O.; Pathak, V.; Ananthan, S. Identification of quinazoline compounds as novel potent inhibitors of Wnt/β-catenin signaling in colorectal cancer cells. Oncotarget, 2016, 7(10), 11263-11270.
[http://dx.doi.org/10.18632/oncotarget.7019] [PMID: 26820295]
[39]
Chen, Z.; Venkatesan, A.M.; Dehnhardt, C.M.; Santos, O.D.; Santos, E.D.; Ayral-Kaloustian, S.; Chen, L.; Geng, Y.; Arndt, K.T.; Lucas, J.; Chaudhary, I.; Mansour, T.S. 2,4-Diamino-quinazolines as inhibitors of β-catenin/Tcf-4 pathway: Potential treatment for colorectal cancer. Bioorg. Med. Chem. Lett., 2009, 19(17), 4980-4983.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.070] [PMID: 19640711]
[40]
AstraZeneca, A.B. Quinazoline derivatives, process for their preparation and their use as anticancer agent. World Patent WO 2007071963, 2007.
[41]
AstraZeneca, A.B. Pyridinylquinazolinamine derivatives and their use as B-Raf inhibitors. World Patent WO 2008020203, 2008.
[42]
AstraZeneca, A.B. Chemical compounds-576. World Patent WO 2008068507, 2008.
[43]
AstraZeneca, A.B. Substituted quinazoline with anti-cancer activity. World Patent WO 2007113557, 2007.
[44]
AstraZeneca, A.B. Quinazolinone derivatives having B-Raf inhibitory activity. World Patent WO 2007113558, 2007.
[45]
AstraZeneca, A.B. Quinazolin-4-one derivatives, process for their preparation and pharmaceutical compositions containing them. WO 2007119055, 2007.
[46]
Ocaña, A.; Pandiella, A. Targeting HER receptors in cancer. Curr. Pharm. Des., 2013, 19(5), 808-817.
[http://dx.doi.org/10.2174/138161213804547303] [PMID: 22973952]
[47]
Zhang, Y.; Chen, L.; Xu, H.; Li, X.; Zhao, L.; Wang, W.; Li, B.; Zhang, X. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur. J. Med. Chem., 2018, 147, 77-89.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.090] [PMID: 29421573]
[48]
Tsai, T.; Chen, H-E.; Lin, J-F.; Hwang, T.I-S.; Lin, Y-C.; Chou, K-Y.; Hour, M-J. A novel quinazoline derivative, MJ-56, exhibits phototoxicity toward human bladder cancer cells. Urol. Sci., 2018, 29(2), 64-72.
[http://dx.doi.org/10.4103/UROS.UROS_2_17]
[49]
Li, M.; Jung, A.; Ganswindt, U.; Marini, P.; Friedl, A.; Daniel, P.T.; Lauber, K.; Jendrossek, V.; Belka, C. Aurora kinase inhibitor ZM447439 induces apoptosis via mitochondrial pathways. Biochem. Pharmacol., 2010, 79(2), 122-129.
[http://dx.doi.org/10.1016/j.bcp.2009.08.011] [PMID: 19686703]
[50]
Mu, Z.; Klinowska, T.; Dong, X.; Foster, E.; Womack, C.; Fernandez, S.V.; Cristofanilli, M. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor (EGFR), HER2, and HER3: preclinical activity in HER2 non-amplified inflammatory breast cancer models. J. Exp. Clin. Cancer Res., 2014, 33(1), 47.
[http://dx.doi.org/10.1186/1756-9966-33-47] [PMID: 24886365]
[51]
Conconi, M.T.; Marzaro, G.; Urbani, L.; Zanusso, I.; Di Liddo, R.; Castagliuolo, I.; Brun, P.; Tonus, F.; Ferrarese, A.; Guiotto, A.; Chilin, A. Quinazoline-based multi-tyrosine kinase inhibitors: Synthesis, modeling, antitumor and antiangiogenic properties. Eur. J. Med. Chem., 2013, 67, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.057] [PMID: 23900004]
[52]
Hilger, R.A.; Scheulen, M.E.; Strumberg, D. The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie, 2002, 25(6), 511-518.
[PMID: 12566895]
[53]
Zhang, J.; Wang, N.; Xie, X.; Yan, C.; Fu, F.; Yao, J.; Wang, H. Design, synthesis and biological activities of quinazoline containing sorafenib analogs as antitumor agents. Wuhan Univ. J. Nat. Sci., 2017, 22(3), 239-246.
[http://dx.doi.org/10.1007/s11859-017-1241-6]
[54]
McGuire, J.J.; Sobrero, A.F.; Hynes, J.B.; Bertino, J.R. Mechanism of action of 5,8-dideazaisofolic acid and other quinazoline antifols in human colon carcinoma cells. Cancer Res., 1987, 47(22), 5975-5981.
[PMID: 3664501]
[55]
Gunasekara, N.S.; Faulds, D. Raltitrexed. Drugs, 1998, 55(3), 423-435.
[http://dx.doi.org/10.2165/00003495-199855030-00012] [PMID: 9530547]
[56]
Al-Obeed, O.; Vaali-Mohammed, M.A.; Eldehna, W.; Al-Khayal, K.; Mahmood, A.; Abdel-Aziz, H.; Zubaidi, A.; Alafeefy, A.; Abdulla, M.H.; Ahmad, R. Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2–STAT3 pathway. Onco.Targets Ther., 2018, 11, 3313-3322.
[http://dx.doi.org/10.2147/OTT.S148108] [PMID: 29892198]
[57]
El-Sayed, N.N.E.; Almaneai, N.M.; Ben Bacha, A.; Al-Obeed, O.; Ahmad, R.; Abdulla, M.; Alafeefy, A.M. Synthesis and evaluation of anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities of some 3 H- quinazolin-4-one derivatives. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 672-683.
[http://dx.doi.org/10.1080/14756366.2019.1574780] [PMID: 30821525]
[58]
Nowar, R.M.A.; Osman, E.E.; Abou-Seri, S.M.; El Moghazy, S.M.; Abou El Ella, D.A. Design, synthesis and biological evaluation of some novel quinazolinone derivatives as potent apoptotic inducers. Future Med. Chem., 2018, 10(10), 1191-1205.
[http://dx.doi.org/10.4155/fmc-2017-0284] [PMID: 29749767]
[59]
Wang, T.E.; Wang, Y.K.; Jin, J.; Xu, B.L.; Chen, X.G. A novel derivative of quinazoline, WYK431 induces G2/M phase arrest and apoptosis in human gastric cancer BGC823 cells through the PI3K/Akt pathway. Int. J. Oncol., 2014, 45(2), 771-781.
[http://dx.doi.org/10.3892/ijo.2014.2458] [PMID: 24859921]
[60]
El-Azab, A.S.; Al-Dhfyan, A.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; Alkahtani, H.M.; Al-Obaid, A.M.; Al-Gendy, M.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline–isatin conjugates: Epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies. J. Enz. Inhib. Med. Chem., 2017, 32(1), 935-944.
[http://dx.doi.org/10.1080/14756366.2017.1344981] [PMID: 28718672]
[61]
Zhang, Y.; Yang, C.R.; Tang, X.; Cao, S.L.; Ren, T.T.; Gao, M.; Liao, J.; Xu, X. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position. Bioorg. Med. Chem. Lett., 2016, 26(19), 4666-4670.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.060] [PMID: 27575478]
[62]
Mehta, S.; Kumar, S.; Marwaha, R.K.; Narasimhan, B.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V. Synthesis, molecular docking and biological potentials of new 2-(4-(2-chloroacetyl) piperazin-1-yl)-N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)acetamide derivatives. BMC Chem., 2019, 13(1), 113.
[http://dx.doi.org/10.1186/s13065-019-0629-0] [PMID: 31517312]
[63]
Braña, M.F.; de Vega, M.J.P.; Perron, D.; Conlon, D.; Bousquet, P.F.; Robinson, S.P. Benzimidazo[1,2- c]quinazoline dimers as potential antitumor agents. J. Heterocycl. Chem., 1997, 34(3), 807-812.
[http://dx.doi.org/10.1002/jhet.5570340316]
[64]
Arulmozhi, R.; Abirami, N.; Kavitha, H.P.; Arulmurugan, S. Synthesis, characterization and anticancer activity of some new tetrazoles derived from quinazolin-4-one. J. Pharm. Sci. Res., 2019, 11(5), 1974-1978.
[65]
Yong, J.P.; Lu, C.Z.; Wu, X. Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anticancer. Agents Med. Chem., 2014, 15(1), 131-136.
[http://dx.doi.org/10.2174/1871520614666140812105445] [PMID: 25142319]
[66]
Yong, J.; Lu, C.; Wu, X. Synthesis and biological evaluation of quinazoline derivatives as potential anticancer agents (II). Anticancer. Agents Med. Chem., 2015, 15(10), 1326-1332.
[http://dx.doi.org/10.2174/1871520615666150526115904] [PMID: 26008189]
[67]
Shagufta, S.; Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. Med. Chem. Comm., 2017, 8(5), 871-885.
[http://dx.doi.org/10.1039/C7MD00097A] [PMID: 30108803]
[68]
Qazi, A.K.; Hussain, A.; Khan, S.; Aga, M.A.; Behl, A.; Ali, S.; Singh, S.K.; Taneja, S.C.; Shah, B.A.; Saxena, A.K.; Mondhe, D.M.; Hamid, A. Quinazoline based small molecule exerts potent tumour suppressive properties by inhibiting PI3K/Akt/FoxO3a signalling in experimental colon cancer. Cancer Lett., 2015, 359(1), 47-56.
[http://dx.doi.org/10.1016/j.canlet.2014.12.034] [PMID: 25554016]
[69]
Kovalenko, S.I.; Nosulenko, I.S.; Voskoboynik, A.Y.; Berest, G.G.; Antypenko, L.N.; Antypenko, A.N.; Katsev, A.M. Substituted 2-[(2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]acetamides with thiazole and thiadiazole fragments: Synthesis, physicochemical properties, cytotoxicity, and anticancer activity. Sci. Pharm., 2012, 80(4), 837-865.
[70]
Noolvi, M.N.; Patel, H.M. Synthesis, method optimization, anticancer activity of 2,3,7-trisubstituted Quinazoline derivatives and targeting EGFR-tyrosine kinase by rational approach. Arab. J. Chem., 2013, 6(1), 35-48.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.031]
[71]
Malinowski, Z.; Fornal, E.; Nowak, M.; Kontek, R.; Gajek, G.; Borek, B. Synthesis and biological evaluation of some amino- and sulfanyl-3H-quinazolin-4-one derivatives as potential anticancer agents. Monatshefte für Chemie-Chem. Month., 2015, 146(10), 1723-1731.
[72]
Kuroiwa, K.; Ishii, H.; Matsuno, K.; Asai, A.; Suzuki, Y. Synthesis and structure–activity relationship study of 1-phenyl-1-(quinazolin-4-yl)ethanol as anticancer agents. ACS Med. Chem. Lett., 2015, 6(3), 287-291.
[http://dx.doi.org/10.1021/ml5004684] [PMID: 25815147]
[73]
Gedawy, E.M.; Mahmoud, Z. Synthesis and biological screening of new 4-substituted-2-(3,4,5-trimethoxyphenyl)quinazolines as potential anticancer agents. Pharma Chem., 2015, 7(11), 162-171.
[74]
Wang, L.L.; Kong, L.; Liu, H.; Zhang, Y.; Zhang, L.; Liu, X.; Yuan, F.; Li, Y.; Zuo, Z. Design and synthesis of novel artemisinin derivatives with potent activities against colorectal cancer in vitro and in vivo. Eur. J. Med. Chem., 2019, 182, 111665.
[http://dx.doi.org/10.1016/j.ejmech.2019.111665] [PMID: 31494469]
[75]
Alafeefy, A.M.; Ahmad, R.; Abdulla, M.; Eldehna, W.M.; Al-Tamimi, A.M.S.; Abdel-Aziz, H.A.; Al-Obaid, O.; Carta, F.; Al-Kahtani, A.A.; Supuran, C.T. Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesulfonamide as potential antitumor agents. Eur. J. Med. Chem., 2016, 109, 247-253.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.001] [PMID: 26774930]
[76]
Borui, S. Quinazoline derivative and purposes thereof in preparing antineoplastic drugs. Chinese Patent CN 102649778A, 2012.
[77]
Wang, H.; Yao, J.; Fu, F.; Zhang, J.; Yao, Z.; Kong, X.; Wang, N.; Xie, X.; Lu, G. Diaryl urea compound containing quinazoline structure as well as preparation method and application thereof & Thiourea compound containing quinazoline structure as well as preparation method and application of thiourea compound. Chinese Patent CN 104892530A & CN 104892529A, 09 September, 2015.
[78]
Prasad, J.R.; Satya, A.; Rao, B.; Rao, N.B. Chowdary, V.N. 6,7- dialkoxy quinazoline derivatives useful for treatment of cancer related disorders. Chinese Patent CA 2711737A1, 2009.
[79]
Amino-substituted quinazoline derivatives as inhibitors of betacatenin/TCF-4 pathway and cancer treatment agents. World Patent WO2008086462, 2008.
[80]
Solca, F.; Amelsberg, A.; Stehle, G.; Van Meel, J.; Baum, A. Quinazoline derivatives for the treatment of cancer diseases. World Patent WO 2007/054550 Al, 2007.
[81]
Gibson, K.H. Quinazoline derivatives. European Patent EP0823900A1, 1998.

© 2024 Bentham Science Publishers | Privacy Policy