Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

An Update on the Anti-diabetic Functions of Genistein: A Soybean (Glycine max (L.) Merr.) Isoflavone

Author(s): Niusha Sharifinejad, Matin Hooshyar, Mohammad Ramezankhah, Amirreza Shamsehkohan, Rezvan Saie, Mina Sahebjam, Elahe Aleebrahim-Dehkordi, Shirin Orandi, Ali Faraji and Niloofar Deravi*

Volume 10, Issue 2, 2024

Published on: 20 April, 2023

Article ID: e070323214439 Pages: 13

DOI: 10.2174/2215083809666230307115338

Price: $65

Abstract

Type 2 diabetes mellitus (T2DM) is a developing worldwide issue. Traditionally, different plants have been used throughout history to lower blood glucose and improve the impact of diabetes. Also, today, many natural products have been introduced to lower blood glucose in T2DM patients. The beneficial effects of genistein, the most essential and abundant isoflavone of soybean (Glycine max (L.) Merr.), on blood glucose and other metabolic indicators, as well as diabetesrelated complications, have been widely investigated. In the current narrative review, through a thorough search from "2013-2020” in “PubMed", "Scopus", “ResearchGate”, “Google Scholar”, and "Web of Science" databases, we have retrieved, reviewed, and summarized all clinical trials, as well as in vitro and in vivo studies on the anti-diabetic potential of genistein.

Keywords: Anti-diabetic, genistein, soybean, isoflavones, Glycine max, T2DM.

Graphical Abstract
[1]
Harreiter J, Roden M. Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019). Wien Klin Wochenschr 2019; 131(S1): 6-15.
[http://dx.doi.org/10.1007/s00508-019-1450-4] [PMID: 30980151]
[2]
Atlas Diabetes. "International diabetes federation." IDF Diabetes Atlas, 7th edn Brussels, Belgium: International Diabetes Federation 33 (2015): 2.
[3]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[4]
Fletcher B, Gulanick M, Lamendola C. Risk factors for type 2 diabetes mellitus. J Cardiovasc Nurs 2002; 16(2): 17-23.
[http://dx.doi.org/10.1097/00005082-200201000-00003] [PMID: 11800065]
[5]
Li XH, Yu F, Zhou YH, He J. Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose-response meta-analysis. Am J Clin Nutr 2016; 103(3): 818-29.
[http://dx.doi.org/10.3945/ajcn.115.114389] [PMID: 26843157]
[6]
Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2007; 298(22): 2654-64.
[http://dx.doi.org/10.1001/jama.298.22.2654] [PMID: 18073361]
[7]
Henson J, Rowlands AV, Baldry E, et al. Physical behaviors and chronotype in people with type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8(1): e001375.
[http://dx.doi.org/10.1136/bmjdrc-2020-001375] [PMID: 32675292]
[8]
Ramezan M, Asghari G, Mirmiran P, Tahmasebinejad Z, Azizi F. Mediterranean dietary patterns and risk of type 2 diabetes in the Islamic Republic of Iran. East Mediterr Health J 2019; 25(12): 896-904.
[http://dx.doi.org/10.26719/emhj.19.035] [PMID: 32003448]
[9]
Javeed N, Matveyenko AV. Circadian etiology of type 2 diabetes mellitus. Physiology 2018; 33(2): 138-50.
[http://dx.doi.org/10.1152/physiol.00003.2018] [PMID: 29412061]
[10]
Nouwen A, Nefs G, Caramlau I, et al. Prevalence of depression in individuals with impaired glucose metabolism or undiagnosed diabetes: a systematic review and meta-analysis of the European Depression in Diabetes (EDID) Research Consortium. Diabetes Care 2011; 34(3): 752-62.
[http://dx.doi.org/10.2337/dc10-1414] [PMID: 21357362]
[11]
Vesa CM, Popa L, Popa AR, et al. Current data regarding the relationship between Type 2 diabetes mellitus and cardiovascular risk factors. Diagnostics 2020; 10(5): 314.
[http://dx.doi.org/10.3390/diagnostics10050314] [PMID: 32429441]
[12]
Andeyaba RD. Control of risk factors for nephropathy among Nigerian outpatients with Type 2 diabetes mellitus. Jos J Med 2014; 8(3): 1-8.
[13]
Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983; 32 (Suppl. 2): 64-78.
[http://dx.doi.org/10.2337/diab.32.2.S64] [PMID: 6400670]
[14]
Levstek T, Vujkovac B, Trebusak Podkrajsek K. Biomarkers of fabry nephropathy: Review and future perspective. Genes 2020; 11(9): 1091.
[http://dx.doi.org/10.3390/genes11091091] [PMID: 32962051]
[15]
Frank RN. Diabetic retinopathy. N Engl J Med 2004; 350(1): 48-58.
[http://dx.doi.org/10.1056/NEJMra021678] [PMID: 14702427]
[16]
Hirai FE, Tielsch JM, Klein BEK, Klein R. Ten-year change in vision-related quality of life in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology 2011; 118(2): 353-8.
[http://dx.doi.org/10.1016/j.ophtha.2010.06.022] [PMID: 20884058]
[17]
Grzybowski A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye 2020; 34(3): 451-60.
[http://dx.doi.org/10.1038/s41433-019-0566-0] [PMID: 31488886]
[18]
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 2016; 57(13): 5200-6.
[http://dx.doi.org/10.1167/iovs.16-19964] [PMID: 27701631]
[19]
Selvarajah D, Wilkinson ID, Emery CJ, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 2006; 29(12): 2664-9.
[http://dx.doi.org/10.2337/dc06-0650] [PMID: 17130202]
[20]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[21]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol 2017; 8: 6-6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[22]
Larijani B, Goodarzi P, Payab M, et al. Metabolomics and cell therapy in diabetes mellitus. Int J Mol Cell Med 2019; 8 (Suppl. 1): 41-8.
[PMID: 32351908]
[23]
Preethi PJ. Herbal medicine for diabetes mellitus: A review. As. J Pharm Res 2013; 3(2): 57-70.
[24]
Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2018; 8(3): 361-76.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[25]
Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct 2013; 4(2): 200-12.
[http://dx.doi.org/10.1039/C2FO30199G] [PMID: 23160185]
[26]
Liu Y, Li J, Wang T, Wang Y, Zhao L, Fang Y. The effect of genistein on glucose control and insulin sensitivity in postmenopausal women: A meta-analysis. Maturitas 2017; 97: 44-52.
[http://dx.doi.org/10.1016/j.maturitas.2016.12.004] [PMID: 28159061]
[27]
Trifunović S, Manojlović-Stojanoski M, Ajdzanović V, et al. Genistein stimulates the hypothalamo-pituitary-adrenal axis in adult rats: morphological and hormonal study. Histol Histopathol 2012; 27(5): 627-40.
[PMID: 22419027]
[28]
Milošević VL, Severs WB, Ristić NM, et al. Soy isoflavone effects on the adrenal glands of orchidectomized adult male rats: a comprehensive histological and hormonal study. Histol Histopathol 2018; 33(8): 843-57.
[PMID: 29528085]
[29]
Xiong J, Tian Y, Ling A, Liu Z, Zhao L, Cheng G. Genistein affects gonadotrophin-releasing hormone secretion in GT1-7 cells via modulating kisspeptin receptor and key regulators. Syst Biol Reprod Med 2022; 68(2): 138-50.
[http://dx.doi.org/10.1080/19396368.2021.2003910] [PMID: 34986716]
[30]
Zhang T, Chi XX. Estrogenic properties of genistein acting on FSHR and LHR in rats with PCOS. Pol J Vet Sci 2019; 22(1): 83-90.
[PMID: 30997768]
[31]
Rehman K, Ali MB, Akash MSH. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed Pharmacother 2019; 112: 108670.
[http://dx.doi.org/10.1016/j.biopha.2019.108670] [PMID: 30784939]
[32]
Lv Z, Fan H, Zhang B, Xing K, Guo Y. Dietary genistein supplementation for breeders and their offspring improves the growth performance and immune function of broilers. Sci Rep 2018; 8(1): 5161.
[http://dx.doi.org/10.1038/s41598-018-23530-z] [PMID: 29581465]
[33]
Trifunović S, Manojlović-Stojanoski M, Ajdžanović V, et al. Effects of genistein on stereological and hormonal characteristics of the pituitary somatotrophs in rats. Endocrine 2014; 47(3): 869-77.
[http://dx.doi.org/10.1007/s12020-014-0265-3] [PMID: 24752394]
[34]
Chang HC, Doerge DR. Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol Appl Pharmacol 2000; 168(3): 244-52.
[http://dx.doi.org/10.1006/taap.2000.9019] [PMID: 11042097]
[35]
Marini H, Polito F, Adamo EB, Bitto A, Squadrito F, Benvenga S. Update on genistein and thyroid: An overall message of safety. Front Endocrinol 2012; 3: 94.
[http://dx.doi.org/10.3389/fendo.2012.00094] [PMID: 23060856]
[36]
Peng Q, Li Y, Shang J, et al. Effects of genistein on common kidney diseases. Nutrients 2022; 14(18): 3768.
[http://dx.doi.org/10.3390/nu14183768] [PMID: 36145144]
[37]
Li P, Shi X, Wei Y, et al. Synthesis and biological activity of isoflavone derivatives from chickpea as potent anti-diabetic agents. Molecules 2015; 20(9): 17016-40.
[http://dx.doi.org/10.3390/molecules200917016] [PMID: 26393547]
[38]
Dkhar B, Khongsti K, Thabah D, Syiem D, Satyamoorthy K, Das B. Genistein represses PEPCK‐C expression in an insulin‐independent manner in HepG2 cells and in alloxan‐induced diabetic mice. J Cell Biochem 2018; 119(2): 1953-70.
[http://dx.doi.org/10.1002/jcb.26356] [PMID: 28816409]
[39]
Şöhretoğlu D, Sari S, Özel A, Barut B. α-Glucosidase inhibitory effect of Potentilla astracanica and some isoflavones: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int J Biol Macromol 2017; 105(Pt 1): 1062-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.132] [PMID: 28756197]
[40]
Lewicki S, Lewicka A, Kalicki B, et al. Effects of genistein on insulin pathway-related genes in mouse differentiated myoblast C2C12 cell line: evidence for two independent modes of action. Folia Histochem Cytobiol 2018; 56(3): 123-32.
[http://dx.doi.org/10.5603/FHC.a2018.0014] [PMID: 29998457]
[41]
Makena W, Hambolu JO, Timbuak JA, Umana UE, Iliya AI, Dibal NI. Mormodica charantia L. fruit and Genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function. J Diabetes Metab Disord 2020; 19(2): 1303-10.
[http://dx.doi.org/10.1007/s40200-020-00648-4] [PMID: 33553029]
[42]
Jesus AR, Dias C, Matos AM, et al. Exploiting the therapeutic potential of 8-β-d-glucopyranosylgenistein: synthesis, antidiabetic activity, and molecular interaction with islet amyloid polypeptide and amyloid β-peptide (1-42). J Med Chem 2014; 57(22): 9463-72.
[http://dx.doi.org/10.1021/jm501069h] [PMID: 25347820]
[43]
Luo J, Wang A, Zhen W, et al. Phytonutrient genistein is a survival factor for pancreatic β-cells via GPR30-mediated mechanism. J Nutr Biochem 2018; 58: 59-70.
[http://dx.doi.org/10.1016/j.jnutbio.2018.04.018] [PMID: 29885598]
[44]
Li P, Cao Y, Song G, et al. Anti-diabetic properties of genistein-chromium (III) complex in db/db diabetic mice and its sub-acute toxicity evaluation in normal mice. J Trace Elem Med Biol 2020; 62: 126606.
[http://dx.doi.org/10.1016/j.jtemb.2020.126606] [PMID: 32650064]
[45]
Rockwood S, Mason D, Lord R, Lamar P, Prozialeck W, Al-Nakkash L. Genistein diet improves body weight, serum glucose and triglyceride levels in both male and female ob/ob mice. Diabetes Metab Syndr Obes 2019; 12: 2011-21.
[http://dx.doi.org/10.2147/DMSO.S216312] [PMID: 31686880]
[46]
Huang G, Xu J, Cai D, Chen SY, Nagy T, Guo TL. Exacerbation of Type 1 Diabetes in perinatally genistein exposed female Non-Obese Diabetic (NOD) mouse is associated with alterations of gut microbiota and immune homeostasis. Toxicol Sci 2018; 165(2): 291-301.
[http://dx.doi.org/10.1093/toxsci/kfy162] [PMID: 29982808]
[47]
El-Kordy EA, Alshahrani AM. Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3(3): 108-19.
[http://dx.doi.org/10.1016/j.jmau.2015.03.005] [PMID: 30023190]
[48]
Guo TL, Wang Y, Xiong T, Ling X, Zheng J. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet. Toxicol Appl Pharmacol 2014; 280(3): 455-66.
[http://dx.doi.org/10.1016/j.taap.2014.08.028] [PMID: 25178718]
[49]
Guo TL, Germolec DR, Zheng JF, et al. Genistein protects female nonobese diabetic mice from developing type 1 diabetes when fed a soy- and alfalfa-free diet. Toxicol Pathol 2015; 43(3): 435-48.
[http://dx.doi.org/10.1177/0192623314526318] [PMID: 24713318]
[50]
Weigt C, Hertrampf T, Flenker U, et al. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats. J Steroid Biochem Mol Biol 2015; 154: 12-22.
[http://dx.doi.org/10.1016/j.jsbmb.2015.06.002] [PMID: 26134426]
[51]
van Bree BWJ, Lenaers E, Nabben M, et al. A genistein-enriched diet neither improves skeletal muscle oxidative capacity nor prevents the transition towards advanced insulin resistance in ZDF rats. Sci Rep 2016; 6(1): 22854.
[http://dx.doi.org/10.1038/srep22854] [PMID: 26973284]
[52]
Braxas H, Rafraf M, Karimi Hasanabad S, Asghari Jafarabadi M. Effectiveness of genistein supplementation on metabolic factors and antioxidant status in postmenopausal women with Type 2 Diabetes Mellitus. Can J Diabetes 2019; 43(7): 490-7.
[http://dx.doi.org/10.1016/j.jcjd.2019.04.007] [PMID: 31307913]
[53]
Chi XX, Zhang T, Zhang DJ, Yu W, Wang QY, Zhen JL. Effects of isoflavones on lipid and apolipoprotein levels in patients with type 2 diabetes in Heilongjiang Province in China. J Clin Biochem Nutr 2016; 59(2): 134-8.
[http://dx.doi.org/10.3164/jcbn.15-147] [PMID: 27698541]
[54]
Ding M, Franke AA, Rosner BA, et al. Urinary isoflavonoids and risk of type 2 diabetes: a prospective investigation in US women. Br J Nutr 2015; 114(10): 1694-701.
[http://dx.doi.org/10.1017/S0007114515003359] [PMID: 26370252]
[55]
Ding M, Pan A, Manson JE, et al. Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr 2016; 70(12): 1381-7.
[http://dx.doi.org/10.1038/ejcn.2016.117] [PMID: 27380886]
[56]
Ko KP, Kim CS, Ahn Y, et al. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: results from the Korean Genome and Epidemiology Study. Diabetologia 2015; 58(4): 726-35.
[http://dx.doi.org/10.1007/s00125-014-3463-x] [PMID: 25533387]
[57]
Nguyen CT, Pham NM, Do VV, et al. Soyfood and isoflavone intake and risk of type 2 diabetes in Vietnamese adults. Eur J Clin Nutr 2017; 71(10): 1186-92.
[http://dx.doi.org/10.1038/ejcn.2017.76] [PMID: 28488690]
[58]
Squadrito F, Marini H, Bitto A, et al. Genistein in the metabolic syndrome: Results of a randomized clinical trial. J Clin Endocrinol Metab 2013; 98(8): 3366-74.
[http://dx.doi.org/10.1210/jc.2013-1180] [PMID: 23824420]
[59]
Talaei M, Lee BL, Ong CN, et al. Urine phyto-oestrogen metabolites are not significantly associated with risk of type 2 diabetes: the Singapore Chinese health study. Br J Nutr 2016; 115(9): 1607-15.
[http://dx.doi.org/10.1017/S0007114516000581] [PMID: 26949260]
[60]
Woo HW. Sex-specific associations of habitual intake of soy protein and isoflavones with risk of type 2 diabetes. Clin Nutr 2020.
[PMID: 32418714]
[61]
Ye YB, Chen AL, Lu W, et al. Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: A double‐blind, randomized, placebo‐controlled trial. Mol Nutr Food Res 2015; 59(2): 240-9.
[http://dx.doi.org/10.1002/mnfr.201400390] [PMID: 25351561]
[62]
Braxas H, Rafraf M, Hasanabad SK, et al. Genistein supplementation improves some cardiovascular risk factors in postmenopausal women with Type 2 diabetes mellitus. " Nutr Food Sci 2020; 51(1): 125-36.
[63]
Elgayar SA. Genistein treatment confers protection against gliopathy and vasculopathy of the diabetic retina in rats. Ultrastruct Pathol 2015; 39(6): 385-94.
[http://dx.doi.org/10.3109/01913123.2015.1045664]
[64]
Gupta SK. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Mol Cell Biochem 2015; 408(1-2): 63-72.
[http://dx.doi.org/10.1007/s11010-015-2483-2]
[65]
Jia Q. Genistein attenuates renal fibrosis in streptozotocin-induced diabetic rats. Mol Med Rep 2019; 19(1): 423-31.
[66]
Kim MJ. Lim YJMoI. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm 2013; 2013: 510212.
[http://dx.doi.org/10.1155/2013/510212]
[67]
Tian HS, Zhou GQ, Zhu ZY. "Evaluation of cardioprotective effects of genistein against diabetes-induced cardiac dysfunction in rats" Trop J Pharma Res 2015; 14(11): 2015-2.
[http://dx.doi.org/10.4314/tjpr.v14i11.10]
[68]
Yang R. Effect of genistein on myocardial fibrosis in diabetic rats and its mechanism. Mol Med Rep 2018; 17(2): 2929-36.
[69]
Li R, Ding XW, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Beneficial effect of genistein on diabetes-induced brain damage in the ob/ob mouse model. Drug Des Devel Ther 2020; 14: 3325-36.
[http://dx.doi.org/10.2147/DDDT.S249608] [PMID: 32884237]
[70]
Yousefi H, Alihemmati A, Karimi P, Alipour MR, Habibi P, Ahmadiasl N. Effect of genistein on expression of pancreatic SIRT1, inflammatory cytokines and histological changes in ovariectomized diabetic rat. Iran J Basic Med Sci 2017; 20(4): 423-9.
[PMID: 28804612]
[71]
Yousefi H, Karimi P, Alihemmati A, Alipour MR, Habibi P, Ahmadiasl N. Therapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis. Iran J Basic Med Sci 2017; 20(9): 1009-15.
[PMID: 29085595]
[72]
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20(3): 175-93.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[73]
Daghigh F, Alihemmati A, Karimi P, Habibi P, Ahmadiasl N. Genistein preserves the lungs of ovariectomized diabetic rats: addition to apoptotic and inflammatory markers in the lung. Iran J Basic Med Sci 2017; 20(12): 1312-7.
[PMID: 29238465]
[74]
Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun 2016; 478(3): 1021-7.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.039] [PMID: 27431618]
[75]
Hussein OA. Effect of genistein on the cerebellar cortex of adult male albino rats with streptozotocin-induced diabetes mellitus. Egypt J Histol 2015; 38(4): 778-92.
[http://dx.doi.org/10.1097/01.EHX.0000473710.76297.3b]
[76]
Michelin RM, Al-Nakkash L, Broderick TL, Plochocki JH. Genistein treatment increases bone mass in obese, hyperglycemic mice. Diabetes Metab Syndr Obes 2016; 9: 63-70.
[PMID: 27042131]
[77]
Odle B, Dennison N, Al-Nakkash L, Broderick TL, Plochocki JH. Genistein treatment improves fracture resistance in obese diabetic mice. BMC Endocr Disord 2017; 17(1): 1.
[http://dx.doi.org/10.1186/s12902-016-0144-4] [PMID: 28183304]
[78]
Tie L, An Y, Han J, et al. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. J Nutr Biochem 2013; 24(1): 88-96.
[http://dx.doi.org/10.1016/j.jnutbio.2012.02.011] [PMID: 22819564]
[79]
Phadnis P, Dey Sarkar P, Rajput MS. Improved serotonergic neurotransmission by genistein pretreatment regulates symptoms of obsessive-compulsive disorder in streptozotocin-induced diabetic mice. J Basic Clin Physiol Pharmacol 2018; 29(4): 421-5.
[http://dx.doi.org/10.1515/jbcpp-2017-0155] [PMID: 29561730]
[80]
Ma S, Zhong D, Ma P, et al. Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive decline by regulating the mitochondria-mediated apoptotic pathway and IL-23/IL-17 expression in db/db mice. Cell Physiol Biochem 2017; 41(5): 1838-50.
[http://dx.doi.org/10.1159/000471932] [PMID: 28376494]
[81]
Rajput MS, Sarkar PD. Modulation of neuro-inflammatory condition, acetylcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice. Chem Biol Interact 2017; 268: 93-102.
[http://dx.doi.org/10.1016/j.cbi.2017.02.021] [PMID: 28259689]
[82]
Abdel-Latif RG. Uncontrolled diabetes worsens cerebral ischemia-reperfusion injury in rats: Insights into the involved mechanisms. J Adv Biomed Pharm Sci 2018; 1(1): 20-5.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy