Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Lipid Nanocarriers as an Alternative for the Delivery of Bioactive Compounds Beneficial to Health

Author(s): Camila da Costa de Quadros*, Alan Carvalho de Sousa Araujo, Juliana Machado Latorres, Mariano Michelon and Myriam de las Mercedes Salas-Mellado

Volume 19, Issue 8, 2023

Published on: 10 May, 2023

Article ID: e060323214403 Pages: 14

DOI: 10.2174/1573407219666230306142421

Price: $65

Abstract

Bioactive compounds derived from food or plants have become a natural source with the potential for producing functional, nutraceutical, and pharmaceutical foods due to their biological functions and beneficial health effects. However, to perform such physiological processes, these compounds need to be absorbed through the gastrointestinal tract. Among the existing technologies, nanoencapsulation increases physical stability, protection, and the contact surface, facilitating the solubility and bioavailability of such compounds. In this type of encapsulation, lipid nanocarriers are promising carriers due to their lipid structure and containing hydrophilic surfactant, capable of facilitating the intestinal absorption of active compounds. However, in food or drugs, one of the significant challenges for applying bioactive compounds on a nanoscale is the lack of in vivo studies that establish safety limits for cytotoxicity. This review covered recent studies on the encapsulation of natural bioactive compounds in different types of lipid nanocarriers. In addition to methods for obtaining and characterizing nanocarriers, bioactivities with beneficial potential for human health, such as antioxidant, antimicrobial, antihypertensive, antidiabetic, and neuroprotective, are mentioned. The manuscript deals with the bioaccessibility of active compounds, new perspectives, and challenges for applying lipid nanocarriers.

Keywords: Bioactive properties, nano delivery systems, peptides, phytochemicals, polyunsaturated fatty acids, bioavailability.

Graphical Abstract
[1]
Atef, M.; Mahdi Ojagh, S. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods, 2017, 35, 673-681.
[http://dx.doi.org/10.1016/j.jff.2017.06.034]
[2]
García-Moreno, P.J.; Batista, I.; Pires, C.; Bandarra, N.M.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res. Int., 2014, 65, 469-476.
[http://dx.doi.org/10.1016/j.foodres.2014.03.061]
[3]
Lima, K.O.; da Costa de Quadros, C.; Rocha, M.; Jocelino Gomes de Lacerda, J.T.; Juliano, M.A.; Dias, M.; Mendes, M.A.; Prentice, C. Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). Lebensm. Wiss. Technol., 2019, 111, 408-413.
[http://dx.doi.org/10.1016/j.lwt.2019.05.043]
[4]
Zamora-Sillero, J.; Ramos, P.; Monserrat, J.M.; Prentice, C. Evaluation of the antioxidant activity in vitro and in hippocampal HT-22 cells system of protein hydrolysates of common carp (Cyprinus carpio) by-product. J. Aquat. Food Prod. Technol., 2018, 27(1), 21-34.
[http://dx.doi.org/10.1080/10498850.2017.1390027]
[5]
Latorres, J.M.; Rios, D.G.; Saggiomo, G.; Wasielesky, W., Jr; Prentice-Hernandez, C. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol., 2018, 55(2), 721-729.
[http://dx.doi.org/10.1007/s13197-017-2983-z] [PMID: 29391637]
[6]
Da Rocha, M.; Alemán, A.; Baccan, G.C.; López-Caballero, M.E.; Gómez-Guillén, C.; Montero, P.; Prentice, C. Anti-inflammatory, antioxidant, and antimicrobial effects of underutilized fish protein hydrolysate. J. Aquat. Food Prod. Technol., 2018, 27(5), 592-608.
[http://dx.doi.org/10.1080/10498850.2018.1461160]
[7]
De Quadros, C.D.C.; Lima, K.O.; Bueno, C.H.L.; Fogaça, F.H.S.; Da Rocha, M.; Prentice, C. Evaluation of the antioxidant and antimicrobial activity of protein hydrolysates and peptide fractions derived from Colossoma macropomum and their effect on ground beef lipid oxidation. J. Aquat. Food Prod. Technol., 2019, 28(6), 677-688.
[http://dx.doi.org/10.1080/10498850.2019.1628152]
[8]
Amerikova, M.; Pencheva El-Tibi, I.; Maslarska, V.; Bozhanov, S.; Tachkov, K. Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents. Biotechnol. Biotechnol. Equip., 2019, 33(1), 671-682.
[http://dx.doi.org/10.1080/13102818.2019.1611385]
[9]
Xingfei, L.; Shunshun, P.; Wenji, Z.; Lingli, S.; Qiuhua, L.; Ruohong, C.; Shili, S. Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its antihypertensive activity. Process Biochem., 2020, 92, 277-287.
[http://dx.doi.org/10.1016/j.procbio.2020.01.021]
[10]
Cardoso, C.; Afonso, C.; Bandarra, N.M. Seafood lipids and cardiovascular health. Nutrire, 2016, 41(1), 7.
[http://dx.doi.org/10.1186/s41110-016-0008-8]
[11]
Lee, S.Y.; Hur, S.J. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem., 2017, 228, 506-517.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.039] [PMID: 28317757]
[12]
Ismail, R.; Csóka, I. Novel strategies in the oral delivery of antidiabetic peptide drugs-Insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm., 2017, 115, 257-267.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.015] [PMID: 28336368]
[13]
Marya, H.; Khan, H.; Nabavi, S.M.; Habtemariam, S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci., 2018, 193, 153-158.
[http://dx.doi.org/10.1016/j.lfs.2017.10.025] [PMID: 29055800]
[14]
Gong, P.X.; Wang, B.K.; Wu, Y.C.; Li, Q.Y.; Qin, B.W.; Li, H.J. Release of antidiabetic peptides from Stichopus japonicas by simulated gastrointestinal digestion. Food Chem., 2020, 315, 126273.
[http://dx.doi.org/10.1016/j.foodchem.2020.126273] [PMID: 32032832]
[15]
Chai, H.J.; Wu, C.J.; Yang, S.H.; Li, T.L.; Sun, Pan B. Peptides from hydrolysate of lantern fish (Benthosema pterotum) proved neuroprotective in vitro and in vivo. J. Funct. Foods, 2016, 24, 438-449.
[http://dx.doi.org/10.1016/j.jff.2016.04.009]
[16]
Desai, A.; Singh, N.; Raghubir, R. Neuroprotective potential of the NF- k B inhibitor peptide IKK-NBD in cerebral. Neurochem. Int., 2010, 57, 876-883.
[http://dx.doi.org/10.1016/j.neuint.2010.09.006] [PMID: 20868715]
[17]
Ren, H.; Luo, C.; Feng, Y.; Yao, X.; Shi, Z.; Liang, F.; Kang, J.X.; Wan, J.B.; Pei, Z.; Su, H. Omega‐3 polyunsaturated fatty acids promote amyloid‐β clearance from the brain through mediating the function of the glymphatic system. FASEB J., 2017, 31(1), 282-293.
[http://dx.doi.org/10.1096/fj.201600896] [PMID: 27789520]
[18]
Mohan, A.; McClements, D.J.; Udenigwe, C.C. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem., 2016, 213, 143-148.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.075] [PMID: 27451165]
[19]
Esquerdo, V.M.; Dotto, G.L.; Pinto, L.A.A. Preparation of nanoemulsions containing unsaturated fatty acid concentrate–chitosan capsules. J. Colloid Interface Sci., 2015, 445, 137-142.
[http://dx.doi.org/10.1016/j.jcis.2014.12.094] [PMID: 25617613]
[20]
Neves, M.A.; Hashemi, J.; Prentice, C. Development of novel bioactives delivery systems by micro/nanotechnology. Curr. Opin. Food Sci., 2015, 1, 7-12.
[http://dx.doi.org/10.1016/j.cofs.2014.09.002]
[21]
Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[22]
Bazana, M.T.; Codevilla, C.F.; de Menezes, C.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives. Curr. Opin. Food Sci., 2019, 26, 47-56.
[http://dx.doi.org/10.1016/j.cofs.2019.03.005]
[23]
Livney, Y.D. Nanostructured delivery systems in food: Latest developments and potential future directions. Curr. Opin. Food Sci., 2015, 3, 125-135.
[http://dx.doi.org/10.1016/j.cofs.2015.06.010]
[24]
A., Attama; M., Momoh; P., Builders Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. Recent Adv. Nov. Drug Carr. Syst., 2012, 5, 107-140.
[http://dx.doi.org/10.5772/50486]
[25]
Zhang, Z.; Gao, F.; Jiang, S.; Chen, L.; Liu, Z.; Yu, H.; Li, Y. Bile salts enhance the intestinal absorption of lipophilic drug loaded lipid nanocarriers: Mechanism and effect in rats. Int. J. Pharm., 2013, 452(1-2), 374-381.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.021] [PMID: 23694804]
[26]
Teixeira, M.I.; Lopes, C.M.; Amaral, M.H.; Costa, P.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm., 2020, 149, 192-217.
[http://dx.doi.org/10.1016/j.ejpb.2020.01.005] [PMID: 31982574]
[27]
Esfahani, R.; Jafari, S.M.; Jafarpour, A.; Dehnad, D. Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocoll., 2019, 90, 291-298.
[http://dx.doi.org/10.1016/j.foodhyd.2018.12.044]
[28]
Luo, Y. Perspectives on important considerations in designing nanoparticles for oral delivery applications in food. J. Agricult. Food Res., 2020, 2, 100031.
[http://dx.doi.org/10.1016/j.jafr.2020.100031]
[29]
Niu, Z.; Conejos-Sánchez, I.; Griffin, B.T.; O’Driscoll, C.M.; Alonso, M.J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 337-354.
[http://dx.doi.org/10.1016/j.addr.2016.04.001] [PMID: 27080735]
[30]
Soares, T.B.; Loureiro, L.; Carvalho, A.; Oliveira, M.E.C.D.R.; Dias, A.; Sarmento, B.; Lúcio, M. Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases? Prog. Neurobiol., 2018, 168, 21-41.
[http://dx.doi.org/10.1016/j.pneurobio.2018.04.004] [PMID: 29641983]
[31]
FDA, Liposome Drug Products. Chemistry, Manufacturing, and Controls; Human Products Pharmacokinetics and Bioavailability; and Labeling Documentation. Guidance for Industry, 2018. https://www.fda.gov/drugs/guidance-compliance-regulatory-inform ation/guidances-drugs
[32]
Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A.; Souto, E.B. Lipid nanocarriers for the loading of polyphenols-a comprehensive review. Adv. Colloid Interface Sci., 2018, 260, 85-94.
[http://dx.doi.org/10.1016/j.cis.2018.08.007] [PMID: 30177215]
[33]
Montes, C.; Villaseñor, M.J.; Ríos, Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci. Technol., 2019, 90, 47-62.
[http://dx.doi.org/10.1016/j.tifs.2019.06.001]
[34]
Nene, S.; Shah, S.; Rangaraj, N.; Mehra, N.K.; Singh, P.K.; Srivastava, S. Lipid based nanocarriers: A novel paradigm for topical antifungal therapy. J. Drug Deliv. Sci. Technol., 2021, 62, 102397.
[http://dx.doi.org/10.1016/j.jddst.2021.102397]
[35]
Chen, J.; Hu, L. Nanoscale delivery system for nutraceuticals: Preparation, application, characterization, safety, and future trends. Food Eng. Rev., 2020, 12(1), 14-31.
[http://dx.doi.org/10.1007/s12393-019-09208-w]
[36]
Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[37]
Meenambal, R.; Srinivas Bharath, M.M. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem. Int., 2020, 140, 104851.
[http://dx.doi.org/10.1016/j.neuint.2020.104851] [PMID: 32976906]
[38]
Su, L.; Zhou, F.; Yu, M.; Ge, R.; He, J.; Zhang, B.; Zhang, Y.; Fan, J. Solid lipid nanoparticles enhance the resistance of oat-derived peptides that inhibit dipeptidyl peptidase IV in simulated gastrointestinal fluids. J. Funct. Foods, 2020, 65, 103773.
[http://dx.doi.org/10.1016/j.jff.2019.103773]
[39]
Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[40]
Khan, S.; Ganguli, M.; Aditya, A.; Khan, S.; Baboota, S.; Ali, J. Improved in vivo performance and immunomodulatory effect of novel Omega-3 fatty acid based Tacrolimus nanostructured lipid carrier. J. Drug Deliv. Sci. Technol., 2019, 52, 138-149.
[http://dx.doi.org/10.1016/j.jddst.2019.04.019]
[41]
Azizi, M.; Kierulf, A.; Connie Lee, M.; Abbaspourrad, A. Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chem., 2018, 246, 448-456.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.009] [PMID: 29291872]
[42]
Babazadeh, A.; Ghanbarzadeh, B.; Hamishehkar, H. Formulation of food grade nanostructured lipid carrier (NLC) for potential applications in medicinal-functional foods. J. Drug Deliv. Sci. Technol., 2017, 39, 50-58.
[http://dx.doi.org/10.1016/j.jddst.2017.03.001]
[43]
Yousefi, M.; Ehsani, A.; Jafari, S.M. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Adv. Colloid Interface Sci., 2019, 270, 263-277.
[http://dx.doi.org/10.1016/j.cis.2019.07.005] [PMID: 31306852]
[44]
Lacatusu, I.; Badea, G.; Popescu, M.; Bordei, N.; Istrati, D.; Moldovan, L.; Seciu, A.M.; Panteli, M.I.; Rasit, I.; Badea, N. Marigold extract, azelaic acid and black caraway oil into lipid nanocarriers provides a strong anti-inflammatory effect in vivo. Ind. Crops Prod., 2017, 109, 141-150.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.030]
[45]
Aisyah, Y.; Irwanda, L.P.; Haryani, S.; Safriani, N. Safriani, Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion. IOP Conf. Ser. Mater. Sci. Eng., 2018, 352
[http://dx.doi.org/10.1088/1757-899X/352/1/012050]
[46]
Hsu, C.Y.; Wang, P.W.; Alalaiwe, A.; Lin, Z.C.; Fang, J.Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients, 2019, 11(1), 68.
[http://dx.doi.org/10.3390/nu11010068] [PMID: 30609658]
[47]
Chun, J.Y.; Min, S.G.; Jo, Y.J. Production of low molecular collagen peptides-loaded liposomes using different charged lipids. Chem. Phys. Lipids, 2017, 209, 1-8.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.10.003] [PMID: 29031811]
[48]
Fathi, M.; Martín, Á.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol., 2014, 39(1), 18-39.
[http://dx.doi.org/10.1016/j.tifs.2014.06.007]
[49]
Soltani, S.; Madadlou, A. Gelation characteristics of the sugar beet pectin solution charged with fish oil-loaded zein nanoparticles. Food Hydrocoll., 2015, 43, 664-669.
[http://dx.doi.org/10.1016/j.foodhyd.2014.07.030]
[50]
Gibis, M.; Zeeb, B.; Weiss, J. Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocoll., 2014, 38, 28-39.
[http://dx.doi.org/10.1016/j.foodhyd.2013.11.014]
[51]
da Rosa Zavareze, E.; Telles, A.C.; Mello El Halal, S.L.; da Rocha, M.; Colussi, R.; Marques de Assis, L.; Suita de Castro, L.A.; Guerra Dias, A.R.; Prentice-Hernández, C. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. Lebensm. Wiss. Technol., 2014, 59(2), 841-848.
[http://dx.doi.org/10.1016/j.lwt.2014.05.013]
[52]
Jafari, S.M.; Katouzian, I.; Rajabi, H.; Ganje, M. Bioavailability and release of bioactive components from nanocapsules; Elsevier Inc: Amsterdam, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00013-6]
[53]
Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions; Elsevier B.V.: Amsterdam, 2018.
[http://dx.doi.org/10.1016/j.trac.2018.04.005]
[54]
Cipolari, O.C.; de Oliveira Neto, X.A.; Conceição, K. Fish bioactive peptides: A systematic review focused on sting and skin. Aquaculture, 2020, 515, 734598.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734598]
[55]
Ghalamara, S.; Silva, S.; Brazinha, C.; Pintado, M. Valorization of fish by-products: Purification of bioactive peptides from codfish blood and sardine cooking wastewaters by membrane processing. Membranes, 2020, 10(3), 44.
[http://dx.doi.org/10.3390/membranes10030044] [PMID: 32183207]
[56]
Carrillo, W.; Barrio, D.; Welbaum, J.; Carpio, C.; Vilcacundo, R.; Morales, D.; Ortiz, J. Antimicrobial and antioxidant peptides obtained from food proteins. Bioact; Pept. Types, Roles Res,, 2017, 37-58.
[57]
Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Mar. Biotechnol., 2018, 20(2), 118-130.
[http://dx.doi.org/10.1007/s10126-018-9799-3] [PMID: 29532335]
[58]
Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol., 2020, 40(7), 978-992.
[http://dx.doi.org/10.1080/07388551.2020.1796576] [PMID: 32781848]
[59]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem., 2018, 245, 205-222.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[60]
Aluko, R.E. Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol., 2015, 6(1), 235-262.
[http://dx.doi.org/10.1146/annurev-food-022814-015520] [PMID: 25884281]
[61]
Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol., 2014, 36(2), 137-143.
[http://dx.doi.org/10.1016/j.tifs.2014.02.004]
[62]
Yu, W.; Field, C.J.; Wu, J. Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chem., 2018, 253, 101-107.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.093] [PMID: 29502808]
[63]
McMasters, J.; Poh, S.; Lin, J.B.; Panitch, A. Delivery of anti-inflammatory peptides from hollow PEGylated poly(NIPAM) nanoparticles reduces inflammation in an ex vivo osteoarthritis model. J. Control. Release, 2017, 258, 161-170.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.008] [PMID: 28495577]
[64]
Manzanares, P.; Martínez, R.; Garrigues, S.; Genovés, S.; Ramón, D.; Marcos, J.; Martorell, P. Tryptophan-containing dual neuroprotective peptides: prolyl endopeptidase inhibition and Caenorhabditis elegans protection from β-amyloid peptide toxicity. Int. J. Mol. Sci., 2018, 19(5), 1491.
[http://dx.doi.org/10.3390/ijms19051491] [PMID: 29772745]
[65]
Cervia, D.; Catalani, E.; Casini, G. Neuroprotective peptides in retinal disease. J. Clin. Med., 2019, 8(8), 1146.
[http://dx.doi.org/10.3390/jcm8081146] [PMID: 31374938]
[66]
Sowmya, K.; Bhat, M.I.; Bajaj, R.K.; Kapila, S.; Kapila, R. Buffalo milk casein derived decapeptide (YQEPVLGPVR) having bifunctional anti-inflammatory and antioxidative features under cellular milieu. Int. J. Pept. Res. Ther., 2019, 25(2), 623-633.
[http://dx.doi.org/10.1007/s10989-018-9708-7]
[67]
Jacobsen, C.; García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annu. Rev. Food Sci. Technol., 2018, 9(1), 525-549.
[http://dx.doi.org/10.1146/annurev-food-030117-012348] [PMID: 29400995]
[68]
Dias, Junior, W.; Baviera, A.M.; Zanon, N.M.; Galban, V.D.; Garófalo, M.A.R.; MacHado, C.R.; Bailão, E.F.L.C.; Kettelhut, I.C. Lipolytic response of adipose tissue and metabolic adaptations to long periods of fasting in red tilapia (Oreochromis sp., Teleostei: Cichlidae). An. Acad. Bras. Cienc., 2016, 88(3 suppl), 1743-1754.
[http://dx.doi.org/10.1590/0001-3765201620150484] [PMID: 27556329]
[69]
McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci., 2018, 253, 1-22.
[http://dx.doi.org/10.1016/j.cis.2018.02.002] [PMID: 29478671]
[70]
Cian, R.E.; Salgado, P.R.; Mauri, A.N.; Drago, S.R. Pyropia columbina phycocolloids as microencapsulating material improve bioaccessibility of brewers’ spent grain peptides with ACE‐I inhibitory activity. Int. J. Food Sci. Technol., 2020, 55(3), 1311-1317.
[http://dx.doi.org/10.1111/ijfs.14397]
[71]
Carrillo, B.; Mosquera, M. Evaluación de la extracción de ácidos grasos a partir de cabezas de sardina (Opisthonema libertate) subproducto de la industria pesquera. Enfoque UTE, 2017, 8(4), 68-85.
[http://dx.doi.org/10.29019/enfoqueute.v8n4.173]
[72]
Valverde, L.M.; Moreno, P.A.G.; Callejón, M.J.J.; Cerdán, L.E.; Medina, A.R. Concentration of eicosapentaenoic acid (EPA) by selective alcoholysis catalyzed by lipases. Eur. J. Lipid Sci. Technol., 2013, 115(9), 990-1004.
[http://dx.doi.org/10.1002/ejlt.201300005]
[73]
Fabian, C.J.; Kimler, B.F.; Hursting, S.D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res., 2015, 17(1), 62.
[http://dx.doi.org/10.1186/s13058-015-0571-6] [PMID: 25936773]
[74]
Arias-Rico, J.; Cerón-Sandoval, M.I.; Sandoval-Gallegos, E.M.; Ramírez-Moreno, E.; Fernández-Cortés, T.L.; Jaimez-Ordaz, J.; Contreras-López, E.; Añorve-Morga, J. Evaluation of consumption of poultry products enriched with omega-3 fatty acids in anthropometric, biochemical, and cardiovascular parameters. J. Food Qual., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/9620104]
[75]
Thesing, C.S.; Bot, M.; Milaneschi, Y.; Giltay, E.J.; Penninx, B.W.J.H. Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology, 2018, 87, 53-62.
[http://dx.doi.org/10.1016/j.psyneuen.2017.10.005] [PMID: 29040890]
[76]
Nestel, P.; Clifton, P.; Colquhoun, D.; Noakes, M.; Mori, T.A.; Sullivan, D.; Thomas, B. Indications for Omega-3 long chain polyunsaturated fatty acid in the prevention and treatment of cardiovascular disease. Heart Lung Circ., 2015, 24(8), 769-779.
[http://dx.doi.org/10.1016/j.hlc.2015.03.020] [PMID: 25936871]
[77]
Ghasemi, S.; Abbasi, S. Formation of natural casein micelle nanocapsule by means of pH changes and ultrasound. Food Hydrocoll., 2014, 42, 42-47.
[http://dx.doi.org/10.1016/j.foodhyd.2013.10.028]
[78]
Hadian, Z. A review of nanoliposomal delivery system for stabilization of bioactive omega-3 fatty acids. Electron. Physician, 2016, 8(1), 1776-1785.
[http://dx.doi.org/10.19082/1776] [PMID: 26955449]
[79]
de Lorgeril, M.; Salen, P. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids. BMC Med., 2012, 10(1), 50.
[http://dx.doi.org/10.1186/1741-7015-10-50] [PMID: 22613931]
[80]
Huang, J.; Wang, Q.; Li, T.; Xia, N.; Xia, Q. Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. J. Food Eng., 2017, 215, 1-12.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.07.002]
[81]
Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem., 2014, 25(4), 363-376.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[82]
Ahmad, R.; Srivastava, S.; Ghosh, S.; Khare, S.K. Phytochemical delivery through nanocarriers: A review. Colloids Surf. B Biointerfaces, 2021, 197, 111389.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111389] [PMID: 33075659]
[83]
Iglesias-Carres, L.; Hughes, M.D.; Steele, C.N.; Ponder, M.A.; Davy, K.P.; Neilson, A.P. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. J. Nutr. Biochem., 2021, 91, 108600.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108600] [PMID: 33577949]
[84]
Nguyen, T.H.P.; Kumar, V.B.; Ponnusamy, V.K.; Mai, T.T.T.; Nhat, P.T.; Brindhadevi, K.; Pugazhendhi, A. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem., 2021, 104, 55-75.
[http://dx.doi.org/10.1016/j.procbio.2021.02.004]
[85]
Hamzeh, A.; Noisa, P.; Yongsawatdigul, J. Characterization of the antioxidant and ACE-inhibitory activities of Thai fish sauce at different stages of fermentation. J. Funct. Foods, 2020, 64, 103699.
[http://dx.doi.org/10.1016/j.jff.2019.103699]
[86]
Ambigaipalan, P.; Shahidi, F. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. J. Funct. Foods, 2017, 34, 7-17.
[http://dx.doi.org/10.1016/j.jff.2017.04.013]
[87]
Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides during food processing. Food Chem., 2017.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.119] [PMID: 29934183]
[88]
Montenegro, L.; Panico, A.; Santagati, L.; Siciliano, E.; Intagliata, S.; Modica, M. Solid lipid nanoparticles loading idebenone ester with pyroglutamic acid: In vitro antioxidant activity and in vivo topical efficacy. Nanomaterials, 2018, 9(1), 43.
[http://dx.doi.org/10.3390/nano9010043] [PMID: 30597985]
[89]
Canabady-Rochelle, L.L.S.; Harscoat-Schiavo, C.; Kessler, V.; Aymes, A.; Fournier, F.; Girardet, J.M. Determination of reducing power and metal chelating ability of antioxidant peptides: Revisited methods. Food Chem., 2015, 183, 129-135.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.147] [PMID: 25863620]
[90]
Zheng, L.; Zhao, M.; Xiao, C.; Zhao, Q.; Su, G. Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides: Importance of controlling reaction pH and time. Food Chem., 2016, 192, 288-294.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.015] [PMID: 26304349]
[91]
Girgih, A.T.; He, R.; Hasan, F.M.; Udenigwe, C.C.; Gill, T.A.; Aluko, R.E. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chem., 2015, 173, 652-659.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.079] [PMID: 25466072]
[92]
Jin, D.; Liu, X.; Zheng, X.; Wang, X.; He, J. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem., 2016, 204, 427-436.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.119] [PMID: 26988521]
[93]
Lacatusu, I.; Badea, N.; Badea, G.; Brasoveanu, L.; Stan, R.; Ott, C.; Oprea, O.; Meghea, A. Ivy leaves extract based-lipid nanocarriers and their bioefficacy on antioxidant and antitumor activities. RSC Advances, 2016, 6(81), 77243-77255.
[http://dx.doi.org/10.1039/C6RA12016D]
[94]
Pamornpathomkul, B.; Rangsimawong, W.; Rojanarata, T.; Opanasopit, P.; Chaiyodsilp, C.; Ngawhirunpat, T. Lipid-based nanocarriers to enhance skin permeation and antioxidant activity of Centella asiatica extract. MATEC Web Conf., 2018, 192, 01016.
[http://dx.doi.org/10.1051/matecconf/201819201016]
[95]
Pinto, F.; de Barros, D.P.C.; Fonseca, L.P. Design of multifunctional nanostructured lipid carriers enriched with α-tocopherol using vegetable oils. Ind. Crops Prod., 2018, 118, 149-159.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.042]
[96]
de Castro, R.J.S.; Sato, H.H. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res. Int., 2015, 74, 185-198.
[http://dx.doi.org/10.1016/j.foodres.2015.05.013] [PMID: 28411983]
[97]
Lewies, A.; Wentzel, J.F.; Jordaan, A.; Bezuidenhout, C.; Du Plessis, L.H. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int. J. Pharm., 2017, 526(1-2), 244-253.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.071] [PMID: 28461263]
[98]
Hamishehkar, H.; Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res. Pharm. Sci., 2017, 12(5), 409-415.
[http://dx.doi.org/10.4103/1735-5362.213986] [PMID: 28974979]
[99]
Kumar, N.; Yin, C. The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol. Res., 2018, 134, 268-279.
[http://dx.doi.org/10.1016/j.phrs.2018.07.006] [PMID: 29990624]
[100]
Gu, Y.; Liang, Y.; Bai, J.; Wu, W.; Lin, Q.; Wu, J. Spent hen-derived ACE inhibitory peptide IWHHT shows antioxidative and anti-inflammatory activities in endothelial cells. J. Funct. Foods, 2019, 53, 85-92.
[http://dx.doi.org/10.1016/j.jff.2018.12.006]
[101]
Xue, L.; Wang, X.; Hu, Z.; Wu, Z.; Wang, L.; Wang, H.; Yang, M. Identification and characterization of an angiotensin-converting enzyme inhibitory peptide derived from bovine casein. Peptides, 2018, 99, 161-168.
[http://dx.doi.org/10.1016/j.peptides.2017.09.021] [PMID: 28987277]
[102]
Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem., 2017, 218, 396-405.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.053] [PMID: 27719926]
[103]
Halim, N.R.A.; Yusof, H.M.; Sarbon, N.M. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci. Technol., 2016, 51, 24-33.
[http://dx.doi.org/10.1016/j.tifs.2016.02.007]
[104]
Corrêa, A.P.F.; Bertolini, D.; Lopes, N.A.; Veras, F.F.; Gregory, G.; Brandelli, A. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. Lebensm. Wiss. Technol., 2019, 101, 107-112.
[http://dx.doi.org/10.1016/j.lwt.2018.11.036]
[105]
Maqsoudlou, A.; Assadpour, E.; Mohebodini, H.; Jafari, S.M. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv. Colloid Interface Sci., 2020, 278, 102122.
[http://dx.doi.org/10.1016/j.cis.2020.102122] [PMID: 32097732]
[106]
Ray, S.; Raychaudhuri, U.; Chakraborty, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci., 2016, 13, 76-83.
[http://dx.doi.org/10.1016/j.fbio.2015.12.009]
[107]
Batista, P.; Castro, P.M.; Madureira, A.R.; Sarmento, B.; Pintado, M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides, 2018, 101, 112-123.
[http://dx.doi.org/10.1016/j.peptides.2018.01.002] [PMID: 29329977]
[108]
Abdelhedi, O.; Nasri, M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci. Technol., 2019, 88, 543-557.
[http://dx.doi.org/10.1016/j.tifs.2019.04.002]
[109]
Hosseini, S.F.; Ramezanzade, L.; Nikkhah, M. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1455-1463.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.141] [PMID: 28552724]
[110]
Rezaei, N.; Mehrnejad, F.; Vaezi, Z.; Sedghi, M.; Asghari, S.M.; Naderi-Manesh, H. Encapsulation of an endostatin peptide in liposomes: Stability, release, and cytotoxicity study. Colloids Surf. B Biointerfaces, 2020, 185, 110552.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110552] [PMID: 31648117]
[111]
Mosquera, M.; Giménez, B.; da Silva, I.M.; Boelter, J.F.; Montero, P.; Gómez-Guillén, M.C.; Brandelli, A. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem., 2014, 156, 144-150.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.011] [PMID: 24629950]
[112]
Chen, T.L.; Lo, Y.C.; Hu, W.T.; Wu, M.C.; Chen, S.T.; Chang, H.M. Microencapsulation and modification of synthetic peptides of food proteins reduces the blood pressure of spontaneously hypertensive rats. J. Agric. Food Chem., 2003, 51(6), 1671-1675.
[http://dx.doi.org/10.1021/jf020900u] [PMID: 12617603]
[113]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[114]
Lemmerman, L.R.; Das, D.; Higuita-Castro, N.; Mirmira, R.G.; Gallego-Perez, D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, and treatment. Trends Endocrinol. Metab., 2020, 31(6), 448-458.
[http://dx.doi.org/10.1016/j.tem.2020.02.001] [PMID: 32396845]
[115]
Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, 11(2), 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[116]
Dullius, A.; Fassina, P.; Giroldi, M.; Goettert, M.I.; Volken de Souza, C.F. A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res. Int., 2020, 131, 109002.
[http://dx.doi.org/10.1016/j.foodres.2020.109002] [PMID: 32247480]
[117]
Wang, F.; Zhang, Y.; Yu, T.; He, J.; Cui, J.; Wang, J.; Cheng, X.; Fan, J. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in Caco-2 cells. J. Funct. Foods, 2018, 42, 12-20.
[http://dx.doi.org/10.1016/j.jff.2017.12.061]
[118]
Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic properties: A review. Int. J. Food Sci. Technol., 2019, 54(6), 1909-1919.
[http://dx.doi.org/10.1111/ijfs.14090]
[119]
Cudennec, B.; Balti, R.; Ravallec, R.; Caron, J.; Bougatef, A.; Dhulster, P.; Nedjar, N. In vitro evidence for gut hormone stimulation release and dipeptidyl-peptidase IV inhibitory activity of protein hydrolysate obtained from cuttlefish (Sepia officinalis) viscera. Food Res. Int., 2015, 78, 238-245.
[http://dx.doi.org/10.1016/j.foodres.2015.10.003] [PMID: 28433288]
[120]
Jan, F.; Kumar, S.; Jha, R. Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein. Vet. World, 2016, 9(10), 1152-1156.
[http://dx.doi.org/10.14202/vetworld.2016.1152-1156] [PMID: 27847428]
[121]
Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem., 2012, 135(3), 2078-2085.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.088] [PMID: 22953959]
[122]
Jin, H.; Zhang, Y.J.; Jiang, J.X.; Zhu, L.Y.; Chen, P.; Li, J.; Yao, H.Y. Studies on the extraction of pumpkin components and their biological effects on blood glucose of diabetic mice. J. Food Drug Anal., 2013, 21(2), 184-189.
[http://dx.doi.org/10.1016/j.jfda.2013.05.009]
[123]
Nowak, E.; Livney, Y.D.; Niu, Z.; Singh, H. Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics? Trends Food Sci. Technol., 2019, 91, 557-573.
[http://dx.doi.org/10.1016/j.tifs.2019.07.029]
[124]
Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[125]
Piazzini, V.; Micheli, L.; Luceri, C.; D’Ambrosio, M.; Cinci, L.; Ghelardini, C.; Bilia, A.R.; Di Cesare Mannelli, L.; Bergonzi, M.C. Nanostructured lipid carriers for oral delivery of silymarin: Improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int. J. Pharm., 2019, 572, 118838.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118838] [PMID: 31715362]
[126]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[127]
Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci., 2019, 14(5), 480-496.
[http://dx.doi.org/10.1016/j.ajps.2018.09.005] [PMID: 32104476]
[128]
Robles Bayón, A.; Gude Sampedro, F. New evidence of the relative protective effects of neurodegenerative diseases and cancer against each other. Neurologia, 2019, 34(5), 283-290.
[http://dx.doi.org/10.1016/j.nrleng.2017.01.011]
[129]
Arbo, B.D.; Ribeiro, M.F.; Garcia-Segura, L.M. Development of new treatments for Alzheimer’s disease based on the modulation of translocator protein (TSPO). Ageing Res. Rev., 2019, 54, 100943.
[http://dx.doi.org/10.1016/j.arr.2019.100943] [PMID: 31430564]
[130]
Derakhshankhah, H.; Sajadimajd, S.; Jafari, S.; Izadi, Z.; Sarvari, S.; Sharifi, M.; Falahati, M.; Moakedi, F.; Muganda, W.C.A.; Müller, M.; Raoufi, M.; Presley, J.F. Novel therapeutic strategies for Alzheimer’s disease: Implications from cell-based therapy and nanotherapy. Nanomedicine, 2020, 24, 102149.
[http://dx.doi.org/10.1016/j.nano.2020.102149] [PMID: 31927133]
[131]
Babazadeh, A.; Mohammadi Vahed, F.; Jafari, S.M. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J. Control. Release, 2020, 321, 211-221.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.015] [PMID: 32035189]
[132]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Patel, R.J.; Ajazuddin, V.; Ravichandiran, V.; Murty, U.S.; Alexander, A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release, 2020, 321, 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[133]
Jeon, S.; Yoo, C.Y.; Park, S.N. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf. B Biointerfaces, 2015, 129, 7-14.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.018] [PMID: 25819360]
[134]
Taylor, M.; Moore, S.; Mourtas, S.; Niarakis, A.; Re, F.; Zona, C.; Ferla, B.L.; Nicotra, F.; Masserini, M.; Antimisiaris, S.G.; Gregori, M.; Allsop, D. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine, 2011, 7(5), 541-550.
[http://dx.doi.org/10.1016/j.nano.2011.06.015] [PMID: 21722618]
[135]
Cacciatore, I.; Ciulla, M.; Fornasari, E.; Marinelli, L.; Di Stefano, A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin. Drug Deliv., 2016, 13(8), 1121-1131.
[http://dx.doi.org/10.1080/17425247.2016.1178237] [PMID: 27073977]
[136]
Lane, K.E.; Li, W.; Smith, C.; Derbyshire, E. The bioavailability of an omega-3-rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. Int. J. Food Sci. Technol., 2014, 49(5), 1264-1271.
[http://dx.doi.org/10.1111/ijfs.12455]
[137]
Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol., 2018, 74, 132-146.
[http://dx.doi.org/10.1016/j.tifs.2018.02.001]
[138]
Castro, P.M.; Baptista, P.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int. J. Pharm., 2018, 547(1-2), 593-601.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051] [PMID: 29800740]
[139]
Li, J.; Chen, B.; Yu, T.; Guo, M.; Zhao, S.; Zhang, Y.; Jin, C.; Peng, X.; Zeng, J.; Yang, J.; Song, X. An efficient controlled release strategy for hypertension therapy: Folate-mediated lipid nanoparticles for oral peptide delivery. Pharmacol. Res., 2020, 157, 104796.
[http://dx.doi.org/10.1016/j.phrs.2020.104796] [PMID: 32278048]
[140]
Latorres, J.M.; Aquino, S.; Rocha, M.; Wasielesky, W., Jr; Martins, V.G.; Prentice, C. Nanoencapsulation of white shrimp peptides in liposomes: Characterization, stability, and influence on bioactive properties. J. Food Process. Preserv., 2021, 45(7)
[http://dx.doi.org/10.1111/jfpp.15591]
[141]
Hanato, J.; Kuriyama, K.; Mizumoto, T.; Debari, K.; Hatanaka, J.; Onoue, S.; Yamada, S. Liposomal formulations of glucagon-like peptide-1: Improved bioavailability and anti-diabetic effect. Int. J. Pharm., 2009, 382(1-2), 111-116.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.013] [PMID: 19698772]
[142]
Szczęch, M.; Szczepanowicz, K.; Jantas, D.; Piotrowski, M.; Kida, A.; Lasoń, W.; Warszyński, P. Neuroprotective action of undecylenic acid (UDA) encapsulated into PCL nanocarriers. Colloids Surf. A Physicochem. Eng. Asp., 2017, 532, 41-47.
[http://dx.doi.org/10.1016/j.colsurfa.2017.07.009]
[143]
Rakotoarisoa, M.; Angelov, B.; Garamus, V.M.; Angelova, A. Curcumin- and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2 -induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega, 2019, 4(2), 3061-3073.
[http://dx.doi.org/10.1021/acsomega.8b03101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy