Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Marburg Virus- A Threat During SARS-CoV-2 Era: A Review

Author(s): Sumel Ashique*, Vatan Chaudhary, Soumen Pal, Jonee Panwar, Mukesh Kumar, Soumi Pramanik, Abhipsa Sinha and Anagh Mukherjee

Volume 23, Issue 5, 2023

Published on: 27 March, 2023

Article ID: e280223214111 Pages: 13

DOI: 10.2174/1871526523666230228103845

Price: $65

conference banner
Abstract

In the German towns of Marburg, Frankfurt, and Belgrade in 1967, this single negativestranded RNA virus was initially discovered. The importation of infected grivet monkeys from Uganda is what caused this virus-related sickness. As a result of the early link between viruses and non-human primates, this virus is frequently referred to as vervet monkey sickness. This virus causes Marburg hemorrhagic fever in humans and non-human primates. Human endothelial cells serve as the primary vehicle for replication. According to a 2009 report, the virus was being stored in Egyptian fruit bats (Rousettus aegyptiacus). Body fluids, unprotected sex, broken or injured skin, and other bodily fluids are the main routes of transmission. After the incubation period, symptoms like chills, headaches, myalgia, and stomach pain start to show up. There is no specific medication for such an infection, only hydration therapy and adequate oxygenation are followed. The following diagnostic techniques can be used to confirm the diagnosis: (i) an antibody-capture enzyme linked immunosorbent assay (ELISA); ii) an antigen capture ELISA test; iii) a serum neutralization test; iv) an RT PCR assay; v) electron microscopy; or vi) virus isolation by cell culture. Because MARV is a risk group 4 infection, laboratory staff must take strict precautions (RG-4).

Keywords: Marburg virus, transmission, animal model, RNA virus, ELISA, PCR assay.

Graphical Abstract
[1]
Martini GA. Marburg virus disease. Postgrad Med J 1973; 49(574): 542-6.
[http://dx.doi.org/10.1136/pgmj.49.574.542] [PMID: 4207635]
[2]
Peterson AT, Holder MT. Phylogenetic assessment of filoviruses: How many lineages of Marburg virus? Ecol Evol 2012; 2(8): 1826-33.
[http://dx.doi.org/10.1002/ece3.297] [PMID: 22957185]
[3]
Brauburger K, Hume AJ, Mühlberger E, Olejnik J. Forty-five years of Marburg virus research. Viruses 2012; 4(10): 1878-927.
[http://dx.doi.org/10.3390/v4101878] [PMID: 23202446]
[4]
Falzarano D, Feldmann H. Marburg virus. Encyc Virol 2008; pp. 272-80.
[http://dx.doi.org/10.1016/B978-012374410-4.00658-0]
[5]
Towner JS, Pourrut X, Albariño CG, et al. Marburg virus infection detected in a common African bat. PLoS One 2007; 2(8): e764.
[http://dx.doi.org/10.1371/journal.pone.0000764] [PMID: 17712412]
[6]
Paweska JT, Jansen van Vuren P, Fenton KA, et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J Infect Dis 2015; 212 (Suppl. 2): S109-18.
[http://dx.doi.org/10.1093/infdis/jiv132] [PMID: 25838270]
[7]
Martini GA, Schmidt HA. Spermatogenic transmission of the “Marburg virus”. (Causes of “Marburg simian disease”). Klin Wochenschr 1968; 46(7): 398-400.
[http://dx.doi.org/10.1007/BF01734141] [PMID: 4971902]
[8]
CDC. Marburg (Marburg Virus Disease): Transmission. Available from : https://www.cdc.gov/vhf/marburg/transmission/index.html
[9]
Towner JS, Amman BR, Sealy TK, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 2009; 5(7): e1000536.
[http://dx.doi.org/10.1371/journal.ppat.1000536] [PMID: 19649327]
[10]
Pigott DM, Golding N, Mylne A, et al. Mapping the zoonotic niche of Marburg virus disease in Africa. Trans R Soc Trop Med Hyg 2015; 109(6): 366-78.
[http://dx.doi.org/10.1093/trstmh/trv024] [PMID: 25820266]
[11]
Pavlin BI. Calculation of incubation period and serial interval from multiple outbreaks of Marburg virus disease. BMC Res Notes 2014; 7(1): 906.
[http://dx.doi.org/10.1186/1756-0500-7-906] [PMID: 25495697]
[12]
Gordon Smith CE, Simpson DIH, Bowen ETW, Zlotnik I. Fatal human disease from vervet monkeys. Lancet 1967; 290(7526): 1119-21.
[http://dx.doi.org/10.1016/S0140-6736(67)90621-6] [PMID: 4168558]
[13]
Gear JS, Cassel GA, Gear AJ, et al. Outbreake of Marburg virus disease in Johannesburg. BMJ 1975; 4(5995): 489-93.
[http://dx.doi.org/10.1136/bmj.4.5995.489] [PMID: 811315]
[14]
Conrad JL, Johnston J, Geldenhuys P, et al. Epidemiologic investigation of Marburg virus disease, Southern Africa, 1975. Am J Trop Med Hyg 1978; 27(6): 1210-5.
[http://dx.doi.org/10.4269/ajtmh.1978.27.1210] [PMID: 569445]
[15]
Smith DH, Isaacson M, Johnson KM, et al. Marburg-virus disease in Kenya. Lancet 1982; 319(8276): 816-20.
[http://dx.doi.org/10.1016/S0140-6736(82)91871-2] [PMID: 6122054]
[16]
Beer B, Kurth R, Bukreyev A. Characteristics of filoviridae: Marburg and ebola viruses. Naturwissenschaften 1999; 86(1): 8-17.
[http://dx.doi.org/10.1007/s001140050562] [PMID: 10024977]
[17]
Bertherat E, Talarmin A, Zeller H. Democratic republic of the congo: Between civil war and the marburg virus. International Committee of Technical and Scientific Coordination of the Durba Epidemic. Med Trop 1999; 59(2): 201-4.
[18]
Hovette P. Epidemic of marburg hemorrhagic fever in angola. Med Tropl 2005; 65(2): 127-8.
[19]
Timen A, Koopmans MPG, Vossen ACTM, et al. Response to imported case of Marburg hemorrhagic fever, the Netherland. Emerg Infect Dis 2009; 15(8): 1171-5.
[http://dx.doi.org/10.3201/eid1508.090015] [PMID: 19751577]
[20]
Selvaraj SA, Lee KE, Harrell M, Ivanov I, Allegranzi B. Infection rates and risk factors for infection among health workers during Ebola and Marburg virus outbreaks: A systematic review. J Infect Dis 2018; 218 (Suppl. 5): S679-89.
[http://dx.doi.org/10.1093/infdis/jiy435] [PMID: 30202878]
[21]
[22]
Aborode AT, Wireko AA, Bel-Nono KN, Quarshie LS, Allison M, Bello MA. Marburg virus amidst COVID-19 pandemic in Guinea: Fighting within the looming cases. Int J Health Plann Manage 2022; 37(1): 553.
[PMID: 34525245]
[23]
Hussain Z. Ghana declares its first outbreak of Marburg virus disease after two deaths. BMJ 2022; 378: o1797.
[http://dx.doi.org/10.1136/bmj.o1797] [PMID: 35853658]
[24]
Abir MH, Rahman T, Das A, et al. Pathogenicity and virulence of Marburg virus. Virulence 2022; 13(1): 609-33.
[http://dx.doi.org/10.1080/21505594.2022.2054760] [PMID: 35363588]
[25]
Ligon BL. Outbreak of Marburg hemorrhagic fever in Angola: a review of the history of the disease and its biological aspects. Semin Pediatr Infect Dis 2005; 16(3): 219-24.
[http://dx.doi.org/10.1053/j.spid.2005.05.001] [PMID: 16044395]
[26]
Grolla A, Lucht A, Dick D, Strong JE, Feldmann H. Laboratory diagnosis of Ebola and Marburg hemorrhagic fever. Bull Soc Pathol Exot 2005; 98(3): 205-9.
[PMID: 16267962]
[27]
Grolla A, Jones SM, Fernando L, et al. The use of a mobile laboratory unit in support of patient management and epidemiological surveillance during the 2005 Marburg outbreak in Angola. PLoS Negl Trop Dis 2011; 5(5): e1183.
[http://dx.doi.org/10.1371/journal.pntd.0001183] [PMID: 21629730]
[28]
Towner JS, Sealy TK, Ksiazek TG, Nichol ST. High-throughput molecular detection of hemorrhagic fever virus threats with applications for outbreak settings. J Infect Dis 2007; 196 (Suppl. 2): S205-12.
[http://dx.doi.org/10.1086/520601] [PMID: 17940951]
[29]
Schnittler HJ, Mahner F, Drenckhahn D, Klenk HD, Feldmann H. Replication of Marburg virus in human endothelial cells. A possible mechanism for the development of viral hemorrhagic disease. J Clin Invest 1993; 91(4): 1301-9.
[http://dx.doi.org/10.1172/JCI116329] [PMID: 8473483]
[30]
Hensley LE, Alves DA, Geisbert JB, et al. Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J Infect Dis 2011; 204 (Suppl. 3): S1021-31.
[http://dx.doi.org/10.1093/infdis/jir339] [PMID: 21987738]
[31]
Shifflett K, Marzi A. Marburg virus pathogenesis – differences and similarities in humans and animal models. Virol J 2019; 16(1): 165.
[http://dx.doi.org/10.1186/s12985-019-1272-z] [PMID: 31888676]
[32]
Geisbert TW, Strong JE, Feldmann H. Considerations in the use of nonhuman primate models of Ebola virus and Marburg virus infection. J Infect Dis 2015; 212 (Suppl. 2): S91-7.
[http://dx.doi.org/10.1093/infdis/jiv284] [PMID: 26063223]
[33]
Simpson DI, Zlotnik I, Rutter DA. Vervet monkey disease. Experiment infection of guinea pigs and monkeys with the causative agent. Br J Exp Pathol 1968; 49(5): 458-64.
[PMID: 5727750]
[34]
Cross RW, Mire CE, Agans KN, Borisevich V, Fenton KA, Geisbert TW. Marburg and Ravn viruses fail to cause disease in the domestic ferret (Mustela putorius furo). J Infect Dis 2018; 218 (Suppl. 5): S448-52.
[http://dx.doi.org/10.1093/infdis/jiy268] [PMID: 29955887]
[35]
Wong G, Zhang Z, He S, et al. Marburg and Ravn virus infections do not cause observable disease in ferrets. J Infect Dis 2018; 218 (Suppl. 5): S471-4.
[http://dx.doi.org/10.1093/infdis/jiy245] [PMID: 29889278]
[36]
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO. Filovirus structural biology: The molecules in the machine. Curr Top Microbiol Immunol 2017; 411: 381-417.
[http://dx.doi.org/10.1007/82_2017_16] [PMID: 28795188]
[37]
Bhattarai N, Gc JB, Gerstman BS, Stahelin RV, Chapagain PP. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer. RSC Advances 2017; 7(37): 22741-8.
[http://dx.doi.org/10.1039/C7RA02940C] [PMID: 28580138]
[38]
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus strategies to escape antiviral responses. Curr Top Microbiol Immunol 2017; 411: 293-322.
[http://dx.doi.org/10.1007/82_2017_13] [PMID: 28685291]
[39]
Zhang APP, Bornholdt ZA, Abelson DM, Saphire EO. Crystal structure of Marburg virus VP24. J Virol 2014; 88(10): 5859-63.
[http://dx.doi.org/10.1128/JVI.03565-13] [PMID: 24574400]
[40]
Edwards MR, Johnson B, Mire CE, et al. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 2014; 6(6): 1017-25.
[http://dx.doi.org/10.1016/j.celrep.2014.01.043] [PMID: 24630991]
[41]
Page A, Volchkova VA, Reid SP, et al. Marburgvirus hijacks nrf2-dependent pathway by targeting NRF2-negative regulator keap1. Cell Rep 2014; 6(6): 1026-36.
[http://dx.doi.org/10.1016/j.celrep.2014.02.027] [PMID: 24630992]
[42]
Kirchdoerfer RN, Moyer CL, Abelson DM, Saphire EO. The Ebola virus VP30-NP interaction is a regulator of viral RNA synthesis. PLoS Pathog 2016; 12(10): e1005937.
[http://dx.doi.org/10.1371/journal.ppat.1005937] [PMID: 27755595]
[43]
Wenigenrath J, Kolesnikova L, Hoenen T, Mittler E, Becker S. Establishment and application of an infectious virus-like particle system for Marburg virus. J Gen Virol 2010; 91(5): 1325-34.
[http://dx.doi.org/10.1099/vir.0.018226-0] [PMID: 20071483]
[44]
Modrof J, Möritz C, Kolesnikova L, et al. Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions. Virology 2001; 287(1): 171-82.
[http://dx.doi.org/10.1006/viro.2001.1027] [PMID: 11504552]
[45]
Yen BC, Basler CF. Effects of filovirus interferon antagonists on responses of human monocyte-derived dendritic cells to RNA virus infection. J Virol 2016; 90(10): 5108-18.
[http://dx.doi.org/10.1128/JVI.00191-16] [PMID: 26962215]
[46]
Guito JC, Albariño CG, Chakrabarti AK, Towner JS. Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system. Virology 2017; 501: 147-65.
[http://dx.doi.org/10.1016/j.virol.2016.11.015] [PMID: 27930961]
[47]
Koehler A, Pfeiffer S, Kolesnikova L, Becker S. Analysis of the multifunctionality of Marburg virus VP40. J Gen Virol 2018; 99(12): 1614-20.
[http://dx.doi.org/10.1099/jgv.0.001169] [PMID: 30394868]
[48]
Kondoh T, Letko M, Munster VJ, et al. Single-nucleotide polymorphisms in human NPC1 influence filovirus entry into cells. J Infect Dis 2018; 218 (Suppl. 5): S397-402.
[http://dx.doi.org/10.1093/infdis/jiy248] [PMID: 30010949]
[49]
Gnirß K, Fiedler M, Krämer-Kühl A, et al. Analysis of determinants in filovirus glycoproteins required for tetherin antagonism. Viruses 2014; 6(4): 1654-71.
[http://dx.doi.org/10.3390/v6041654] [PMID: 24721789]
[50]
King LB, West BR, Schendel SL, Saphire EO. The structural basis for filovirus neutralization by monoclonal antibodies. Curr Opin Immunol 2018; 53: 196-202.
[http://dx.doi.org/10.1016/j.coi.2018.05.001] [PMID: 29940415]
[51]
Sah R, Mohanty A, Reda A, Siddiq A, Mohapatra RK, Dhama K. Marburg virus re-emerged in 2022: recently detected in Ghana, another zoonotic pathogen coming up amid rising cases of Monkeypox and ongoing COVID-19 pandemic- global health concerns and counteracting measures. Vet Q 2022; 42(1): 167-71.
[http://dx.doi.org/10.1080/01652176.2022.2116501] [PMID: 35993230]
[52]
Dolnik O, Stevermann L, Kolesnikova L, Becker S. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur J Cell Biol 2015; 94(7-9): 323-31.
[http://dx.doi.org/10.1016/j.ejcb.2015.05.006] [PMID: 26070789]
[53]
Schudt G, Kolesnikova L, Dolnik O, Sodeik B, Becker S. Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci USA 2013; 110(35): 14402-7.
[http://dx.doi.org/10.1073/pnas.1307681110] [PMID: 23940347]
[54]
Mittler E, Schudt G, Halwe S, Rohde C, Becker S. A fluorescently labeled Marburg virus glycoprotein as a new tool to study viral transport and assembly. J Infect Dis 2018; 218 (Suppl. 5): S318-26.
[http://dx.doi.org/10.1093/infdis/jiy424] [PMID: 30165666]
[55]
WHO. Fact sheets: Marburg virus disease. Available from : http://www.who.int/mediacentre/factsheets/fs_marburg/en/
[56]
CDC. Viral Hemorrhagic Fevers (VHFs). Available from : https://www.cdc.gov/vhf/marburg/index.html
[57]
Geisbert TW, Hensley LE, Geisbert JB, et al. Postexposure treatment of Marburg virus infection. Emerg Infect Dis 2010; 16(7): 1119-22.
[http://dx.doi.org/10.3201/eid1607.100159] [PMID: 20587184]
[58]
Geisbert TW, Hensley LE, Kagan E, et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006; 193(12): 1650-7.
[http://dx.doi.org/10.1086/504267] [PMID: 16703508]
[59]
Enterlein S, Warfield KL, Swenson DL, et al. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother 2006; 50(3): 984-93.
[http://dx.doi.org/10.1128/AAC.50.3.984-993.2006] [PMID: 16495261]
[60]
Zhu W, Zhang Z, He S, Wong G, Banadyga L, Qiu X. Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antiviral Res 2018; 151: 39-49.
[http://dx.doi.org/10.1016/j.antiviral.2018.01.011] [PMID: 29369776]
[61]
Ignatyev G, Steinkasserer A, Streltsova M, Atrasheuskaya A, Agafonov A, Lubitz W. Experimental study on the possibility of treatment of some hemorrhagic fevers. J Biotechnol 2000; 83(1-2): 67-76.
[http://dx.doi.org/10.1016/S0168-1656(00)00300-X] [PMID: 11000462]
[62]
Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344(10): 699-709.
[http://dx.doi.org/10.1056/NEJM200103083441001] [PMID: 11236773]
[63]
Kolokol’tsov AA, Davidovich IA, Strel’tsova MA, Nesterov AE, Agafonova OA, Agafonov AP. The use of interferon for emergency prophylaxis of Marburg hemorrhagic fever in monkeys. Bull Exp Biol Med 2001; 132(1): 686-8.
[http://dx.doi.org/10.1023/A:1012540614713] [PMID: 11687854]
[64]
Thi EP, Mire CE, Ursic-Bedoya R, et al. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Sci Transl Med 2014; 6(250): 250ra116.
[http://dx.doi.org/10.1126/scitranslmed.3009706] [PMID: 25143366]
[65]
NIH-Supported Experimental Marburg Vaccine Prevents Disease Two Days after Infection. Available from : https://www.nih.gov/news-events/news-releases/nih-supported-experimental-marburg-vaccine-prevents-disease-two-days-after-infection
[66]
Geisbert TW. Marburg and Ebola hemorrhagic fevers (Filoviruses). Mandell Douglas Bennett’s Princ Pract. Infect Dis 2015; 1995-9.
[67]
Swenson DL, Warfield KL, Larsen T, Alves DA, Coberley SS, Bavari S. Monovalent virus-like particle vaccine protects guinea pigs and nonhuman primates against infection with multiple Marburg viruses. Expert Rev Vaccines 2008; 7(4): 417-29.
[http://dx.doi.org/10.1586/14760584.7.4.417] [PMID: 18444889]
[68]
Riemenschneider J, Garrison A, Geisbert J, et al. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine 2003; 21(25-26): 4071-80.
[http://dx.doi.org/10.1016/S0264-410X(03)00362-1] [PMID: 12922144]
[69]
Ignatyev GM, Agafonov AP, Streltsova MA, Kashentseva EA. Inactivated Marburg virus elicits a nonprotective immune response in Rhesus monkeys. J Biotechnol 1996; 44(1-3): 111-8.
[http://dx.doi.org/10.1016/0168-1656(95)00104-2] [PMID: 8717394]
[70]
Jones SM, Feldmann H, Ströher U, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 2005; 11(7): 786-90.
[http://dx.doi.org/10.1038/nm1258] [PMID: 15937495]
[71]
Hevey M, Negley D, Pushko P, Smith J, Schmaljohn A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 1998; 251(1): 28-37.
[http://dx.doi.org/10.1006/viro.1998.9367] [PMID: 9813200]
[72]
Geisbert TW, Bailey M, Geisbert JB, et al. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J Virol 2010; 84(19): 10386-94.
[http://dx.doi.org/10.1128/JVI.00594-10] [PMID: 20660192]
[73]
Swenson DL, Wang D, Luo M, et al. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol 2008; 15(3): 460-7.
[http://dx.doi.org/10.1128/CVI.00431-07] [PMID: 18216185]
[74]
Grant-Klein RJ, Altamura LA, Badger CV, et al. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Hum Vaccin Immunother 2015; 11(8): 1991-2004.
[http://dx.doi.org/10.1080/21645515.2015.1039757] [PMID: 25996997]
[75]
Marzi A, Jankeel A, Menicucci AR, et al. Single dose of a VSV-based vaccine rapidly protects macaques from marburg virus disease. Front Immunol 2021; 12: 774026.
[http://dx.doi.org/10.3389/fimmu.2021.774026] [PMID: 34777392]
[76]
Anywaine Z, Barry H, Anzala O, et al. Safety and immunogenicity of 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola vaccination in children and adolescents in Africa: A randomised, placebo-controlled, multicentre Phase II clinical trial. PLoS Med 2022; 19(1): e1003865.
[http://dx.doi.org/10.1371/journal.pmed.1003865] [PMID: 35015777]
[77]
Cross RW, Bornholdt ZA, Prasad AN, et al. Combination therapy protects macaques against advanced Marburg virus disease. Nat Commun 2021; 12(1): 1891.
[http://dx.doi.org/10.1038/s41467-021-22132-0] [PMID: 33767178]
[78]
cAd3-Marburg vaccine in healthy adults. ClinicalTrials.gov Identifier NCT03475056 2022. Available from : https://clinicaltrials.gov/ct2/show/NCT03475056
[79]
Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017; 389(10068): 505-18.
[http://dx.doi.org/10.1016/S0140-6736(16)32621-6] [PMID: 28017403]
[80]
Marzi A, Robertson SJ, Haddock E, et al. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science 2015; 349(6249): 739-42.
[http://dx.doi.org/10.1126/science.aab3920] [PMID: 26249231]
[81]
Krause P, Fleming TR, Longini I, et al. COVID-19 vaccine trials should seek worthwhile efficacy. Lancet 2020; 396(10253): 741-3.
[http://dx.doi.org/10.1016/S0140-6736(20)31821-3] [PMID: 32861315]
[82]
Dean NE, Gsell PS, Brookmeyer R, et al. Creating a framework for conducting randomized clinical trials during disease outbreaks. N Engl J Med 2020; 382(14): 1366-9.
[http://dx.doi.org/10.1056/NEJMsb1905390] [PMID: 32242365]
[83]
Dean NE, Longini IM. The ring vaccination trial design for the estimation of vaccine efficacy and effectiveness during infectious disease outbreaks. Clin Trials 2022; 19(4): 402-6.
[http://dx.doi.org/10.1177/17407745211073594] [PMID: 35057647]
[84]
Cross RW, Longini IM, Becker S, et al. An introduction to the Marburg virus vaccine consortium, MARVAC. PLoS Pathog 2022; 18(10): e1010805.
[http://dx.doi.org/10.1371/journal.ppat.1010805] [PMID: 36227853]
[85]
Martini GA. Marburg virus disease. Clinical syndrome.Marburg virus disease. Springer 1971; pp. 1-9.
[http://dx.doi.org/10.1007/978-3-662-01593-3_1]
[86]
Todorovitch K, Mocitch M, Klašnja R. Clinical picture of two patients infected by the Marburg vervet virus.Marburg virus disease. Springer 1971; pp. 19-23.
[http://dx.doi.org/10.1007/978-3-662-01593-3_3]
[87]
Hevey M, Negley D, Schmaljohn A. Characterization of monoclonal antibodies to Marburg virus (strain Musoke) glycoprotein and identification of two protective epitopes. Virology 2003; 314(1): 350-7.
[http://dx.doi.org/10.1016/S0042-6822(03)00416-1] [PMID: 14517087]
[88]
Warren TK, Warfield KL, Wells J, et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat Med 2010; 16(9): 991-4.
[http://dx.doi.org/10.1038/nm.2202] [PMID: 20729866]
[89]
Ignat’ev GM, Bukin EK, Otrashevskaia EV. [An experimental study of possibility of treatment of hemorrhagic fever Marburg by Remicade]. Vestn Ross Akad Med Nauk 2004; (11): 22-4.
[PMID: 15651659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy