Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Mini-Review Article

Advancement of Nanocarriers-based Therapeutics for Effective Management of Colorectal Cancer

Author(s): Sumel Ashique, Aakash Upadhyay, Shubneesh Kumar, Neeraj Mishra, Ashish Garg, Shweta Rai, Mohammad A. Altamimi, Afzal Hussain* and Mohd Rihan

Volume 1, 2023

Published on: 27 April, 2023

Article ID: e240223214003 Pages: 15

DOI: 10.2174/2210299X01666230224095321

open_access

conference banner
Abstract

Background: Colorectal cancer is still challenging for scientists and healthcare professionals. Conventional treatment methods are associated with various limitations at a clinical bed and patient’s compliance. Novel nanocarrier based approaches opened a new window for improved therapy and new future perspective.

Introduction: Cancer is the deadliest disease globally and is challenging to healthcare systems. Colorectal cancer (CRC) is the third most common cancer in the world, affecting all age groups and the most common cancer in 23 countries, as per the World Health Organization (WHO).

Methods: In this review, we addressed nanocarriers based strategic treatment of colorectal cancer, major findings, limitations, and future perspective. For this, we seriously reviewed literature downloaded from prime sources such as Google Scholar, Web of Science, PubMed, and Publon. To filter the exact need of data, we used keyword alone in combination. Various relevant articles were obtained from the reference section of the selected papers.

Results and Discussion: It is necessary to have an effective and targeted treatment option to control CRC compared to available remedies. Nanotechnology has been widely used to diagnose and treat several cancer types. Advances in nanomedicine and phytonanomedicine promoted novel identification methods to treat colorectal cancer patients. There are several nanocarriers recommended for clinical purposes. However, to date, only a few clinically approved nanocarriers can load anticancer moieties and selectively bind to cancer cells. Some nanocarriers transport and release treatments to the target colorectal area but provide few benefits.

Conclusion: In this review, various nanoparticles (NPs) with unique properties have been discussed in relation to managing colorectal cancer, major outcomes of clinical trials, and successful patents published so far.

Keywords: Colorectal, Cancer, Nanocarriers, Phytomedicines, Clinical trials, Patents.

[1]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[2]
Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz. Gastroenterol., 2019, 14(2), 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[3]
Nakaji, S.; Umeda, T.; Shimoyama, T.; Sugawara, K.; Tamura, K.; Fukuda, S.; Sakamoto, J.; Parodi, S. Environmental factors affect colon carcinoma and rectal carcinoma in men and women differently. Int. J. Colorectal Dis., 2003, 18(6), 481-486.
[http://dx.doi.org/10.1007/s00384-003-0485-0] [PMID: 12695918]
[4]
Kasi, A.; Handa, S.; Bhatti, S.; Umar, S.; Bansal, A.; Sun, W. Molecular pathogenesis and classification of colorectal carcinoma. Curr. Colorectal Cancer Rep., 2020, 16(5), 97-106.
[http://dx.doi.org/10.1007/s11888-020-00458-z] [PMID: 32905465]
[5]
Martenson, J.A., Jr; Willett, C.G.; Sargent, D.J.; Mailliard, J.A.; Donohue, J.H.; Gunderson, L.L.; Thomas, C.R., Jr; Fisher, B.; Benson, A.B., III; Myerson, R.; Goldberg, R.M. Phase III study of adjuvant chemotherapy and radiation therapy compared with chemotherapy alone in the surgical adjuvant treatment of colon cancer: results of intergroup protocol 0130. J. Clin. Oncol., 2004, 22(16), 3277-3283.
[http://dx.doi.org/10.1200/JCO.2004.01.029] [PMID: 15249584]
[6]
Wildiers, H. Cytotoxic and targeted anticancer treatment in the senior cancer patient. In: ESMO Handbook of cancer in the senior patient, 1st; Schrijvers, D.; Aapro, M.; Zakotnik, B.; Audisio, R., Eds.; , 2010; pp. 57-65.
[http://dx.doi.org/10.3109/9781841847481.008]
[7]
Siegel, R.; DeSantis, C.; Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(2), 104-117.
[http://dx.doi.org/10.3322/caac.21220] [PMID: 24639052]
[8]
Sundaramoorthy, P.; Ramasamy, T.; Mishra, S.K.; Jeong, K.Y.; Yong, C.S.; Kim, J.O.; Kim, H.M. Engineering of caveolae-specific selfmicellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomater., 2016, 42, 220-231.
[http://dx.doi.org/10.1016/j.actbio.2016.07.006] [PMID: 27395829]
[9]
Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[10]
Field, K.M.; Kosmider, S.; Jefford, M.; Jennens, R.; Green, M.; Gibbs, P. Chemotherapy treatments for metastatic colorectal cancer: is evidence-based medicine in practice? J. Oncol. Pract., 2008, 4(6), 271-276.
[http://dx.doi.org/10.1200/JOP.0852002] [PMID: 20856756]
[11]
Zheng, Z.; Tan, Y.; Li, Y.; Liu, Y.; Yi, G.; Yu, C.Y.; Wei, H. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J. Control. Release, 2021, 335, 216-236.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.023] [PMID: 34022323]
[12]
Abdelbary, G.; Haider, M. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate. Pharm. Dev. Technol., 2013, 18(5), 1159-1168.
[http://dx.doi.org/10.3109/10837450.2011.614251] [PMID: 21958084]
[13]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[14]
Davis, ME; Chen, Z; Shin, DM Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[15]
Zoetemelk, M.; Ramzy, G.M.; Rausch, M.; Nowak-Sliwinska, P. Drug-drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its activity in colorectal carcinoma treatment. Molecules, 2020, 25(11), 2614.
[http://dx.doi.org/10.3390/molecules25112614] [PMID: 32512790]
[16]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[17]
Gorey, K.M.; Haji-Jama, S.; Bartfay, E.; Luginaah, I.N.; Wright, F.C.; Kanjeekal, S.M. Lack of access to chemotherapy for colon cancer: multiplicative disadvantage of being extremely poor, inadequately insured and African American. BMC Health Serv. Res., 2014, 14(1), 133.
[http://dx.doi.org/10.1186/1472-6963-14-133] [PMID: 24655931]
[18]
Fernández Montes, A.; Martínez Lago, N.; Covela Rúa, M.; de la Cámara Gómez, J.; González Villaroel, P.; Méndez Méndez, J.C.; Jorge Fernández, M.; Salgado Fernández, M.; Reboredo López, M.; Quintero Aldana, G.; Luz Pellón Augusto, M.; Graña Suárez, B.; García Gómez, J. Efficacy and safety of FOLFIRI/aflibercept in second-line treatment of metastatic colorectal cancer in a real-world population: Prognostic and predictive markers. Cancer Med., 2019, 8(3), 882-889.
[http://dx.doi.org/10.1002/cam4.1903] [PMID: 30690930]
[19]
Peeters, M.; Cervantes, A.; Moreno Vera, S.; Taieb, J. Trifluridine/tipiracil: an emerging strategy for the management of gastrointestinal cancers. Future Oncol., 2018, 14(16), 1629-1645.
[http://dx.doi.org/10.2217/fon-2018-0147] [PMID: 29701076]
[20]
Alibolandi, M.; Hoseini, F.; Mohammadi, M.; Ramezani, P.; Einafshar, E.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm., 2018, 549(1-2), 67-75.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.052] [PMID: 30048777]
[21]
Odin, E.; Sondén, A.; Gustavsson, B.; Carlsson, G.; Wettergren, Y. Expression of folate pathway genes in stage III colorectal cancer correlates with recurrence status following adjuvant bolus 5-FU-based chemotherapy. Mol. Med., 2015, 21(1), 597-604.
[http://dx.doi.org/10.2119/molmed.2014.00192] [PMID: 26193446]
[22]
Dienstmann, R.; Salazar, R.; Tabernero, J. Overcoming resistance to anti-EGFR therapy in colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book, 2015, 35(35), e149-e156.
[http://dx.doi.org/10.14694/EdBook_AM.2015.35.e149] [PMID: 25993166]
[23]
Couvreur, P.; Vauthier, C. Nanotechnology: intelligent design to treat complex disease. Pharm. Res., 2006, 23(7), 1417-1450.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[24]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[25]
Morris, S.A.; Farrell, D.; Grodzinski, P. Nanotechnologies in cancer treatment and diagnosis. J. Natl. Compr. Canc. Netw., 2014, 12(12), 1727-1733.
[http://dx.doi.org/10.6004/jnccn.2014.0175] [PMID: 25505214]
[26]
Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Krüger, A.; Gänsbacher, B.; Plank, C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther., 2002, 9(2), 102-109.
[http://dx.doi.org/10.1038/sj.gt.3301624] [PMID: 11857068]
[27]
Alexiou, C.; Jurgons, R.; Schmid, R.; Hilpert, A.; Bergemann, C.; Parak, F.; Iro, H. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J. Magn. Magn. Mater., 2005, 293(1), 389-393.
[http://dx.doi.org/10.1016/j.jmmm.2005.02.036]
[28]
Haacke, E.M.; Cheng, N.Y.C.; House, M.J.; Liu, Q.; Neelavalli, J.; Ogg, R.J.; Khan, A.; Ayaz, M.; Kirsch, W.; Obenaus, A. Imaging iron stores in the brain using magnetic resonance imaging. Magn. Reson. Imaging, 2005, 23(1), 1-25.
[http://dx.doi.org/10.1016/j.mri.2004.10.001] [PMID: 15733784]
[29]
Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature, 2005, 435(7046), 1214-1217.
[http://dx.doi.org/10.1038/nature03808] [PMID: 15988521]
[30]
Cisterna, B.A.; Kamaly, N.; Choi, W.I.; Tavakkoli, A.; Farokhzad, O.C.; Vilos, C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond.), 2016, 11(18), 2443-2456.
[http://dx.doi.org/10.2217/nnm-2016-0194] [PMID: 27529192]
[31]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[32]
Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted drug delivery: trends and perspectives. Curr. Drug Deliv., 2021, 18(10), 1435-1455.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[33]
Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomedicine, 2017, 12, 4085-4109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[34]
Feng, S.T.; Li, J.; Luo, Y.; Yin, T.; Cai, H.; Wang, Y.; Dong, Z.; Shuai, X.; Li, Z.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One, 2014, 9(6), e100732.
[http://dx.doi.org/10.1371/journal.pone.0100732] [PMID: 24964012]
[35]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[36]
Kesharwani, S.S.; Kaur, S.; Tummala, H.; Sangamwar, A.T. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin. Drug Deliv., 2018, 15(11), 1127-1142.
[http://dx.doi.org/10.1080/17425247.2018.1537261] [PMID: 30324813]
[37]
Maeda, H. Polymer therapeutics and the EPR effect. J. Drug Target., 2017, 25(9-10), 781-785.
[http://dx.doi.org/10.1080/1061186X.2017.1365878] [PMID: 28988499]
[38]
Swathi, G.; Prasanthi, N.L.; Manikiran, S.S.; Ramarao, N. Solid lipid nanoparticles: colloidal carrier systems for drug delivery. Int. J. Pharm. Sci. Res., 2010, 1(2), 1-16.
[http://dx.doi.org/10.1002/chin.201202274]
[39]
Wang, W.; Deng, Z.; Xu, X.; Li, Z.; Jung, F.; Ma, N.; Lendlein, A. Functional nanoparticles and their interactions with mesenchymal stem cells. Curr. Pharm. Des., 2017, 23(26), 3814-3832.
[PMID: 28641542]
[40]
Paris, J.L.; de la Torre, P.; Victoria Cabañas, M.; Manzano, M.; Grau, M.; Flores, A.I.; Vallet-Regí, M. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy. Nanoscale, 2017, 9(17), 5528-5537.
[http://dx.doi.org/10.1039/C7NR01070B] [PMID: 28402365]
[41]
Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules, 2018, 24(1), 4.
[http://dx.doi.org/10.3390/molecules24010004] [PMID: 30577475]
[42]
Thambi, T.; Deepagan, V.G.; Yoon, H.Y.; Han, H.S.; Kim, S.H.; Son, S.; Jo, D.G.; Ahn, C.H.; Suh, Y.D.; Kim, K.; Chan Kwon, I.; Lee, D.S.; Park, J.H. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 2014, 35(5), 1735-1743.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.022] [PMID: 24290696]
[43]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[44]
Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[45]
Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym., 2016, 147, 323-332.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.041] [PMID: 27178938]
[46]
Wang, M.; Gartel, A.L. Combination with bortezomib enhances the antitumor effects of nanoparticle-encapsulated thiostrepton. Cancer Biol. Ther., 2012, 13(3), 184-189.
[http://dx.doi.org/10.4161/cbt.13.3.18875] [PMID: 22353937]
[47]
Vilos, C.; Morales, F.A.; Solar, P.A.; Herrera, N.S.; Gonzalez-Nilo, F.D.; Aguayo, D.A.; Mendoza, H.L.; Comer, J.; Bravo, M.L.; Gonzalez, P.A.; Kato, S.; Cuello, M.A.; Alonso, C.; Bravo, E.J.; Bustamante, E.I.; Owen, G.I.; Velasquez, L.A. Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells. Biomaterials, 2013, 34(16), 4098-4108.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.034] [PMID: 23465827]
[48]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[49]
Loira-Pastoriza, C.; Todoroff, J.; Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev., 2014, 75, 81-91.
[http://dx.doi.org/10.1016/j.addr.2014.05.017] [PMID: 24915637]
[50]
Clinical trials database NCT00361842, 2012.
[51]
Lei, S.; Chien, P.Y.; Sheikh, S.; Zhang, A.; Ali, S.; Ahmad, I. Enhanced therapeutic efficacy of a novel liposome-based formulation of SN-38 against human tumor models in SCID mice. Anticancer Drugs, 2004, 15(8), 773-778.
[http://dx.doi.org/10.1097/00001813-200409000-00006] [PMID: 15494639]
[52]
Yang, C.; Liu, H.Z.; Fu, Z.X.; Lu, W.D. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol., 2011, 11(1), 21.
[http://dx.doi.org/10.1186/1472-6750-11-21] [PMID: 21401960]
[53]
Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol. Cancer Ther., 2007, 6(4), 1276-1282.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0556] [PMID: 17431105]
[54]
Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev., 2013, 42(3), 1147-1235.
[http://dx.doi.org/10.1039/C2CS35265F] [PMID: 23238558]
[55]
Oh, J.K.; Park, J.M. Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog. Polym. Sci., 2011, 36(1), 168-189.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.08.005]
[56]
Mohammadi, M.; Ramezani, M.; Abnous, K.; Alibolandi, M. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int. J. Pharm., 2017, 519(1-2), 287-303.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.037] [PMID: 28115259]
[57]
Lee, J.S.; Feijen, J. Polymersomes for drug delivery: Design, formation and characterization. J. Control. Release, 2012, 161(2), 473-483.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.005] [PMID: 22020381]
[58]
Curtis, L.M.; Grutter, A.S.; Smit, N.J.; Davies, A.J. Gnathia aureamaculosa, a likely definitive host of Haemogregarina balistapi and potential vector for Haemogregarina bigemina between fishes of the Great Barrier Reef, Australia. Int. J. Parasitol., 2013, 43(5), 361-370.
[http://dx.doi.org/10.1016/j.ijpara.2012.11.012] [PMID: 23305943]
[59]
Yang, W.; Yang, L.; Xia, Y.; Cheng, L.; Zhang, J.; Meng, F.; Yuan, J.; Zhong, Z. Lung cancer specific and reduction-responsive chimaeric polymersomes for highly efficient loading of pemetrexed and targeted suppression of lung tumor in vivo. Acta Biomater., 2018, 70, 177-185.
[http://dx.doi.org/10.1016/j.actbio.2018.01.015] [PMID: 29410335]
[60]
Yin, Y.; Hu, B.; Yuan, X.; Cai, L.; Gao, H.; Yang, Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics, 2020, 12(3), 290.
[http://dx.doi.org/10.3390/pharmaceutics12030290] [PMID: 32210184]
[61]
Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[62]
Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomás, H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev., 2015, 115(16), 8564-8608.
[http://dx.doi.org/10.1021/cr500131f] [PMID: 26259712]
[63]
Klippstein, R.; Wang, J.T.W.; El-Gogary, R.I.; Bai, J.; Mustafa, F.; Rubio, N.; Bansal, S.; Al-Jamal, W.T.; Al-Jamal, K.T. It passively targeted curcumin-loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small, 2015, 11(36), 4704-4722.
[http://dx.doi.org/10.1002/smll.201403799] [PMID: 26140363]
[64]
Nagaich, U. Polymeric nanocapsules: An emerging drug delivery system. J. Adv. Pharm. Technol. Res., 2018, 9(3), 65.
[http://dx.doi.org/10.4103/japtr.JAPTR_325_18] [PMID: 30338230]
[65]
Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138.
[http://dx.doi.org/10.1039/C9TB02289A] [PMID: 31971528]
[66]
Haider, M.; Zaki, K.Z.; El Hamshary, M.R.; Hussain, Z.; Orive, G.; Ibrahim, H.O. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J. Adv. Res., 2022, 39, 237-255.
[http://dx.doi.org/10.1016/j.jare.2021.11.008] [PMID: 35777911]
[67]
Konda, S.D.; Wang, S.; Brechbiel, M.; Wiener, E.C. Biodistribution of a 153 Gd-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest. Radiol., 2002, 37(4), 199-204.
[http://dx.doi.org/10.1097/00004424-200204000-00005] [PMID: 11923642]
[68]
Xu, G.; Shi, H.; Ren, L.; Gou, H.; Gong, D.; Gao, X.; Huang, N. Enhancing the anti-colon cancer activity of quercetin by selfassembled micelles. Int. J. Nanomedicine, 2015, 10, 2051-2063.
[PMID: 25844036]
[69]
Yang, X.; Li, Z.; Wang, N.; Li, L.; Song, L.; He, T.; Sun, L.; Wang, Z.; Wu, Q.; Luo, N.; Yi, C.; Gong, C. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep., 2015, 5(1), 10322.
[http://dx.doi.org/10.1038/srep10322] [PMID: 25980982]
[70]
Chen, Y.; Lu, Y.; Hu, D.; Peng, J.; Xiao, Y.; Hao, Y.; Pan, M.; Yuan, L.; Qian, Z. Cabazitaxel-loaded MPEG-PCL copolymeric nanoparticles for enhanced colorectal cancer therapy. Appl. Mater. Today, 2021, 25, 101210.
[http://dx.doi.org/10.1016/j.apmt.2021.101210]
[71]
Wei, Y.; Gu, X.; Sun, Y.; Meng, F.; Storm, G.; Zhong, Z. Transferrinbinding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release, 2020, 319, 407-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.012] [PMID: 31923538]
[72]
Alibolandi, M.; Rezvani, R.; Farzad, S.A.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Tetrac-conjugated polymersomes for integrintargeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 532(1), 581-594.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.039] [PMID: 28935257]
[73]
Zhang, Y.; Venugopal, J.R.; El-Turki, A.; Ramakrishna, S.; Su, B.; Lim, C.T. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008, 29(32), 4314-4322.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.038] [PMID: 18715637]
[74]
Hosseinifar, T.; Sheybani, S.; Abdouss, M.; Hassani Najafabadi, S.A.; Shafiee Ardestani, M. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. A, 2018, 106(2), 349-359.
[http://dx.doi.org/10.1002/jbm.a.36242] [PMID: 28940736]
[75]
Shad, P.M.; Karizi, S.Z.; Javan, R.S.; Mirzaie, A.; Noorbazargan, H.; Akbarzadeh, I.; Rezaie, H. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol. In vitro, 2020, 65, 104756.
[http://dx.doi.org/10.1016/j.tiv.2019.104756] [PMID: 31884114]
[76]
Manchun, S.; Dass, C.R.; Cheewatanakornkool, K.; Sriamornsak, P. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr. Polym., 2015, 126, 222-230.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.018] [PMID: 25933543]
[77]
Ramzy, L.; Metwally, A.A.; Nasr, M.; Awad, G.A.S. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci. Rep., 2020, 10(1), 10987.
[http://dx.doi.org/10.1038/s41598-020-67748-2] [PMID: 32620860]
[78]
Priyadarshi, K.; Shirsath, K.; Waghela, N.B.; Sharma, A.; Kumar, A.; Pathak, C. Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells. J. Biomol. Struct. Dyn., 2021, 39(18), 6853-6869.
[http://dx.doi.org/10.1080/07391102.2020.1802344] [PMID: 32752940]
[79]
Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 519(1-2), 352-364.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.044] [PMID: 28126548]
[80]
Narmani, A.; Kamali, M.; Amini, B.; Salimi, A.; Panahi, Y. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies. Process Biochem., 2018, 69, 178-187.
[http://dx.doi.org/10.1016/j.procbio.2018.01.014]
[81]
Sun, C.; Du, K.; Fang, C.; Bhattarai, N.; Veiseh, O.; Kievit, F.; Stephen, Z.; Lee, D.; Ellenbogen, R.G.; Ratner, B.; Zhang, M. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano, 2010, 4(4), 2402-2410.
[http://dx.doi.org/10.1021/nn100190v] [PMID: 20232826]
[82]
Miller, M.A.; Gadde, S.; Pfirschke, C.; Engblom, C.; Sprachman, M.M.; Kohler, R.H.; Yang, K.S.; Laughney, A.M.; Wojtkiewicz, G.; Kamaly, N.; Bhonagiri, S.; Pittet, M.J.; Farokhzad, O.C.; Weissleder, R. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med., 2015, 7(314), 314ra183.
[http://dx.doi.org/10.1126/scitranslmed.aac6522] [PMID: 26582898]
[83]
Weissleder, R.; Stark, D.D.; Engelstad, B.L.; Bacon, B.R.; Compton, C.C.; White, D.L.; Jacobs, P.; Lewis, J. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol., 1989, 152(1), 167-173.
[http://dx.doi.org/10.2214/ajr.152.1.167] [PMID: 2783272]
[84]
Kaushik, S.; Thomas, J.; Panwar, V.; Ali, H.; Chopra, V.; Sharma, A.; Tomar, R.; Ghosh, D. in situ biosynthesized superparamagnetic iron oxide nanoparticles (SPINS) induce efficient hyperthermia in cancer cells. ACS Appl. Bio Mater., 2020, 3(2), 779-788.
[http://dx.doi.org/10.1021/acsabm.9b00720] [PMID: 35019282]
[85]
Rashidi, L.; Vasheghani-Farahani, E.; Rostami, K.; Ganji, F.; Fallahpour, M. Mesoporous silica nanoparticles with different pore sizes for delivery of pH-sensitive gallic acid. Asia-Pac. J. Chem. Eng., 2014, 9(6), 845-853.
[http://dx.doi.org/10.1002/apj.1832]
[86]
Gu, J.; Su, S.; Li, Y.; He, Q.; Zhong, J.; Shi, J. Surface modification− complexation strategy for cisplatin loading in mesoporous nanoparticles. J. Phys. Chem. Lett., 2010, 1(24), 3446-3450.
[http://dx.doi.org/10.1021/jz101483u]
[87]
He, Q.; Shi, J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem., 2011, 21(16), 5845-5855.
[http://dx.doi.org/10.1039/c0jm03851b]
[88]
Peng, S.; Yuan, X.; Lin, W.; Cai, C.; Zhang, L. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids Surf. B Biointerfaces, 2019, 176, 394-403.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.024] [PMID: 30660963]
[89]
Cai, D.; Han, C.; Liu, C.; Ma, X.; Qian, J.; Zhou, J.; Li, Y.; Sun, Y.; Zhang, C.; Zhu, W. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery. Nanoscale Res. Lett., 2020, 15(1), 123.
[http://dx.doi.org/10.1186/s11671-020-03351-8] [PMID: 32488526]
[90]
Gillies, R.J.; Liu, Z.; Bhujwalla, Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol. Cell Physiol., 1994, 267(1), C195-C203.
[http://dx.doi.org/10.1152/ajpcell.1994.267.1.C195] [PMID: 8048479]
[91]
Lorestani, S.; Hashemy, S.I.; Mojarad, M.; Keyvanloo Shahrestanaki, M.; Bahari, A.; Asadi, M.; Zahedi Avval, F. Increased glutathione reductase expression and activity in colorectal cancer tissue samples: An investigational study in Mashhad, Iran. Middle East J. Cancer, 2018, 9(2), 99-104.
[92]
Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O’Keeffe, M.; Yaghi, O.M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res., 2001, 34(4), 319-330.
[http://dx.doi.org/10.1021/ar000034b] [PMID: 11308306]
[93]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S. Porous metal–organic-framework nanoscale carriers are a potential drug delivery and imaging platform. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[94]
Hanke, M.; Arslan, H.K.; Bauer, S.; Zybaylo, O.; Christophis, C.; Gliemann, H.; Rosenhahn, A.; Wöll, C. The biocompatibility of metal-organic framework coatings: an investigation on the stability of SURMOFs with regard to water and selected cell culture media. Langmuir, 2012, 28(17), 6877-6884.
[http://dx.doi.org/10.1021/la300457z] [PMID: 22471238]
[95]
Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; Horcajada, P. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. (Camb.), 2013, 4(4), 1597-1607.
[http://dx.doi.org/10.1039/c3sc22116d]
[96]
Zhang, W.; Wang, J.; Su, L.; Chen, H.; Zhang, L.; Lin, L.; Chen, X.; Song, J.; Yang, H. Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Sci. China Chem., 2020, 63(9), 1315-1322.
[http://dx.doi.org/10.1007/s11426-020-9775-y]
[97]
Guilford, J.M.; Pezzuto, J.M. Natural products as inhibitors of carcinogenesis. Expert Opin. Investig. Drugs, 2008, 17(9), 1341-1352.
[http://dx.doi.org/10.1517/13543784.17.9.1341] [PMID: 18694367]
[98]
Bachmeier, B.; Killian, P.; Melchart, D. The role of curcumin in prevention and management of the metastatic disease. Int. J. Mol. Sci., 2018, 19(6), 1716.
[http://dx.doi.org/10.3390/ijms19061716] [PMID: 29890744]
[99]
Batra, H.; Pawar, S.; Bahl, D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol. Res., 2019, 139, 91-105.
[http://dx.doi.org/10.1016/j.phrs.2018.11.005] [PMID: 30408575]
[100]
Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des. Devel. Ther., 2017, 11, 1605-1621.
[http://dx.doi.org/10.2147/DDDT.S129008]
[101]
Gou, M.; Men, K.; Shi, H.; Xiang, M.; Zhang, J.; Song, J.; Long, J.; Wan, Y.; Luo, F.; Zhao, X.; Qian, Z. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 2011, 3(4), 1558-1567.
[http://dx.doi.org/10.1039/c0nr00758g] [PMID: 21283869]
[102]
Raveendran, R.; Bhuvaneshwar, G.S.; Sharma, C.P. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J. Biomater. Appl., 2013, 27(7), 811-827.
[http://dx.doi.org/10.1177/0885328211427473] [PMID: 22274881]
[103]
Xu, H.; Wang, T.; Yang, C.; Li, X.; Liu, G.; Yang, Z.; Singh, P.K.; Krishnan, S.; Ding, D. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation. Adv. Funct. Mater., 2018, 28(14), 1707140.
[http://dx.doi.org/10.1002/adfm.201707140]
[104]
Chuah, L.H.; Roberts, C.J.; Billa, N.; Abdullah, S.; Rosli, R.; Manickam, S. Using Nanoparticle Tracking Analysis (NTA) to decipher mucoadhesion propensity of curcumin-containing chitosan nanoparticles and curcumin release. J. Dispers. Sci. Technol., 2014, 35(9), 1201-1207.
[http://dx.doi.org/10.1080/01932691.2013.800458]
[105]
Anitha, A.; Sreeranganathan, M.; Chennazhi, K.P.; Lakshmanan, V.K.; Jayakumar, R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur. J. Pharm. Biopharm., 2014, 88(1), 238-251.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.017] [PMID: 24815764]
[106]
Xie, M.; Fan, D.; Li, Y.; He, X.; Chen, X.; Chen, Y.; Zhu, J.; Xu, G.; Wu, X.; Lan, P. Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. Int. J. Nanomedicine, 2017, 12, 7751-7761.
[http://dx.doi.org/10.2147/IJN.S145012] [PMID: 29118580]
[107]
Sanoj Rejinold, N.; Thomas, R.G.; Muthiah, M.; Chennazhi, K.P.; Manzoor, K.; Park, I.K.; Jeong, Y.Y.; Jayakumar, R. Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles. Int. J. Biol. Macromol., 2015, 74, 249-262.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.044] [PMID: 25526695]
[108]
Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[109]
San Hipólito-Luengo, Á.; Alcaide, A.; Ramos-González, M.; Cercas, E.; Vallejo, S.; Romero, A.; Talero, E.; Sánchez-Ferrer, C.F.; Motilva, V.; Peiró, C. Dual effects of resveratrol on cell death and proliferation of colon cancer cells. Nutr. Cancer, 2017, 69(7), 1019-1027.
[http://dx.doi.org/10.1080/01635581.2017.1359309] [PMID: 28937798]
[110]
Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces, 2016, 144, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]
[111]
Feng, M.; Zhong, L.X.; Zhan, Z.Y.; Huang, Z.H.; Xiong, J.P. Enhanced antitumor efficacy of resveratrol-loaded nanocapsules in colon cancer cells: physicochemical and biological characterization. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(2), 375-382.
[PMID: 28165548]
[112]
Kamal, R.; Chadha, V.D.; Dhawan, D.K. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue. Nanomedicine, 2018, 14(3), 1059-1071.
[http://dx.doi.org/10.1016/j.nano.2018.01.008] [PMID: 29391211]
[113]
Gumireddy, A.; Christman, R.; Kumari, D.; Tiwari, A.; North, E.J.; Chauhan, H. Preparation, characterization, and in vitro evaluation of curcumin-and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2019, 20(4), 145.
[http://dx.doi.org/10.1208/s12249-019-1349-4] [PMID: 30887133]
[114]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[115]
Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res., 2018, 10(8), 2306-2323.
[PMID: 30210672]
[116]
Pham.; Jimmy.; Oliver, Grundmann.; and Tamer, Elbayoumi. Mitochondriotropic nanoemulsified genistein-loaded vehicles for cancer therapy. In: Mitochondrial Medicine; Humana Press: New York, NY, 2015; pp. 85-101.
[117]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[118]
Zheng, Y.; You, X.; Guan, S.; Huang, J.; Wang, L.; Zhang, J.; Wu, J. Poly (ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater., 2019, 29(15), 1808646.
[http://dx.doi.org/10.1002/adfm.201808646]
[119]
Roy, N.; Narayanankutty, A.; Nazeem, P.A.; Valsalan, R.; Babu, T.D.; Mathew, D. Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation. Asian Pac. J. Cancer Prev., 2016, 17(8), 4019-4023.
[PMID: 27644655]
[120]
Pai, S.I.; Lin, Y-Y.; Macaes, B.; Meneshian, A.; Hung, C-F.; Wu, T-C. Prospects of RNA interference therapy for cancer. Gene Ther., 2006, 13(6), 464-477.
[http://dx.doi.org/10.1038/sj.gt.3302694] [PMID: 16341059]
[121]
Torrecilla, J; Rodríguez-Gascón, A; Solinís, MÁ; del Pozo-Rodríguez, A Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BioMed Res Internat, 2014, 2014
[http://dx.doi.org/10.1155/2014/161794]
[122]
Kang, S.H.; Revuri, V.; Lee, S.J.; Cho, S.; Park, I.K.; Cho, K.J.; Bae, W.K.; Lee, Y. Oral siRNA delivery to treat colorectal liver metastases. ACS Nano, 2017, 11(10), 10417-10429.
[http://dx.doi.org/10.1021/acsnano.7b05547] [PMID: 28902489]
[123]
Javan, B.; Atyabi, F.; Shahbazi, M. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy. Life Sci., 2018, 202, 140-151.
[http://dx.doi.org/10.1016/j.lfs.2018.04.011] [PMID: 29656061]
[124]
Gupta, B.; Ruttala, H.B.; Poudel, B.K.; Pathak, S.; Regmi, S.; Gautam, M.; Poudel, K.; Sung, M.H.; Ou, W.; Jin, S.G.; Jeong, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Polyamino acid layer-by-layer (LbL) constructed silica-supported mesoporous titania nanocarriers for stimuli-responsive delivery of microRNA 708 and paclitaxel for combined chemotherapy. ACS Appl. Mater. Interfaces, 2018, 10(29), 24392-24405.
[http://dx.doi.org/10.1021/acsami.8b06642] [PMID: 29978708]
[125]
Jebelli, A.; Baradaran, B.; Mosafer, J.; Baghbanzadeh, A.; Mokhtarzadeh, A.; Tayebi, L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med. Res. Rev., 2021, 41(1), 395-434.
[http://dx.doi.org/10.1002/med.21735] [PMID: 32990372]
[126]
Bäumer, S.; Bäumer, N.; Appel, N.; Terheyden, L.; Fremerey, J.; Schelhaas, S.; Wardelmann, E.; Buchholz, F.; Berdel, W.E.; Müller-Tidow, C. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin. Cancer Res., 2015, 21(6), 1383-1394.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2017] [PMID: 25589625]
[127]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[128]
Talekar, M.; Tran, T.H.; Amiji, M. Translational nano-medicines: targeted therapeutic delivery for cancer and inflammatory diseases. AAPS J., 2015, 17(4), 813-827.
[http://dx.doi.org/10.1208/s12248-015-9772-2] [PMID: 25921939]
[129]
Shajari, N.; Mansoori, B.; Davudian, S.; Mohammadi, A.; Baradaran, B. Overcoming the challenges of siRNA delivery: nanoparticle strategies. Curr. Drug Deliv., 2017, 14(1), 36-46.
[http://dx.doi.org/10.2174/1567201813666160816105408] [PMID: 27538460]
[130]
Shahzad, M.M.K.; Mangala, L.S.; Han, H.D.; Lu, C.; Bottsford-Miller, J.; Nishimura, M.; Mora, E.M.; Lee, J.W.; Stone, R.L.; Pecot, C.V.; Thanapprapasr, D.; Roh, J.W.; Gaur, P.; Nair, M.P.; Park, Y.Y.; Sabnis, N.; Deavers, M.T.; Lee, J.S.; Ellis, L.M.; Lopez-Berestein, G.; McConathy, W.J.; Prokai, L.; Lacko, A.G.; Sood, A.K. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 2011, 13(4), 309-IN8.
[http://dx.doi.org/10.1593/neo.101372] [PMID: 21472135]
[131]
Cabeza, L.; Perazzoli, G.; Mesas, C.; Jiménez-Luna, C.; Prados, J.; Rama, A.R.; Melguizo, C. Nanoparticles in colorectal cancer therapy: latest in vivo assays, clinical trials, and patents. AAPS PharmSciTech, 2020, 21(5), 178.
[http://dx.doi.org/10.1208/s12249-020-01731-y] [PMID: 32591920]
[132]
Xunjin, Z.H.U. Conjugated porphyrin carbon quantum dots for targeted photodynamic therapy. U.S. Patent No. 10,369,221, 2019.
[133]
Shieh, D.B.; Yeh, C.S.; Chen, D.H.; Wu, Y.N.; Wu, P.C. Nano-carrier, complex of anticancer drug and nanocarrier, pharmaceutical composition thereof, method for manufacturing the complex, and method for treating cancer by using the pharmaceutical composition. United States patent US 8,673,358, 2014.
[134]
Paris, J.L.; Baeza, A.; Vallet-Regí, M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin. Drug Deliv., 2019, 16(10), 1095-1112.
[http://dx.doi.org/10.1080/17425247.2019.1662786] [PMID: 31469003]
[135]
Patri, A.K.; Majoros, I.J.; Baker, J.R., Jr Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 2002, 6(4), 466-471.
[http://dx.doi.org/10.1016/S1367-5931(02)00347-2] [PMID: 12133722]
[136]
Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: Emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci., 2009, 38(3), 185-196.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[137]
Slowing, I.; Viveroescoto, J.; Wu, C.; Lin, V. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[138]
Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: an advanced mode of drug delivery system. 3. Biotech., 2015, 5(2), 123-7.

© 2024 Bentham Science Publishers | Privacy Policy