Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Biogenic Synthesis of Different forms of Bio-caped Silver Nanoparticles using Microcystis sp. and its Antimicrobial Activity

Author(s): Rania Omar*, Ibraheem B. M. Ibraheem, Sherif Hassan and Khaled N.M. Elsayed

Volume 19, Issue 6, 2023

Published on: 22 February, 2023

Page: [850 - 862] Pages: 13

DOI: 10.2174/1573413719666230202122334

Price: $65

Abstract

Background: Nanobiotechnology is a cutting-edge field that is revolutionizing the way we produce and utilize nanoparticles. With bacteria becoming increasingly resistant to traditional antibiotics, researchers are exploring new ways to synthesize antimicrobials.

Objective: The aim of this study was to investigate the biosynthesis of different forms of silver nanoparticles using different biological methods from Microcystis sp. to be used as an antimicrobial agent.

Methods: We employed the direct strain powder method, ethanolic extract pellets, and ethanolic extract. Then a combination of analytical techniques was used to characterize the properties of nanoproperties. Finally, we evaluated the antimicrobial activity of the AgNPs against a panel of bacteria and fungi.

Results: AgNPs were found in various forms, such as cubic, spherical, and rod shapes. UV-Vis detected a peak at 420 nm, and SEM identified the AgNPs with bio-capped layers ranging from 40-130 nm. The antibacterial test revealed that the pellet method produced the most effective AgNPs, specifically against Gram-positive bacteria such as Staphylococcus sp. with a clear zone of 32 mm, while the larger cubic AgNPs produced by the powder method were less effective as antibacterial agents.

Conclusion: This study demonstrates that AgNPs can be produced using Microcysts sp. as a reducing and capping agent; furthermore, they are produced in different shapes as cubic, spherical, and rod shapes. Besides that, cubic nanoparticles are more effective in killing germs than spherical ones. The results of this study will help to improve our understanding of the mechanisms of AgNPs biosynthesis and pave the way for the development of new and more effective antimicrobial agents.

Keywords: Cyanobacteria, biosynthesis, silver nanoparticles, antimicrobial activity, Microcysts sp., AgNPs.

Graphical Abstract
[1]
Jha, R.K.; Jha, P.K.; Chaudhury, K.; Rana, S.V.S.; Guha, S.K. An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology. Nano Rev., 2014, 5(1), 22762.
[http://dx.doi.org/10.3402/nano.v5.22762] [PMID: 24600516]
[2]
Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Mashhadi Malekzadeh, A. Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties. Nanochem. Res., 2018, 3(1), 1-16.
[3]
Kreuter, J.; Gelperina, S. Use of nanoparticles for cerebral cancer. Tumor. J., 2008, 94(2), 271-277.
[http://dx.doi.org/10.1177/030089160809400220]
[4]
Fathy, W.; Elsayed, K.; Essawy, E.; Tawfik, E.; Zaki, A.; Abdelhameed, M.S.; Hammouda, O. Biosynthesis of silver nanoparticles from Synechocystis sp to be used as a flocculant agent with different microalgae strains. Curr. Nanomater., 2020, 5(2), 175-187.
[http://dx.doi.org/10.2174/2468187310999200605161200]
[5]
Patel, P.; Agarwal, P.; Kanawaria, S.; Kachhwaha, S.; Kothari, S. Plant-based synthesis of silver nanoparticles and their characterization. Nanotechnology and plant sciences; Springer, 2015, pp. 271-288.
[6]
Duran, N.; Seabra, A.B. Biogenic synthesized Ag/Au nanoparticles: Production, characterization, and applications. Curr. Nanosci., 2018, 14(2), 82-94.
[http://dx.doi.org/10.2174/1573413714666171207160637]
[7]
Ibraheem, I.; Abd-Elaziz, B.; Saad, W.; Fathy, W. Green biosynthesis of silver nanoparticles using marine Red Algae Acanthophora specifera and its antimicrobial activity. J. Nanomed. Nanotechnol., 2016, 7(409), 1-4.
[8]
Durán, N.; Fávaro, W.J.; Seabra, A.B. What do we really know about nanotoxicology of silver nanoparticles in vivo? New aspects, possible mechanisms, and perspectives. Curr. Nanosci., 2020, 16(3), 292-320.
[http://dx.doi.org/10.2174/1573413714666180809121322]
[9]
Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments, 2020, 7(2), 13.
[http://dx.doi.org/10.3390/environments7020013]
[10]
Fathy, W.; Essawy, E.; Tawfik, E.; Khedr, M.; Abdelhameed, M.S.; Hammouda, O.; Elsayed, K. Recombinant overexpression of the Escherichia coli acetyl‐CoA carboxylase gene in Synechocystis sp. boosts lipid production. J. Basic Microbiol., 2021, 61(4), 330-338.
[http://dx.doi.org/10.1002/jobm.202000656] [PMID: 33599337]
[11]
Elsayed, K.N.; Anja, N.; Ahmed, M.A.; Gerd, K. Microalgae as an alternative source for biodiesel and biogas production-a mini review. Nat. Sci., 2017, 15(12), 1-16.
[http://dx.doi.org/10.7537/marsnsj151217.01]
[12]
Marooufpour, N.; Alizadeh, M.; Hatami, M.; Lajayer, B.A. Biological synthesis of nanoparticles by different groups of bacteria. Microbial Nanobionics; Springer, 2019, pp. 63-85.
[13]
Hussein, M.; Zaki, A.; Abdel-Raouf, N.; Alsamhary, K.; Fathy, W.; Abdelhameed, M.; Elsayed, K. Flocculation of microalgae using calcium oxide nanoparticles; process optimization and characterization. Int. Aquatic Research, 2022, 14(1), 63-70.
[http://dx.doi.org/10.22034/iar.2022.1943339.1206]
[14]
Elsayed, K. Production of Biofuels from Microalgae; IRC-Library, Information Resource Center der Jacobs University Bremen, 2017.
[15]
Komárek, J. Cyanoprokaryota; Teil 3: Heterocytous genera; Springer: Berlin, 2013.
[16]
Elsayed, KNM; Kolesnikova, TA; Noke, A; Klöck, G Imaging the accumulated intracellular microalgal lipids as a response to temperature stress. 3 Biotech, 2017, 7(1), 41.
[http://dx.doi.org/10.1007/s13205-017-0677-x]
[17]
Tran, P.A.; Webster, T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomedicine, 2011, 6, 1553-1558.
[PMID: 21845045]
[18]
Hamida, R.S.; Ali, M.A.; Redhwan, A.M.O.; Bin-Meferij, M.M. Cyanobacteria–a promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int. J. Nanomedicine, 2020, 15, 6033-6066.
[http://dx.doi.org/10.2147/IJN.S256134] [PMID: 32884261]
[19]
Cruz, D.; Falé, P.L.; Mourato, A.; Vaz, P.D.; Luisa Serralheiro, M.; Lino, A.R.L. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B Biointerfaces, 2010, 81(1), 67-73.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.025] [PMID: 20655710]
[20]
Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application. Mater. Sci. Eng. C, 2019, 98, 250-255.
[http://dx.doi.org/10.1016/j.msec.2018.12.090] [PMID: 30813025]
[21]
Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev., 2016, 3(2), 55-67.
[http://dx.doi.org/10.1002/cben.201500018]
[22]
Ebrahiminezhad, A.; Bagheri, M.; Taghizadeh, S.M.; Berenjian, A.; Ghasemi, Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv. Natur. Sci.: Nanosci. Nanotechnol., 2016, 7(1), 015018.
[http://dx.doi.org/10.1088/2043-6262/7/1/015018]
[23]
H. Madkour, L. Ecofriendly green biosynthesized of metallic nanoparticles: Bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Glob. Drugs Ther., 2018, 3(1), 1-11.
[http://dx.doi.org/10.15761/GDT.1000144]
[24]
Zhang, L.; Pornpattananangkul, D.; Hu, C.M.; Huang, C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem., 2010, 17(6), 585-594.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[25]
Zhou, J.; Chen, N.; Liao, J.; Tian, G.; Mei, L.; Yang, G.; Wang, Q.; Yin, W. Ag-activated metal−organic framework with peroxidase-like activity synergistic Ag+ release for safe bacterial eradication and wound healing. Nanomaterials, 2022, 12(22), 4058.
[http://dx.doi.org/10.3390/nano12224058] [PMID: 36432344]
[26]
Piasecka, A. Krzemińska, I.; Tys, J. Physical methods of microalgal biomass pretreatment. Int. Agrophys., 2014, 28(3), 341-348.
[http://dx.doi.org/10.2478/intag-2014-0024]
[27]
Shirai, M.; Matumaru, K.; Ohotake, A.; Takamura, Y.; Aida, T.; Nakano, M. Development of a solid medium for growth and isolation of axenic Microcystis strains (cyanobacteria). Appl. Environ. Microbiol., 1989, 55(10), 2569-2571.
[http://dx.doi.org/10.1128/aem.55.10.2569-2571.1989] [PMID: 16348030]
[28]
Ranjan, R; Chinnibabu, B; Sadhu, N Isolation and purification of microalgae. Live feed for Marine finfish and shellfish culture 2016, 46 CMFRI Training manual Ser. No.: 9/2016. http://eprints.cmfri.org.in/10856/1/Training%20Manual%20on%20Live%20feed.pdf
[29]
Priyanka, R.N.; Abraham, T.; Joseph, S.; George, J.M.; Plathanam, N.J.; Mathew, B. Fast and efficient degradation of water pollutant dyes and fungicide by novel sulfur-doped graphene oxide–modified Ag3PO4 nanocomposite. Environ. Sci. Pollut. Res. Int., 2021, 28(16), 20247-20260.
[http://dx.doi.org/10.1007/s11356-020-11884-9] [PMID: 33410068]
[30]
Zhou, Q.; Wang, T.; Wang, C.; Wang, Z.; Yang, Y.; Li, P.; Cai, R.; Sun, M.; Yuan, H.; Nie, L. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp., 2020, 585, 124081.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124081]
[31]
Rao, B. Tang, R-C Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci., 2017, 8(1), 015014.
[http://dx.doi.org/10.1088/2043-6254/aa5983]
[32]
Naaz, R.; Siddiqui, V.U.; Qadir, S.U.; Siddiqi, W.A. Green synthesis of silver nanoparticles using Syngonium podophyllum leaf extract and its antibacterial activity. Mater. Today Proc., 2021, 46, 2352-2358.
[http://dx.doi.org/10.1016/j.matpr.2021.05.062]
[33]
Prabhu, N.; Raj, D.T.; Yamuna, G.K.; Ayisha, S.S.; Puspha, J.; Innocent, D. Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Dig. J. Nanomater. Biostruct., 2010, 5(1), 189.
[34]
Zhou, Z.; Bai, X.; Li, P.; Wang, C.; Guo, M.; Zhang, Y.; Ding, P.; Chen, S.; Wu, Y.; Wang, Q. Silver nanocubes monolayers as a SERS substrate for quantitative analysis. Chin. Chem. Lett., 2021, 32(4), 1497-1501.
[http://dx.doi.org/10.1016/j.cclet.2020.10.021]
[35]
Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys., 2002, 116(15), 6755-6759.
[http://dx.doi.org/10.1063/1.1462610]
[36]
Thatoi, P.; Kerry, R.G.; Gouda, S.; Das, G.; Pramanik, K.; Thatoi, H.; Patra, J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B, 2016, 163, 311-318.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.029] [PMID: 27611454]
[37]
Manosalva, N.; Tortella, G.; Cristina Diez, M.; Schalchli, H.; Seabra, A.B. Durán, N.; Rubilar, O. Green synthesis of silver nanoparticles: Effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol., 2019, 35(6), 88.
[http://dx.doi.org/10.1007/s11274-019-2664-3] [PMID: 31134435]
[38]
Gurunathan, S.; Lee, K.J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009, 30(31), 6341-6350.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008] [PMID: 19698986]
[39]
de Sousa e Silva. A.; Moreira, LM.; de Magalhães, WT.; Farias, WRL.; Rocha, MVP.; Bastos, AKP. Extraction of biomolecules from Spirulina platensis using non-conventional processes and harmless solvents. J. Environ. Chem. Eng., 2017, 5(3), 2101-2106.
[40]
Arévalo-Gallegos, A.; Garcia-Perez, J.S.; Carrillo-Nieves, D.; Ramirez-Mendoza, R.A.; Iqbal, H. Parra-Saldívar, R. Botryococcus braunii as a bioreactor for the production of nanoparticles with antimicrobial potentialities. Int. J. Nanomedicine, 2018, 13, 5591-5604.
[http://dx.doi.org/10.2147/IJN.S174205] [PMID: 30271149]
[41]
Khan, A.U.; Wei, Y.; Khan, Z.U.H.; Tahir, K.; Khan, S.U.; Ahmad, A.; Khan, F.U.; Cheng, L.; Yuan, Q. Electrochemical and antioxidant properties of biogenic silver nanoparticles. Int. J. Electrochem. Sci., 2015, 10, 7905-7916.
[42]
Stuart, B.H. Infrared spectroscopy of biological applications. In: Encyclopedia of analytical chemistry: applications, theory and instrumentation; Wiley online Library, 2006.
[http://dx.doi.org/10.1002/9780470027318.a0208]
[43]
Vamanu, E.; Ene, M. Biță B.; Ionescu, C.; Crăciun, L.; Sârbu, I. Vitro human microbiota response to exposure to silver nanoparticles biosynthesized with mushroom extract. Nutrients, 2018, 10(5), 607.
[http://dx.doi.org/10.3390/nu10050607] [PMID: 29757931]
[44]
Kordy, M.G.M.; Abdel-Gabbar, M.; Soliman, H.A.; Aljohani, G. BinSabt, M.; Ahmed, I.A.; Shaban, M. Phyto-capped Ag nanoparticles: Green synthesis, characterization, and catalytic and antioxidant activities. Nanomaterials, 2022, 12(3), 373.
[http://dx.doi.org/10.3390/nano12030373] [PMID: 35159718]
[45]
da Silva Malheiros, P.; Micheletto, Y.M.S.; Silveira, N.P.; Brandelli, A. Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Res. Int., 2010, 43(4), 1198-1203.
[http://dx.doi.org/10.1016/j.foodres.2010.02.015]
[46]
Salehi, S.; Shandiz, S.A.S.; Ghanbar, F.; Darvish, M.R.; Ardestani, M.S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomedicine, 2016, 11, 1835-1846.
[PMID: 27199558]
[47]
Aiad, M.A.; Moursi, E.A.; El-Dissoky, R.A.; Amer, M.M. Response of maize crop to irrigation under different rates and doses of nitrogen fertilization in the North Nile Delta Region. J. Soil Sci. Agricult. Eng., 2014, 5(1), 77-92.
[http://dx.doi.org/10.21608/jssae.2014.48790]
[48]
Ismail, G.A.; El-Sheekh, M.M.; Samy, R.M.; Gheda, S.F. Antimicrobial, antioxidant, and antiviral activities of biosynthesized silver nanoparticles by phycobiliprotein crude extract of the cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience, 2021, 11(2), 355-370.
[http://dx.doi.org/10.1007/s12668-021-00828-3]
[49]
Cacua, K. Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surf. A Physicochem. Eng. Asp., 2019, 583, 123960.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123960]
[50]
Arya, A.; Gupta, K.; Chundawat, T.S.; Vaya, D. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg. Chem. Appl., 2018, 2018, 7879403.
[http://dx.doi.org/10.1155/2018/7879403] [PMID: 30420873]
[51]
Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[52]
Subramanian, P.; Ravichandran, A.; Manoharan, V.; Muthukaruppan, R.; Somasundaram, S.; Pandi, B.; Krishnan, A.; Marimuthu, P.N.; Somasundaram, S.S.N.; You, S. Synthesis of Oldenlandia umbellata stabilized silver nanoparticles and their antioxidant effect, antibacterial activity, and bio-compatibility using human lung fibroblast cell line WI-38. Process Biochem., 2019, 86, 196-204.
[http://dx.doi.org/10.1016/j.procbio.2019.08.002]
[53]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5(1), 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[54]
Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Jobitha, G.G.; Vanaja, M.; Annadurai, G. Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Adv. Nano Res., 2013, 1(2), 83-91.
[http://dx.doi.org/10.12989/anr.2013.1.2.083]
[55]
Garibo, D. Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; Rodríguez, J.A.; Romo, O.A.; Chávez-Almazán, L.A.; Susarrey-Arce, A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep., 2020, 10(1), 12805.
[http://dx.doi.org/10.1038/s41598-020-69606-7] [PMID: 32732959]
[56]
Helmlinger, J.; Sengstock, C. Groß-Heitfeld, C.; Mayer, C.; Schildhauer, T.A.; Köller, M.; Epple, M. Silver nanoparticles with different size and shape: Equal cytotoxicity, but different antibacterial effects. RSC Advances, 2016, 6(22), 18490-18501.
[http://dx.doi.org/10.1039/C5RA27836H]
[57]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[58]
Joanna, C.; Marcin, L.; Ewa, K. Grażyna, P. A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology, 2018, 27(3), 352-359.
[http://dx.doi.org/10.1007/s10646-018-1899-3] [PMID: 29411207]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy