Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Additional Role of Midbrain F-18 FP-CIT Uptake on PET in Evaluation of Essential Tremor and Parkinsonism

Author(s): Haejun Lee, Young Hee Sung and Kyung-Hoon Hwang*

Volume 19, Issue 9, 2023

Published on: 07 February, 2023

Article ID: e240123213091 Pages: 11

DOI: 10.2174/1573405619666230124142725

Price: $65

Abstract

Background: Parkinsonism is a term used for the collection of clinical features that cause movement disorders similar to those in Parkinson’s disease. Accurate differentiation of these disorders is critical for the treatment and prognosis of any disease. Fluorine-18 N-(3-fluoropropyl)-2β- carboxymethoxy-3β-(4-iodophenyl) nortropane (F-18 FP-CIT) has been used in the evaluation of parkinsonism by its uptake in the dopamine active transporter (DAT) of the striatum. Its uptake in other areas of the brain, such as serotonin transporter (SERT) in the midbrain or thalamus, is also recognised.

Objective: To investigate whether midbrain SERT uptake of F-18 FP-CIT on positron emission tomography (PET) could be applied to the differentiation of parkinsonism in combination with striatal DAT uptake.

Methods: This retrospective study included clinically diagnosed three essential tremors (ET), 53 parkinsonism patients (21 idiopathic Parkinson’s disease (IPD), 6 multiple system atrophy – cerebellar type (MSA-C), 7 multiple system atrophy - parkinsonian type (MSA-P), 8 vascular parkinsonism (VP), and 11 drug-induced parkinsonism (DIP)), and 16 healthy controls. The patient group consisted of 29 men and 27 women (age mean ± SD years, 69.9 ± 8.5 and 69.2 ± 8.9, respectively), and the healthy controls consisted of 8 men and 8 women (age mean ± SD years, 64.5 ± 8.2 and 64.3 ± 7.6, respectively). Mean standardized uptake values (SUVs) and activity volumes were measured from the visualized FP-CIT uptake of the midbrain (substantia nigra and dorsal raphe nucleus) as well as the striatum (caudate nucleus and putamen). The mean SUVs of the occipital region were measured as the background activity. The semiquantitative binding ratio (BR) was calculated using the following formula: BR = (SUVmean of the region of interest − SUVmean of background)/SUVmean of the background. SUV, volume, and BR in each type of parkinsonism were compared with those in healthy controls using both nonparametric and parametric methods. The correlation between the visual score of the qualitative analysis and the BR was examined.

Results: Except for the dorsal raphe nucleus in VP, the midbrain BRs in all parkinsonism showed a statistically significant decrease compared to those in healthy controls. Both midbrain and striatal BRs were significantly decreased only in patients with IPD or MSA-P; a greater decrease of substantia nigra BR was identified in MSA-P than in IPD (p < 0.05). The striatal BRs in MSA-C, VP, and DIP showed no significant difference from those in healthy controls. Finally, four patterns of uptake were identified: 1) decreased striatal and midbrain uptake for IPD and MSA-P, 2) normal striatal uptake and decreased midbrain uptake (both substantia nigra and dorsal raphe nucleus) for MSA-C and DIP, 3) normal striatal uptake and decreased substantia nigra uptake (without decreased dorsal raphe nucleus uptake) for VP, and 4) normal striatal and midbrain uptake for ET.

Conclusion: The possible differential diagnoses were split into two groups when only striatal uptake was considered but they were divided into four groups after adding midbrain uptake. Although additional midbrain F-18 FP-CIT uptake still could not make a final definitive diagnosis, it could provide another piece of information and specific diagnostic guidelines for the differentiation of parkinsonism.

Keywords: Midbrain, F-18 FP-CIT, parkinsonism, uptake, differentiation, dopamine transporter, serotonin transporter.

[1]
Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet 2021; 397(10291): 2284-303.
[http://dx.doi.org/10.1016/S0140-6736(21)00218-X] [PMID: 33848468]
[2]
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease. JAMA 2020; 323(6): 548-60.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[3]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[4]
Margolesky J. Approaching drug-induced parkinsonism from a neurohospitalist perspective. Expert Rev Neurother 2019; 19(2): 93-5.
[http://dx.doi.org/10.1080/14737175.2019.1569515] [PMID: 30640561]
[5]
Ward KM, Citrome L. Antipsychotic-related movement disorders: Drug-Induced parkinsonism vs. tardive dyskinesia-key differences in pathophysiology and clinical management. Neurol Ther 2018; 7(2): 233-48.
[http://dx.doi.org/10.1007/s40120-018-0105-0] [PMID: 30027457]
[6]
Brigo F, Erro R, Marangi A, Bhatia K, Tinazzi M. Differentiating drug-induced parkinsonism from parkinson’s disease: An update on non-motor symptoms and investigations. Parkinsonism Relat Disord 2014; 20(8): 808-14.
[http://dx.doi.org/10.1016/j.parkreldis.2014.05.011] [PMID: 24935237]
[7]
Dhananjalee Alahakoon AMB, Udagedara TB, Goonaratna I. Vascular parkinsonism: A review on management updates. Ann Indian Acad Neurol 2019; 22(1): 17-20.
[http://dx.doi.org/10.4103/aian.AIAN_194_18] [PMID: 30692754]
[8]
Ma KKY, Lin S, Mok VCT. Neuroimaging in vascular parkinsonism. Curr Neurol Neurosci Rep 2019; 19(12): 102.
[http://dx.doi.org/10.1007/s11910-019-1019-7] [PMID: 31773419]
[9]
Solla P, Cannas A, Arca R, Fonti D, Orofino G, Marrosu F. Focal 123 I-FP-CIT SPECT abnormality in midbrain vascular parkinsonism. Case Rep Neurol Med 2015; 2015: 1-3.
[http://dx.doi.org/10.1155/2015/642764] [PMID: 26550502]
[10]
Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2020; 91(8): 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[11]
Connolly BS, Lang AE. Pharmacological treatment of parkinson disease: A review. JAMA 2014; 311(16): 1670-83.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[12]
Stoffers D, Booij J, Bosscher L, Winogrodzka A, Wolters EC, Berendse HW. Early-stage [123I]β-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of parkinson’s disease. Eur J Nucl Med Mol Imaging 2005; 32(6): 689-95.
[http://dx.doi.org/10.1007/s00259-004-1733-4] [PMID: 15682332]
[13]
Tuite P, Krawczewski K. Parkinsonism: A review-of-systems approach to diagnosis. Semin Neurol 2007; 27(2): 113-22.
[http://dx.doi.org/10.1055/s-2007-971174] [PMID: 17390256]
[14]
Tolosa E, Wenning G, Poewe W. The diagnosis of parkinson’s disease. Lancet Neurol 2006; 5(1): 75-86.
[http://dx.doi.org/10.1016/S1474-4422(05)70285-4] [PMID: 16361025]
[15]
Clarke CE, Davies P. Systematic review of acute levodopa and apomorphine challenge tests in the diagnosis of idiopathic parkinson’s disease. J Neurol Neurosurg Psychiatry 2000; 69(5): 590-4.
[http://dx.doi.org/10.1136/jnnp.69.5.590] [PMID: 11032609]
[16]
Laruelle M, Wallace E, Seibyl JP, et al. Graphical, kinetic, and equilibrium analyses of in vivo [123I] beta-CIT binding to dopamine transporters in healthy human subjects. J Cereb Blood Flow Metab 1994; 14(6): 982-94.
[http://dx.doi.org/10.1038/jcbfm.1994.131] [PMID: 7929662]
[17]
Neumeyer JL, Wang SY, Milius RA, et al. [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane: High-affinity SPECT radiotracer of monoamine reuptake sites in brain. J Med Chem 1991; 34(10): 3144-6.
[http://dx.doi.org/10.1021/jm00114a027] [PMID: 1920365]
[18]
Koch W, Unterrainer M, Xiong G, et al. Extrastriatal binding of [(1)(2)(3)I]FP-CIT in the thalamus and pons: Gender and age dependencies assessed in a European multicentre database of healthy controls. Eur J Nucl Med Mol Imaging 2014; 41(10): 1938-46.
[http://dx.doi.org/10.1007/s00259-014-2785-8] [PMID: 24806112]
[19]
Borgers AJ, Alkemade A, Van de Giessen EM, et al. Imaging of serotonin transporters with [123I]FP-CIT SPECT in the human hypothalamus. EJNMMI Res 2013; 3(1): 34.
[http://dx.doi.org/10.1186/2191-219X-3-34] [PMID: 23618227]
[20]
Roselli F, Pisciotta NM, Pennelli M, et al. Midbrain SERT in degenerative parkinsonisms: A 123I-FP-CIT SPECT study. Mov Disord 2010; 25(12): 1853-9.
[http://dx.doi.org/10.1002/mds.23179] [PMID: 20669272]
[21]
Stehouwer JS, Goodman MM. Fluorine-18 radiolabeled PET tracers for imaging monoamine transporters: Dopamine, serotonin, and norepinephrine. PET Clin 2009; 4(1): 101-28.
[http://dx.doi.org/10.1016/j.cpet.2009.05.006] [PMID: 20216936]
[22]
Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab 2014; 34(7): 1096-103.
[http://dx.doi.org/10.1038/jcbfm.2014.82] [PMID: 24802331]
[23]
Ettlinger DE, Häusler D, Wadsak W, et al. Metabolism and autoradiographic evaluation of [18F]FE@CIT: A Comparison with [123I]β-CIT and [123I]FP-CIT. Nucl Med Biol 2008; 35(4): 475-9.
[http://dx.doi.org/10.1016/j.nucmedbio.2008.02.008] [PMID: 18482685]
[24]
Joling M, Vriend C, van den Heuvel OA, et al. Analysis of extrastriatal 123I-FP-CIT binding contributes to the differential diagnosis of parkinsonian diseases. J Nucl Med 2017; 58(7): 1117-23.
[http://dx.doi.org/10.2967/jnumed.116.182139] [PMID: 27856628]
[25]
Koopman KE, la Fleur SE, Fliers E, Serlie MJ, Booij J. Assessing the optimal time point for the measurement of extrastriatal serotonin transporter binding with 123I-FP-CIT SPECT in healthy, male subjects. J Nucl Med 2012; 53(7): 1087-90.
[http://dx.doi.org/10.2967/jnumed.111.102277] [PMID: 22627000]
[26]
Ziebell M, Holm-Hansen S, Thomsen G, et al. Serotonin transporters in dopamine transporter imaging: A head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I. J Nucl Med 2010; 51(12): 1885-91.
[http://dx.doi.org/10.2967/jnumed.110.078337] [PMID: 21078806]
[27]
Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: A double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med 2007; 48(3): 359-66.
[PMID: 17332612]
[28]
Oh M, Lee N, Kim C, et al. Diagnostic accuracy of dual-phase 18F-FP-CIT PET imaging for detection and differential diagnosis of parkinsonism. Sci Rep 2021; 11(1): 14992.
[http://dx.doi.org/10.1038/s41598-021-94040-8] [PMID: 34294739]
[29]
Nicastro N, Garibotto V, Burkhard PR. Extrastriatal 123I-FP-CIT SPECT impairment in parkinson’s disease – the PPMI cohort. BMC Neurol 2020; 20(1): 192.
[http://dx.doi.org/10.1186/s12883-020-01777-2] [PMID: 32416724]
[30]
Frings L, Henninger F, Treppner M, et al. [123I]FP-CIT SPECT in clinically uncertain parkinsonism predicts survival: A data-driven analysis. J Parkinsons Dis 2020; 10(4): 1457-65.
[http://dx.doi.org/10.3233/JPD-202214] [PMID: 33044193]
[31]
Sixel-Döring F, Liepe K, Mollenhauer B, Trautmann E, Trenkwalder C. The role of 123I-FP-CIT-SPECT in the differential diagnosis of parkinson and tremor syndromes: A critical assessment of 125 cases. J Neurol 2011; 258(12): 2147-54.
[http://dx.doi.org/10.1007/s00415-011-6076-z] [PMID: 21547379]
[32]
Booij J, Habraken JB, Bergmans P, et al. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with parkinson’s disease. J Nucl Med 1998; 39(11): 1879-84.
[PMID: 9829575]
[33]
Lawton M, Tan MMX, Ben-Shlomo Y, et al. Genetics of validated parkinson’s disease subtypes in the oxford discovery and tracking parkinson’s cohorts. J Neurol Neurosurg Psychiatry 2022; 93(9): 952-9.
[http://dx.doi.org/10.1136/jnnp-2021-327376] [PMID: 35732412]
[34]
Chen YP, Yu SH, Zhang GH, et al. The mutation spectrum of Parkinson‐disease ‐related genes in early‐onset parkinson’s disease in ethnic Chinese. Eur J Neurol 2022; 29(11): 3218-28.
[http://dx.doi.org/10.1111/ene.15509]
[35]
Chu YT, Tai CH, Lin CH, Wu RM. Updates on the genetics of parkinson’s disease: Clinical implications and future treatment. Acta Neurol Taiwan 2021; 30(3): 83-93.
[PMID: 34841503]
[36]
Liu H, Koros C, Strohäker T, et al. A novel snca a30g mutation causes familial parkinsonʼs disease. Mov Disord 2021; 36(7): 1624-33.
[http://dx.doi.org/10.1002/mds.28534] [PMID: 33617693]
[37]
Gorostidi A, Martí-Massó JF, Bergareche A, Rodríguez-Oroz MC, López de Munain A, Ruiz-Martínez J. Genetic mutation analysis of parkinson’s disease patients using multigene next-generation sequencing panels. Mol Diagn Ther 2016; 20(5): 481-91.
[http://dx.doi.org/10.1007/s40291-016-0216-1] [PMID: 27294386]
[38]
Mata IF, Davis MY, Lopez AN, et al. The discovery of LRRK2 p.R1441S, a novel mutation for parkinson’s disease, adds to the complexity of a mutational hotspot. Am J Med Genet B Neuropsychiatr Genet 2016; 171(7): 925-30.
[http://dx.doi.org/10.1002/ajmg.b.32452] [PMID: 27111571]
[39]
Shin HW, Kim JS, Oh M, et al. Clinical features of drug-induced parkinsonism based on [18F] FP-CIT positron emission tomography. Neurol Sci 2015; 36(2): 269-74.
[http://dx.doi.org/10.1007/s10072-014-1945-8] [PMID: 25231645]
[40]
Brigo F, Matinella A, Erro R, Tinazzi M. [(1)(2)(3)I]FP-CIT SPECT (DaTSCAN) may be a useful tool to differentiate between parkin son’s disease and vascular or drug-induced parkinsonisms: A meta-analysis. Eur J Neurol 2014; 21(11): 1369-e1390.
[http://dx.doi.org/10.1111/ene.12444] [PMID: 24779862]
[41]
Olivares Romero J, Arjona Padillo A. Diagnostic accuracy of 123 I-FP-CIT SPECT in diagnosing drug-induced parkinsonism: A prospective study. Neurologia 2013; 28(5): 276-82.
[http://dx.doi.org/10.1016/j.nrl.2012.05.005] [PMID: 22795922]
[42]
Cuberas-Borrós G, Lorenzo-Bosquet C, Aguadé-Bruix S, et al. Quantitative evaluation of striatal I-123-FP-CIT uptake in essential tremor and parkinsonism. Clin Nucl Med 2011; 36(11): 991-6.
[http://dx.doi.org/10.1097/RLU.0b013e3182291a7b] [PMID: 21975386]
[43]
Diaz-Corrales FJ, Sanz-Viedma S, Garcia-Solis D, Escobar-Delgado T, Mir P. Clinical features and 123I-FP-CIT SPECT imaging in drug-induced parkinsonism and parkinson’s disease. Eur J Nucl Med Mol Imaging 2010; 37(3): 556-64.
[http://dx.doi.org/10.1007/s00259-009-1289-4] [PMID: 19862520]
[44]
Hellwig S, Frings L, Masuch A, et al. Antidepressant treatment effects on dopamine transporter availability in patients with major depression: A prospective 123I-FP-CIT SPECT imaging genetic study. J Neural Transm (Vienna) 2018; 125(6): 995-1005.
[http://dx.doi.org/10.1007/s00702-018-1863-7] [PMID: 29476250]
[45]
Seo M, Oh M, Cho M, Chung SJ, Lee CS, Kim JS. The effect of SSRIs on the binding of 18F-FP-CIT in parkinson patients: A retrospective case control study. Nucl Med Mol Imaging 2014; 48(4): 287-94.
[http://dx.doi.org/10.1007/s13139-014-0286-0] [PMID: 26396633]
[46]
Kugaya A, Seneca NM, Snyder PJ, et al. Changes in human in vivo serotonin and dopamine transporter availabilities during chronic antidepressant administration. Neuropsychopharmacology 2003; 28(2): 413-20.
[http://dx.doi.org/10.1038/sj.npp.1300036] [PMID: 12589396]
[47]
Tauscher J, Pirker W, de Zwaan M, Susanne Asenbaum, Brücke T, Kasper S. in vivo visualization of serotonin transporters in the human brain during fluoxetine treatment. Eur Neuropsychopharmacol 1999; 9(1-2): 177-9.
[http://dx.doi.org/10.1016/S0924-977X(98)00013-3] [PMID: 10082245]
[48]
Brücke T, Odin P, Brooks DJ, et al. [123I]β-CIT SPECT imaging of dopamine and serotonin transporters in parkinson’s disease and multiple system atrophy. Nucl Med (Stuttg) 2003; 42(1): 31-8.
[http://dx.doi.org/10.1055/s-0038-1623903] [PMID: 12601452]
[49]
Pirker W, Asenbaum S, Hauk M, et al. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000; 41(1): 36-44.
[PMID: 10647603]
[50]
Kuikka JT, Tiihonen J, Bergström KA, et al. Imaging of serotonin and dopamine transporters in the living human brain. Eur J Nucl Med 1995; 22(4): 346-50.
[http://dx.doi.org/10.1007/BF00941852] [PMID: 7607266]
[51]
Brücke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I. SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. J Neural Transm (Vienna) 1993; 94(2): 137-46.
[http://dx.doi.org/10.1007/BF01245007] [PMID: 8110440]
[52]
Bergström KA, Halldin C, Hall H, et al. In vitro and in vivo characterisation of norbeta-CIT: A potential radioligand for visualisation of the serotonin transporter in the brain. Eur J Nucl Med 1997; 24(6): 596-601.
[http://dx.doi.org/10.1007/BF00841395] [PMID: 9169564]
[53]
Booij J, Knol RJJ, Reneman L, de Bruin K, Janssen AGM, van Royen EA. Iodine-123 labelled nor-β-CIT binds to the serotonin transporter in vivo as assessed by biodistribution studies in rats. Eur J Nucl Med Mol Imaging 1998; 25(12): 1666-9.
[http://dx.doi.org/10.1007/s002590050346] [PMID: 9871099]
[54]
Hiltunen J, Akerman KK, Kuikka JT, et al. Iodine-123 labeled nor-beta-CIT as a potential tracer for serotonin transporter imaging in the human brain with single-photon emission tomography. Eur J Nucl Med 1998; 25(1): 19-23.
[http://dx.doi.org/10.1007/s002590050189] [PMID: 9396870]
[55]
Joensuu M, Tolmunen T, Saarinen PI, et al. Reduced midbrain serotonin transporter availability in drug-naïve patients with depression measured by SERT-specific [123I] nor-β-CIT SPECT imaging. Psychiatry Res Neuroimaging 2007; 154(2): 125-31.
[http://dx.doi.org/10.1016/j.pscychresns.2006.08.001] [PMID: 17289353]
[56]
Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of (11)C-labeled 2-(phenylthio)araalkylamines. J Med Chem 2000; 43(16): 3103-10.
[http://dx.doi.org/10.1021/jm000079i] [PMID: 10956218]
[57]
Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging the serotonin transporter with positron emission tomography: Initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med Mol Imaging 2000; 27(11): 1719-22.
[http://dx.doi.org/10.1007/s002590000365] [PMID: 11105830]
[58]
Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S. Positron emission tomography quantification of [(11)C]-DASB binding to the human serotonin transporter: Modeling strategies. J Cereb Blood Flow Metab 2001; 21(11): 1342-53.
[http://dx.doi.org/10.1097/00004647-200111000-00010] [PMID: 11702049]
[59]
Huang Y, Hwang DR, Narendran R, et al. Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [11C]McN 5652, [11C]ADAM, [11C]DASB, [11C]DAPA, and [11C]AFM. J Cereb Blood Flow Metab 2002; 22(11): 1377-98.
[http://dx.doi.org/10.1097/01.WCB.0000040948.67415.05] [PMID: 12439295]
[60]
Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S. In vitro and in vivo characterisation of [11C]-DASB: A probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol 2002; 29(5): 509-15.
[http://dx.doi.org/10.1016/S0969-8051(02)00316-5] [PMID: 12088720]
[61]
Ichise M, Liow JS, Lu JQ, et al. Linearized reference tissue parametric imaging methods: Application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 2003; 23(9): 1096-112.
[http://dx.doi.org/10.1097/01.WCB.0000085441.37552.CA] [PMID: 12973026]
[62]
Kim JS, Ichise M, Sangare J, Innis RB. PET imaging of serotonin transporters with [11C]DASB: Test-retest reproducibility using a multilinear reference tissue parametric imaging method. J Nucl Med 2006; 47(2): 208-14.
[PMID: 16455625]
[63]
Frankle WG, Slifstein M, Gunn RN, et al. Estimation of serotonin transporter parameters with 11C-DASB in healthy humans: Reproducibility and comparison of methods. J Nucl Med 2006; 47(5): 815-26.
[PMID: 16644752]
[64]
Abi-Dargham A, Gandelman MS, DeErausquin GA, et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med 1996; 37(7): 1129-33.
[PMID: 8965183]
[65]
Booij J, Kemp P. Dopamine transporter imaging with [123I]FP-CIT SPECT: Potential effects of drugs. Eur J Nucl Med Mol Imaging 2008; 35(2): 424-38.
[http://dx.doi.org/10.1007/s00259-007-0621-0] [PMID: 17968545]
[66]
Yanase D, Matsunari I, Yajima K, et al. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. Eur J Nucl Med Mol Imaging 2005; 32(7): 794-805.
[http://dx.doi.org/10.1007/s00259-005-1767-2] [PMID: 15759148]
[67]
Lorberboym M, Treves TA, Melamed E, Lampl Y, Hellmann M, Djaldetti R. [ 123 I]-FP/CIT SPECT imaging for distinguishing drug-induced parkinsonism from parkinson’s disease. Mov Disord 2006; 21(4): 510-4.
[http://dx.doi.org/10.1002/mds.20748] [PMID: 16250023]
[68]
Benamer HTS, Patterson J, Grosset DG, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: The [123I]-FP-CIT study group. Mov Disord 2000; 15(3): 503-10.
[http://dx.doi.org/10.1002/1531-8257(200005)15:3<503::AID-MDS1013>3.0.CO;2-V] [PMID: 10830416]
[69]
Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Brücke T. [ 123 I]β-CIT and SPECT in essential tremor and parkinson’s disease. J Neural Transm (Vienna) 1998; 105(10-12): 1213-28.
[http://dx.doi.org/10.1007/s007020050124] [PMID: 9928890]
[70]
Cheon M, Kim SM, Ha SW, Kang MJ, Yang HE, Yoo J. Diagnostic performance for differential diagnosis of atypical parkinsonian syndromes from parkinson’s disease using quantitative indices of (18)FFP-CIT PET/CT. Diagnostics (Basel) 2022; 12(6): 1402.
[PMID: 35741212]
[71]
Huertas-Fernández I, García-Gómez FJ, García-Solís D, et al. Machine learning models for the differential diagnosis of vascular parkinsonism and parkinson’s disease using [123I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging 2015; 42(1): 112-9.
[http://dx.doi.org/10.1007/s00259-014-2882-8] [PMID: 25120041]
[72]
Benítez-Rivero S, Marín-Oyaga VA, García-Solís D, et al. Clinical features and 123 I-FP-CIT SPECT imaging in vascular parkinsonism and Parkinson’s disease. J Neurol Neurosurg Psychiatry 2013; 84(2): 122-9.
[http://dx.doi.org/10.1136/jnnp-2012-302618] [PMID: 22906618]
[73]
Contrafatto D, Mostile G, Nicoletti A, et al. [123I]FP-CIT-SPECT asymmetry index to differentiate parkinson’s disease from vascular parkinsonism. Acta Neurol Scand 2012; 126(1): 12-6.
[http://dx.doi.org/10.1111/j.1600-0404.2011.01583.x] [PMID: 21916850]
[74]
Kalra S, Grosset DG, Benamer HTS. Differentiating vascular parkinsonism from idiopathic parkinson’s disease: A systematic review. Mov Disord 2010; 25(2): 149-56.
[http://dx.doi.org/10.1002/mds.22937] [PMID: 20077476]
[75]
Scherfler C, Seppi K, Donnemiller E, et al. Voxel-wise analysis of [123I]β-CIT SPECT differentiates the parkinson variant of multiple system atrophy from idiopathic parkinson’s disease. Brain 2005; 128(7): 1605-12.
[http://dx.doi.org/10.1093/brain/awh485] [PMID: 15817519]
[76]
Politis M, Loane C. Serotonergic dysfunction in parkinson’s disease and its relevance to disability. Sci World J 2011; 11: 1726-34.
[http://dx.doi.org/10.1100/2011/172893] [PMID: 22125431]
[77]
Kish SJ, Tong J, Hornykiewicz O, et al. Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 2008; 131(Pt 1): 120-31.
[PMID: 17956909]
[78]
Guttman M, Boileau I, Warsh J, et al. Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur J Neurol 2007; 14(5): 523-8.
[http://dx.doi.org/10.1111/j.1468-1331.2007.01727.x] [PMID: 17437611]
[79]
Kish SJ. Biochemistry of Parkinson’s disease: Is a brain serotonergic deficiency a characteristic of idiopathic Parkinson’s disease? Adv Neurol 2003; 91: 39-49.
[PMID: 12442662]
[80]
Blesa J, Foffani G, Dehay B, Bezard E, Obeso JA. Motor and non-motor circuit disturbances in early Parkinson disease: Which happens first? Nat Rev Neurosci 2022; 23(2): 115-28.
[http://dx.doi.org/10.1038/s41583-021-00542-9] [PMID: 34907352]
[81]
Kang KW, Choi SM, Kim BC. Gender differences in motor and non-motor symptoms in early Parkinson disease. Medicine (Baltimore) 2022; 101(3): e28643.
[http://dx.doi.org/10.1097/MD.0000000000028643] [PMID: 35060552]
[82]
Liguori S, Moretti A, Palomba A, et al. Non-motor impairments affect walking kinematics in Parkinson disease patients: A cross-sectional study. NeuroRehabilitation 2021; 49(3): 481-9.
[http://dx.doi.org/10.3233/NRE-210146] [PMID: 34420985]
[83]
Chaudhuri KR. Thirty years of research on autonomic dysfunction, non-motor features, and endophenotypes in Parkinson disease. Clin Auton Res 2021; 31(1): 37-9.
[http://dx.doi.org/10.1007/s10286-021-00771-z] [PMID: 33515319]
[84]
Sahli H, Seddik L, Rémy P. Non-motor symptoms of parkinson disease and their management. Rev Prat 2018; 68(5): 508-12.
[PMID: 30869414]
[85]
Weintraub D, Newberg AB, Cary MS, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in parkinson’s disease. J Nucl Med 2005; 46(2): 227-32.
[PMID: 15695780]
[86]
Santamaría J, Tolosa E, Valles A. Parkinson’s disease with depression: A possible subgroup of idiopathic parkinsonism. Neurology 1986; 36(8): 1130-3.
[http://dx.doi.org/10.1212/WNL.36.8.1130] [PMID: 3736883]
[87]
Joling M, van den Heuvel OA, Berendse HW, Booij J, Vriend C. Serotonin transporter binding and anxiety symptoms in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2017.
[PMID: 28899958]
[88]
Sibille E, Lewis DA. SERT-ainly involved in depression, but when? Am J Psychiatry 2006; 163(1): 8-11.
[http://dx.doi.org/10.1176/appi.ajp.163.1.8] [PMID: 16390880]
[89]
Kambeitz JP, Howes OD. The serotonin transporter in depression: Meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord 2015; 186: 358-66.
[http://dx.doi.org/10.1016/j.jad.2015.07.034] [PMID: 26281039]
[90]
Ruhé HG, Booij J, Reitsma JB, Schene AH. Serotonin transporter binding with [123I]β-CIT SPECT in major depressive disorder versus controls: effect of season and gender. Eur J Nucl Med Mol Imaging 2009; 36(5): 841-9.
[http://dx.doi.org/10.1007/s00259-008-1057-x] [PMID: 19183998]
[91]
Macgillivray L, Reynolds KB, Sickand M, Rosebush PI, Mazurek MF. Inhibition of the serotonin transporter induces microglial activation and downregulation of dopaminergic neurons in the substantia nigra. Synapse 2011; 65(11): 1166-72.
[http://dx.doi.org/10.1002/syn.20954] [PMID: 21584867]
[92]
Dixit S, Khan SA, Azad S. A case of SSRI induced irreversible parkinsonism. J Clin Diagn Res 2015; 9(2): VD01-2.
[http://dx.doi.org/10.7860/JCDR/2015/11394.5583] [PMID: 25859504]
[93]
Miletić V, Relja M. Citalopram-induced parkinsonian syndrome: Case report. Clin Neuropharmacol 2011; 34(2): 92-3.
[http://dx.doi.org/10.1097/WNF.0b013e318210ea3e] [PMID: 21407001]
[94]
Pina Latorre MA, Modrego PJ, Rodilla F, Catalán C, Calvo M. Parkinsonism and parkinson’s disease associated with long-term administration of sertraline. J Clin Pharm Ther 2001; 26(2): 111-2.
[http://dx.doi.org/10.1046/j.1365-2710.2001.00307.x] [PMID: 11350533]
[95]
Gönül AS, Aksu M. SSRI-induced parkinsonism may be an early sign of future parkinson’s disease. J Clin Psychiatry 1999; 60(6): 410.
[http://dx.doi.org/10.4088/JCP.v60n0611d] [PMID: 10401924]
[96]
Di Rocco A, Brannan T, Prikhojan A, Yahr MD. Sertraline induced parkinsonim. A case report and an in-vivo study of the effect of sertraline on dopamine metabolism. J Neural Transm (Vienna) 1998; 105(2-3): 247-51.
[http://dx.doi.org/10.1007/s007020050053] [PMID: 9660102]
[97]
Tang W, He F, Liu Y, Duan Y. MATR: Multimodal medical image fusion via multiscale adaptive transformer. IEEE Trans Image Process 2022; 31: 5134-49.
[http://dx.doi.org/10.1109/TIP.2022.3193288] [PMID: 35901003]
[98]
Tang W, He F, Liu Y. YDTR: Infrared and visible image fusion via y-shape dynamic transformer. IEEE Trans Image Process 2022; 2022: 3192661.
[http://dx.doi.org/10.1109/TMM.2022.3192661]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy