Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Role of β-blockers in Preventing Heart Failure and Major Adverse Cardiac Events Post Myocardial Infarction

Author(s): Nishant Johri*, Prithpal S. Matreja, Aditya Maurya, Shivani Varshney and Smritigandha

Volume 19, Issue 4, 2023

Published on: 01 March, 2023

Article ID: e110123212591 Pages: 8

DOI: 10.2174/1573403X19666230111143901

Price: $65

Abstract

β-blockers have been widely utilized as a part of acute myocardial infarction (AMI) treatment for the past 40 years. Patients receiving β-adrenergic blockers for an extended period following myocardial infarction have a higher chance of surviving. Although many patients benefited from β-blockers, many do not, including those with myocardial infarction, left ventricle dysfunction, chronic pulmonary disease, and elderly people. In individuals with the post-acute coronary syndrome and normal left ventricular ejection fraction (LVEF), the appropriate duration of betablocker therapy is still unknown. There is also no time limit for those without angina and those who do not need β-blockers for arrhythmia or hypertension. Interestingly, β-blockers have been prescribed for more than four decades. The novel mechanism of action on cellular compartments has been found continually, which opens a new way for their potential application in cardiac failure and other cardiac events like post-myocardial infarction. Here, in this review, we studied β-blocker usage in these circumstances and the current recommendations for β-blocker use from clinical practice guidelines.

Keywords: Cardiovascular disease, HFrEF, CAD, LVEF, AMI, IHD.

Graphical Abstract
[1]
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol 2020; 76(25): 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Safi S, Sethi NJ, Korang SK, et al. Beta-blockers in patients without heart failure after myocardial infarction. Cochrane Database Syst Rev 2021; 11(11): CD012565.
[PMID: 34739733]
[3]
Aminde LN, Takah N, Ngwasiri C, et al. Population awareness of cardiovascular disease and its risk factors in Buea, Cameroon. BMC Public Health 2017; 17(1): 545.
[http://dx.doi.org/10.1186/s12889-017-4477-3] [PMID: 28583117]
[4]
Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation 2020; 141(9): e139-596.
[http://dx.doi.org/10.1161/CIR.0000000000000757] [PMID: 31992061]
[5]
Hollenberg N. The role of β-blockers as a cornerstone of cardiovascular therapy. Am J Hypertens 2005; 18(12): 165-8.
[http://dx.doi.org/10.1016/j.amjhyper.2005.09.010] [PMID: 16373194]
[6]
Eriksen-Volnes T, Westheim A, Gullestad L, Slind EK, Grundtvig M. β-Blocker doses and heart rate in patients with heart failure: Results from the national norwegian heart failure registry. Biomed Hub 2020; 5(1): 1-10.
[http://dx.doi.org/10.1159/000505474] [PMID: 32775329]
[7]
DiNicolantonio JJ, Fares H, Niazi AK, et al. β-blockers in hypertension, diabetes, heart failure and acute myocardial infarction: A review of the literature. Open Heart 2015; 2(1): e000230.
[http://dx.doi.org/10.1136/openhrt-2014-000230] [PMID: 25821584]
[8]
Harari R, Bangalore S. Beta-blockers after acute myocardial infarction: An old drug in urgent need of new evidence! Eur Heart J 2020; 41(37): 3530-2.
[http://dx.doi.org/10.1093/eurheartj/ehaa436] [PMID: 32734292]
[9]
Boyette LC, Manna B. Physiology, myocardial oxygen demand StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[10]
Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: Challenges and future opportunities. Heart 2016; 102(5): 341-8.
[http://dx.doi.org/10.1136/heartjnl-2015-307855] [PMID: 26674987]
[11]
Fioranelli M, Bottaccioli AG, Bottaccioli F, Bianchi M, Rovesti M, Roccia MG. Stress and inflammation in coronary artery disease: A review psychoneuroendocrineimmunology-based. Front Immunol 2018; 9: 2031.
[http://dx.doi.org/10.3389/fimmu.2018.02031] [PMID: 30237802]
[12]
Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation 2018; 138(13): e272-391.
[http://dx.doi.org/10.1161/CIR.0000000000000549] [PMID: 29084731]
[13]
Harris P, Lysitsas D. Ventricular arrhythmias and sudden cardiac death. BJA Educ 2016; 16(7): 221-9.
[http://dx.doi.org/10.1093/bjaed/mkv056]
[14]
Andersson C, Shilane D, Go AS, et al. β-blocker therapy and cardiac events among patients with newly diagnosed coronary heart disease. J Am Coll Cardiol 2014; 64(3): 247-52.
[http://dx.doi.org/10.1016/j.jacc.2014.04.042] [PMID: 25034059]
[15]
Park J, Kim J, Kwon JH, et al. Association between perioperative β-blocker use and clinical outcome of non-cardiac surgery in coronary revascularized patients without severe ventricular dysfunction or heart failure. PLoS One 2018; 13(8): e0201311.
[http://dx.doi.org/10.1371/journal.pone.0201311] [PMID: 30067841]
[16]
Mistry R, Walker D. Perioperative beta-blockade: Might the baby go out with the bath water? Clin Med 2014; 14(6): 604-7.
[http://dx.doi.org/10.7861/clinmedicine.14-6-604] [PMID: 25468844]
[17]
Andersson C, Mérie C, Jørgensen M, et al. Association of β-blocker therapy with risks of adverse cardiovascular events and deaths in patients with ischemic heart disease undergoing noncardiac surgery: A danish nationwide cohort study. JAMA Intern Med 2014; 174(3): 336-44.
[http://dx.doi.org/10.1001/jamainternmed.2013.11349] [PMID: 24247428]
[18]
Bangalore S, Bhatt DL, Steg PG, et al. β-blockers and cardiovascular events in patients with and without myocardial infarction: Post hoc analysis from the CHARISMA trial. Circ Cardiovasc Qual Outcomes 2014; 7(6): 872-81.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.114.001073] [PMID: 25271049]
[19]
Poirier L, Tobe SW. Contemporary use of β-blockers: Clinical relevance of subclassification. Can J Cardiol 2014; 30(5): S9-S15.
[http://dx.doi.org/10.1016/j.cjca.2013.12.001] [PMID: 24684855]
[20]
Kristensen AMD, Bovin A, Zwisler AD, et al. Design and rationale of the Danish trial of beta-blocker treatment after myocardial infarction without reduced ejection fraction: Study protocol for a randomized controlled trial. Trials 2020; 21(1): 415.
[http://dx.doi.org/10.1186/s13063-020-4214-6] [PMID: 32446298]
[21]
Boudonas GE. β-blockers in coronary artery disease management. Hippokratia 2010; 14(4): 231-5.
[PMID: 21311628]
[22]
Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: A systematic review for the 2014 acc/aha guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: A report of the american college of cardiology/american heart association task force on practice guidelines. Circulation 2014; 130(24): 2246-64.
[http://dx.doi.org/10.1161/CIR.0000000000000104] [PMID: 25085964]
[23]
Andersson C. Review: Perioperative β-blockers have variable effects on outcomes in cardiac and noncardiac surgery. Ann Intern Med 2015; 162(6): JC2.
[http://dx.doi.org/10.7326/ACPJC-2015-162-6-002] [PMID: 25775345]
[24]
Noble S, Roffi M. Routine beta-blocker administration following acute myocardial infarction: Why still an unsolved issue? J Thorac Dis 2017; 9(11): 4191-4.
[http://dx.doi.org/10.21037/jtd.2017.10.25] [PMID: 29268468]
[25]
Park JJ, Kim SH, Kang SH, et al. Effect of β‐blockers beyond 3 years after acute myocardial infarction. J Am Heart Assoc 2018; 7(5): e007567.
[http://dx.doi.org/10.1161/JAHA.117.007567] [PMID: 29502101]
[26]
Lee PH, Park GM, Han S, et al. Beta-blockers provide a differential survival benefit in patients with coronary artery disease undergoing contemporary post-percutaneous coronary intervention management. Sci Rep 2020; 10(1): 22121.
[http://dx.doi.org/10.1038/s41598-020-79214-0] [PMID: 33335231]
[27]
Dahl AM, Sandven I, Dondo TB, et al. Effect of oral β -blocker treatment on mortality in contemporary post-myocardial infarction patients: A systematic review and meta-analysis. Eur Hear J - Cardiovasc Pharmacother 2019; 5(1): 12-20.
[28]
Lucia C, Eguchi A, Koch WJ. New insights in cardiac β-adrenergic signaling during heart failure and aging. Front Pharmacol 2018; 9: 904.
[http://dx.doi.org/10.3389/fphar.2018.00904] [PMID: 30147654]
[29]
Matarrese P, Maccari S, Vona R, Gambardella L, Stati T, Marano G. Role of β-adrenergic receptors and estrogen in cardiac repair after myocardial infarction: An overview. Int J Mol Sci 2021; 22(16): 8957.
[http://dx.doi.org/10.3390/ijms22168957] [PMID: 34445662]
[30]
Fu Y, Westenbroek RE, Scheuer T, Catterall WA. Basal and β-adrenergic regulation of the cardiac calcium channel CaV 1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci 2014; 111(46): 16598-603.
[http://dx.doi.org/10.1073/pnas.1419129111] [PMID: 25368181]
[31]
Katsarou MS, Karathanasopoulou A, Andrianopoulou A, et al. Beta 1, beta 2 and beta 3 adrenergic receptor gene polymorphisms in a southeastern European population. Front Genet 2018; 9: 560.
[http://dx.doi.org/10.3389/fgene.2018.00560] [PMID: 30546380]
[32]
Dal Monte M, Calvani M, Cammalleri M, Favre C, Filippi L, Bagnoli P. β ‐Adrenoceptors as drug targets in melanoma: Novel preclinical evidence for a role of β3 ‐adrenoceptors. Br J Pharmacol 2019; 176(14): 2496-508.
[http://dx.doi.org/10.1111/bph.14552] [PMID: 30471093]
[33]
Abosamak NER, Shahin MH. Beta 2 receptor agonists/antagonists StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[34]
Porcelli L, Garofoli M, Di Fonte R, et al. The β-adrenergic receptor antagonist propranolol offsets resistance mechanisms to chemotherapeutics in diverse sarcoma subtypes: A pilot study. Sci Rep 2020; 10(1): 10465.
[http://dx.doi.org/10.1038/s41598-020-67342-6] [PMID: 32591592]
[35]
Alhayek S, Preuss CV. Beta 1 receptors StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[36]
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can beta-2-adrenergic pathway be a new target to combat sars-cov-2 hyperinflammatory syndrome?-lessons learned from cancer. Front Immunol 2020; 11: 588724.
[http://dx.doi.org/10.3389/fimmu.2020.588724] [PMID: 33117402]
[37]
Szentirmai É, Kapás L. The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses. Sci Rep 2017; 7(1): 958.
[http://dx.doi.org/10.1038/s41598-017-01047-1] [PMID: 28424466]
[38]
Valentine JM, Ahmadian M, Keinan O, et al. β3-adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest 2022; 132(2): e153357.
[http://dx.doi.org/10.1172/JCI153357] [PMID: 34847077]
[39]
Merlin J, Sato M, Chia LY, et al. Rosiglitazone and a β3-adrenoceptor agonist are both required for functional browning of white adipocytes in culture. Front Endocrinol 2018; 9: 249.
[http://dx.doi.org/10.3389/fendo.2018.00249] [PMID: 29910772]
[40]
Barrese V, Taglialatela M. New advances in beta-blocker therapy in heart failure. Front Physiol 2013; 4: 323.
[http://dx.doi.org/10.3389/fphys.2013.00323] [PMID: 24294204]
[41]
López-Canales OA, Castillo-Hernandez MC, Vargas-Robles H, Rios A, López-Canales JS, Escalante B. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation. Braz J Med Biol Res 2016; 49(7): e5285.
[http://dx.doi.org/10.1590/1414-431x20165285] [PMID: 27383122]
[42]
Ma X, Hu Y, Batebi H, et al. Analysis of β2 AR-Gs and β2 AR-Gi complex formation by NMR spectroscopy. Proc Natl Acad Sci 2020; 117(37): 23096-105.
[http://dx.doi.org/10.1073/pnas.2009786117] [PMID: 32868434]
[43]
Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ. Ligand-directed signalling at β-adrenoceptors. Br J Pharmacol 2010; 159(5): 1022-38.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00602.x] [PMID: 20132209]
[44]
Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP–PKA–CREB signaling in cancer. Exp Hematol Oncol 2020; 9(1): 32.
[http://dx.doi.org/10.1186/s40164-020-00191-1] [PMID: 33292604]
[45]
Thiel G, Schmidt T, Rössler OG. Ca2+ Microdomains, calcineurin and the regulation of gene transcription. Cells 2021; 10(4): 875.
[http://dx.doi.org/10.3390/cells10040875] [PMID: 33921430]
[46]
Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor creb in immune function. Physiol Behav 2017; 176(3): 139-48.
[47]
Fearnley CJ, Roderick HL, Bootman MD. Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol 2011; 3(11): a004242.
[http://dx.doi.org/10.1101/cshperspect.a004242] [PMID: 21875987]
[48]
Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Bone 2012; 78(2): 711-6.
[PMID: 22975111]
[49]
Taylor SH. Role of cardioselectivity and intrinsic sympathomimetic activity in beta-blocking drugs in cardiovascular disease. Am J Cardiol 1987; 59(13): F18-20.
[http://dx.doi.org/10.1016/0002-9149(87)90036-1] [PMID: 2883872]
[50]
Cruickshank JM, McAinsh J. Atenolol and ischaemic heart disease: An overview. Curr Med Res Opin 1991; 12(8): 485-96.
[http://dx.doi.org/10.1185/03007999109111659] [PMID: 1764953]
[51]
Ong HT. β -blockers in hypertension and cardiovascular disease. BMJ 2007; 334(7600): 946-9.
[http://dx.doi.org/10.1136/bmj.39185.440382.47] [PMID: 17478848]
[52]
Ruffolo RR Jr, Feuerstein GZ. Pharmacology of carvedilol: Rationale for use in hypertension, coronary artery disease, and congestive heart failure. Cardiovasc Drugs Ther 1997; 11(1+): 247-56.
[http://dx.doi.org/10.1023/A:1007735729121] [PMID: 9211017]
[53]
Grassi G. Metoprolol in the treatment of cardiovascular disease: A critical reappraisal. Curr Med Res Opin 2018; 34(9): 1635-43.
[http://dx.doi.org/10.1080/03007995.2018.1479245] [PMID: 29781321]
[54]
Morales DR, Lipworth BJ, Donnan PT, Jackson C, Guthrie B. Respiratory effect of beta-blockers in people with asthma and cardiovascular disease: population-based nested case control study. BMC Med 2017; 15(1): 18.
[http://dx.doi.org/10.1186/s12916-017-0781-0] [PMID: 28126029]
[55]
Coats A, Jain S. Protective effects of nebivolol from oxidative stress to prevent hypertension-related target organ damage. J Hum Hypertens 2017; 31(6): 376-81.
[http://dx.doi.org/10.1038/jhh.2017.8] [PMID: 28252041]
[56]
Shahrokhi M, Gupta V. Propranolol StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[57]
Bangalore S, Messerli FH, Kostis JB, Pepine CJ. Cardiovascular protection using beta-blockers: A critical review of the evidence. J Am Coll Cardiol 2007; 50(7): 563-72.
[http://dx.doi.org/10.1016/j.jacc.2007.04.060] [PMID: 17692739]
[58]
Kotecha D, Manzano L, Altman DG, et al. Individual patient data meta-analysis of beta-blockers in heart failure: Rationale and design. Syst Rev 2013; 2(1): 7.
[http://dx.doi.org/10.1186/2046-4053-2-7] [PMID: 23327629]
[59]
Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res 2019; 124(11): 1598-617.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.313572] [PMID: 31120821]
[60]
Greenberg BH. Heart failure epidemic. Curr Cardiol Rep 2002; 4(3): 185.
[http://dx.doi.org/10.1007/s11886-002-0048-y]
[61]
Ziff OJ, Samra M, Howard JP, et al. Beta-blocker efficacy across different cardiovascular indications: An umbrella review and meta-analytic assessment. BMC Med 2020; 18(1): 103.
[http://dx.doi.org/10.1186/s12916-020-01564-3] [PMID: 32366251]
[62]
Chavey WE, Hogikyan RV, Van Harrison R, Nicklas JM. Heart failure due to reduced ejection fraction: Medical management. Am Fam Physician 2017; 95(1): 13-20.
[PMID: 28075105]
[63]
Faragli A, Tano GD, Carlini CD, et al. In-hospital heart rate reduction with beta blockers and ivabradine early after recovery in patients with acute decompensated heart failure reduces short-term mortality and rehospitalization. Front Cardiovasc Med 2021; 8: 665202.
[http://dx.doi.org/10.3389/fcvm.2021.665202] [PMID: 34395550]
[64]
Masarone D, Martucci ML, Errigo V, Pacileo G. The use of β-blockers in heart failure with reduced ejection fraction. J Cardiovasc Dev Dis 2021; 8(9): 101.
[http://dx.doi.org/10.3390/jcdd8090101] [PMID: 34564119]
[65]
Klapholz M. Beta-blocker use for the stages of heart failure. Mayo Clin Proc 2009; 84(8): 718-29.
[http://dx.doi.org/10.4065/84.8.718] [PMID: 19648389]
[66]
Mann DL, Bristow MR. Mechanisms and models in heart failure: The biomechanical model and beyond. Circulation 2005; 111(21): 2837-49.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.500546] [PMID: 15927992]
[67]
Ferrara R, Mastrorilli F, Pasanisi G, et al. Neurohormonal modulation in chronic heart failure. Eur Heart J Suppl 2002; 4: D3-D11.
[http://dx.doi.org/10.1093/ehjsupp/4.suppl_D.D3]
[68]
de Lucia C, Femminella GD, Gambino G, et al. Adrenal adrenoceptors in heart failure. Front Physiol 2014; 5: 246.
[http://dx.doi.org/10.3389/fphys.2014.00246] [PMID: 25071591]
[69]
Ferrara N, Komici K, Corbi G, et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 2014; 4: 396.
[http://dx.doi.org/10.3389/fphys.2013.00396] [PMID: 24409150]
[70]
Bristow MR. Treatment of chronic heart failure with β-adrenergic receptor antagonists: A convergence of receptor pharmacology and clinical cardiology. Circ Res 2011; 109(10): 1176-94.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.245092] [PMID: 22034480]
[71]
Maack C, Elter T, Böhm M. Beta-blocker treatment of chronic heart failure: Comparison of carvedilol and metoprolol. Congest Heart Fail 2003; 9(5): 263-70.
[http://dx.doi.org/10.1111/j.1527-5299.2003.01446.x] [PMID: 14564145]
[72]
Bahit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC Heart Fail 2018; 6(3): 179-86.
[http://dx.doi.org/10.1016/j.jchf.2017.09.015] [PMID: 29496021]
[73]
Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non–st-elevation acute coronary syndromes. J Am Coll Cardiol 2014; 64(24): e139-228.
[http://dx.doi.org/10.1016/j.jacc.2014.09.017] [PMID: 25260718]
[74]
Smith SC Jr, Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update. Circulation 2011; 124(22): 2458-73.
[http://dx.doi.org/10.1161/CIR.0b013e318235eb4d] [PMID: 22052934]
[75]
Roffi M, Patrono C, Collet JP, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation. Eur Heart J 2016; 37(3): 267-315.
[http://dx.doi.org/10.1093/eurheartj/ehv320] [PMID: 26320110]
[76]
Bangalore S, Makani H, Radford M, et al. Clinical outcomes with β-blockers for myocardial infarction: A meta-analysis of randomized trials. Am J Med 2014; 127(10): 939-53.
[http://dx.doi.org/10.1016/j.amjmed.2014.05.032] [PMID: 24927909]
[77]
Ibanez B, Macaya C, Sánchez-Brunete V, et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: The effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 2013; 128(14): 1495-503.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003653] [PMID: 24002794]
[78]
Pizarro G, Fernández-Friera L, Fuster V, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: Results from the METOCARD-CNIC trial (effect of metoprolol in cardioprotection during an acute myocardial infarction). J Am Coll Cardiol 2014; 63(22): 2356-62.
[http://dx.doi.org/10.1016/j.jacc.2014.03.014] [PMID: 24694530]
[79]
Roolvink V, Ibáñez B, Ottervanger JP, et al. EARLY-BAMI investigators. early intravenous beta-blockers in patients with st-segment elevation myocardial infarction before primary percutaneous coronary intervention. J Am Coll Cardiol 2016; 67(23): 2705-15.
[http://dx.doi.org/10.1016/j.jacc.2016.03.522] [PMID: 27050189]
[80]
García-Prieto J, Villena-Gutiérrez R, Gómez M, et al. Neutrophil stunning by metoprolol reduces infarct size. Nat Commun 2017; 8(1): 14780.
[http://dx.doi.org/10.1038/ncomms14780] [PMID: 28416795]
[81]
Wikstrand J, Wedel H, Castagno D, McMurray JJV. The large-scale placebo-controlled beta-blocker studies in systolic heart failure revisited: Results from CIBIS-II, COPERNICUS and SENIORS-SHF compared with stratified subsets from MERIT-HF. J Intern Med 2014; 275(2): 134-43.
[http://dx.doi.org/10.1111/joim.12141] [PMID: 24118421]
[82]
Dézsi CA, Szentes V. The real role of β-blockers in daily cardiovascular therapy. Am J Cardiovasc Drugs 2017; 17(5): 361-73.
[http://dx.doi.org/10.1007/s40256-017-0221-8] [PMID: 28357786]
[83]
Tiotiu A, Novakova P, Kowal K, et al. Beta-blockers in asthma: Myth and reality. Expert Rev Respir Med 2019; 13(9): 815-22.
[http://dx.doi.org/10.1080/17476348.2019.1649147] [PMID: 31352857]
[84]
Barron AJ, Zaman N, Cole GD, Wensel R, Okonko DO, Francis DP. Systematic review of genuine versus spurious side-effects of beta-blockers in heart failure using placebo control: Recommendations for patient information. Int J Cardiol 2013; 168(4): 3572-9.
[http://dx.doi.org/10.1016/j.ijcard.2013.05.068] [PMID: 23796325]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy