Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LncRNA: An Important Regulator of Atherosclerosis

Author(s): Yun Ma*, Siqi He, Qiao Xie, Zhihan Tang and Zhisheng Jiang*

Volume 30, Issue 38, 2023

Published on: 02 February, 2023

Page: [4340 - 4354] Pages: 15

DOI: 10.2174/0929867330666230111125141

Price: $65

conference banner
Abstract

Long non-coding RNA (lncRNA) is a kind of biomolecule that can regulate important life activities such as cell proliferation, apoptosis, differentiation, aging, and body development. It has been found that lncRNAs are closely related to various diseases. In cardiovascular diseases, lncRNAs affect the expression level of related genes in atherosclerotic plaques, which are closely related to endothelial dysfunction, smooth muscle cell proliferation, macrophage dysfunction, abnormal lipid metabolism, and cellular autophagy, thus participating in regulating the occurrence and development of AS. In view of this, investigating the role of lncRNAs in regulating cardiac gene networks on cardiovascular system diseases has attracted much clinical attention and may be a novel target for AS therapy. This paper focuses on lncRNAs related to AS, explores the relationship between lncRNAs and AS, suggests the role of lncRNAs in the prevention and treatment of AS, and expects the application of more lncRNAs as the marker in the clinical diagnosis and treatment of AS.

Keywords: lncRNAs, atherosclerosis, ceRNA, biomarker, prognosis, drug discovery.

[1]
Dixon-McDougall, T.; Brown, C.J. Multiple distinct domains of human XIST are required to coordinate gene silencing and subsequent heterochromatin formation. Epigenetics Chromatin, 2022, 15(1), 6.
[http://dx.doi.org/10.1186/s13072-022-00438-7] [PMID: 35120578]
[2]
Trotman, J.B.; Braceros, K.C.A.; Cherney, R.E.; Murvin, M.M.; Calabrese, J.M. The control of polycomb repressive complexes by long noncoding RNAS. Wiley Interdiscip. Rev. RNA, 2021, 12(6), e1657.
[http://dx.doi.org/10.1002/wrna.1657] [PMID: 33861025]
[3]
Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal., 2010, 3(107), ra8.
[http://dx.doi.org/10.1126/scisignal.2000568] [PMID: 20124551]
[4]
Yang, F.; Wei, Y.; Liao, B.; Wei, G.; Qin, H.; Pang, X.; Wang, J. LncRNA HOTAIR regulates the expression of E-cadherin to affect nasopharyngeal carcinoma progression by recruiting histone methylase EZH2 to mediate H3K27 trimethylation. Genomics, 2021, 113(4), 2276-2289.
[http://dx.doi.org/10.1016/j.ygeno.2021.03.036] [PMID: 33965547]
[5]
Song, H.; Chen, L.; Liu, W.; Xu, X.; Zhou, Y.; Zhu, J.; Chen, X.; Li, Z.; Zhou, H. Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTEN gene promoter methylation. Cell Death Dis., 2021, 12(5), 440.
[http://dx.doi.org/10.1038/s41419-021-03637-4] [PMID: 33941772]
[6]
Wang, Y.; Mao, J.; Li, X.; Wang, B.; Zhou, X. lncRNA HOTAIR mediates OGD/R-induced cell injury and angiogenesis in a EZH2-dependent manner. Exp. Ther. Med., 2021, 23(1), 99.
[http://dx.doi.org/10.3892/etm.2021.11022] [PMID: 34976141]
[7]
Li, T.; Tu, P.; Bi, J.; Sun, Y.; Yu, D.; Wang, J.; Zhao, B. LncRNA Miat knockdown alleviates endothelial cell injury through regulation of miR-214-3p/Caspase-1 signalling during atherogenesis. Clin. Exp. Pharmacol. Physiol., 2021, 48(9), 1231-1238.
[http://dx.doi.org/10.1111/1440-1681.13538] [PMID: 34137063]
[8]
Tian, N.N.; Zheng, Y.B.; Li, Z.P.; Zhang, F.; Zhang, J. Histone methylatic modification mediates the tumor-suppressive activity of curcumol in hepatocellular carcinoma via an Hotair/EZH2 regulatory axis. J. Ethnopharmacol., 2021, 280, 114413.
[http://dx.doi.org/10.1016/j.jep.2021.114413] [PMID: 34265379]
[9]
Wang, Y.; Yang, Y.; Zhang, T.; Jia, S.; Ma, X.; Zhang, M.; Wang, L.; Ma, A. LncRNA SNHG16 accelerates atherosclerosis and promotes ox-LDL-induced VSMC growth via the miRNA-22-3p/HMGB2 axis. Eur. J. Pharmacol., 2022, 915, 174601.
[http://dx.doi.org/10.1016/j.ejphar.2021.174601] [PMID: 34699756]
[10]
Yang, S.N.; Zhong, L.Y.; Sun, Y.H.; Wang, C.; Ru, W.J.; Liu, R.Z.; Dai, W.; Xie, X.M.; Li, S.D. Downregulation of lncRNA SNHG16 inhibits vascular smooth muscle cell proliferation and migration in cerebral atherosclerosis by targeting the miR-30c-5p/SDC2 axis. Heart Vessels, 2022, 37(6), 1085-1096.
[http://dx.doi.org/10.1007/s00380-022-02049-4] [PMID: 35320391]
[11]
Zhong, X.; Ma, X.; Zhang, L.; Li, Y.; Li, Y.; He, R. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed. Pharmacother., 2018, 97, 1078-1085.
[http://dx.doi.org/10.1016/j.biopha.2017.11.052] [PMID: 29136944]
[12]
Ghasempour, G.; Mohammadi, A.; Zamani-Garmsiri, F.; Najafi, M. miRNAs through β-ARR2/p-ERK1/2 pathway regulate the VSMC proliferation and migration. Life Sci., 2021, 279, 119703.
[http://dx.doi.org/10.1016/j.lfs.2021.119703] [PMID: 34111458]
[13]
Ghasempour, G.; Mahabadi, V.P.; Shabani, M.; Mohammadi, A.; Zamani-Garmsiri, F.; Amirfarhangi, A.; Karimi, M.; Najafi, M. miR-181b and miR-204 suppress the VSMC proliferation and migration by downregulation of HCK. Microvasc. Res., 2021, 136, 104172.
[http://dx.doi.org/10.1016/j.mvr.2021.104172] [PMID: 33894273]
[14]
Shi, Z.; Zhu, Q.; Fan, J. lncRNA TUG1 promotes atherosclerosis progression by targeting miR-382-5p. Int. J. Clin. Exp. Pathol., 2021, 14(9), 972-979.
[PMID: 34646415]
[15]
Wu, X.; Zheng, X.; Cheng, J.; Zhang, K.; Ma, C. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HUVEC. Life Sci., 2020, 243, 117287.
[http://dx.doi.org/10.1016/j.lfs.2020.117287] [PMID: 31926240]
[16]
Li, F.P.; Lin, D.Q.; Gao, L.Y. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7439-7447.
[PMID: 30468492]
[17]
Lu, G.; Chu, Y.; Tian, P. Knockdown of H19 attenuates Ox-LDL-induced vascular smooth muscle cell proliferation, migration, and invasion by regulating miR-599/PAPPA axis. J. Cardiovasc. Pharmacol., 2021, 77(3), 386-396.
[http://dx.doi.org/10.1097/FJC.0000000000000959] [PMID: 33235026]
[18]
Xu, Z.; Zuo, Z.; Dong, D.; Liu, J.; Tang, Y.; Gu, Y.; Liu, H. Downregulated lncRNA UCA1 accelerates proliferation and migration of vascular smooth muscle cells by epigenetic regulation of MMP9. Exp. Ther. Med., 2020, 19(6), 3589-3594.
[http://dx.doi.org/10.3892/etm.2020.8639] [PMID: 32346422]
[19]
Wang, M.; Li, C.; Zhang, Y.; Zhou, X.; Liu, Y.; Lu, C. LncRNA MEG3-derived miR-361-5p regulate vascular smooth muscle cells proliferation and apoptosis by targeting ABCA1. Am. J. Transl. Res., 2019, 11(6), 3600-3609.
[PMID: 31312370]
[20]
Wang, H.; He, F.; Liang, B.; Jing, Y.; Zhang, P.; Liu, W.; Zhao, H. p53-dependent LincRNA-p21 protects against proliferation and anti-apoptosis of vascular smooth muscle cells in atherosclerosis by upregulating SIRT7 via MicroRNA-17-5p. J. Cardiovasc. Transl. Res., 2021, 14(3), 426-440.
[http://dx.doi.org/10.1007/s12265-020-10074-9] [PMID: 33169349]
[21]
Tao, K.; Hu, Z.; Zhang, Y.; Jiang, D.; Cheng, H. LncRNA CASC11 improves atherosclerosis by downregulating IL-9 and regulating vascular smooth muscle cell apoptosis and proliferation. Biosci. Biotechnol. Biochem., 2019, 83(7), 1284-1288.
[http://dx.doi.org/10.1080/09168451.2019.1597621] [PMID: 30915898]
[22]
Sun, W.; Lv, J.; Duan, L.; Lin, R.; Li, Y.; Li, S.; Fu, C.; Zhao, L.; Xin, S. Long noncoding RNA H19 promotes vascular remodeling by sponging let-7a to upregulate the expression of cyclin D1. Biochem. Biophys. Res. Commun., 2019, 508(4), 1038-1042.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.185] [PMID: 30551879]
[23]
Lei, S.; Peng, F.; Li, M.L.; Duan, W.B.; Peng, C.Q.; Wu, S.J. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(2), H377-H391.
[http://dx.doi.org/10.1152/ajpheart.00717.2019] [PMID: 32559140]
[24]
Li, H.; Pan, Z.; Chen, Q.; Yang, Z.; Zhang, D. SMILR aggravates the progression of atherosclerosis by sponging miR-10b-3p to regulate KLF5 expression. Inflammation, 2020, 43(5), 1620-1633.
[http://dx.doi.org/10.1007/s10753-020-01237-6] [PMID: 32367412]
[25]
Shi, X.; Wei, Y.T.; Li, H.; Jiang, T.; Zheng, X.L.; Yin, K.; Zhao, G.J. Long non-coding RNA H19 in atherosclerosis: What role? Mol. Med., 2020, 26(1), 72.
[http://dx.doi.org/10.1186/s10020-020-00196-w] [PMID: 32698876]
[26]
Sun, H.; Jiang, Q.; Sheng, L.; Cui, K. Downregulation of lncRNA H19 alleviates atherosclerosis through inducing the apoptosis of vascular smooth muscle cells. Mol. Med. Rep., 2020, 22(4), 3095-3102.
[http://dx.doi.org/10.3892/mmr.2020.11394] [PMID: 32945413]
[27]
Chen, T.; Liang, Q.; Xu, J.; Zhang, Y.; Zhang, Y.; Mo, L.; Zhang, L. MiR-665 regulates vascular smooth muscle cell senescence by interacting with LncRNA GAS5/SDC1. Front. Cell Dev. Biol., 2021, 9, 700006.
[http://dx.doi.org/10.3389/fcell.2021.700006] [PMID: 34386495]
[28]
Tan, P.; Guo, Y.H.; Zhan, J.K.; Long, L.M.; Xu, M.L.; Ye, L.; Ma, X.Y.; Cui, X.J.; Wang, H.Q. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem. Cell Biol., 2019, 97(5), 571-580.
[http://dx.doi.org/10.1139/bcb-2018-0126] [PMID: 30789795]
[29]
Lou, N.; Liu, G.; Pan, Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol., 2020, 16(35), 2981-2995.
[http://dx.doi.org/10.2217/fon-2020-0470] [PMID: 32986472]
[30]
Chen, L.; Qu, H.; Guo, M.; Zhang, Y.; Cui, Y.; Yang, Q.; Bai, R.; Shi, D. ANRIL and atherosclerosis. J. Clin. Pharm. Ther., 2020, 45(2), 240-248.
[http://dx.doi.org/10.1111/jcpt.13060] [PMID: 31703157]
[31]
Fang, J.; Pan, Z.; Guo, X. Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1), 113-117.
[PMID: 32621415]
[32]
Hu, D.J.; Li, Z.Y.; Zhu, Y.T.; Li, C.C. Overexpression of long noncoding RNA ANRIL inhibits phenotypic switching of vascular smooth muscle cells to prevent atherosclerotic plaque development in vivo. Aging, 2021, 13(3), 4299-4316.
[http://dx.doi.org/10.18632/aging.202392] [PMID: 33411680]
[33]
Huang, Q.; Pan, M.; Zhou, J.P.; Yin, F. Overexpression of long non-coding RNA ANRIL promotes post-ischaemic angiogenesis and improves cardiac functions by targeting Akt. J. Cell. Mol. Med., 2020, 24(12), 6860-6868.
[http://dx.doi.org/10.1111/jcmm.15343] [PMID: 32400082]
[34]
Ni, J.; Huang, Z.; Wang, D. LncRNA TP73-AS1 promotes oxidized low-density lipoprotein-induced apoptosis of endothelial cells in atherosclerosis by targeting the miR-654-3p/AKT3 axis. Cell. Mol. Biol. Lett., 2021, 26(1), 27.
[http://dx.doi.org/10.1186/s11658-021-00264-x] [PMID: 34103010]
[35]
Chen, C.; Cheng, G.; Yang, X.; Li, C.; Shi, R.; Zhao, N. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am. J. Transl. Res., 2016, 8(7), 2981-2991.
[PMID: 27508018]
[36]
Aryal, B.; Suárez, Y. Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascul. Pharmacol., 2019, 114, 64-75.
[http://dx.doi.org/10.1016/j.vph.2018.03.001] [PMID: 29551552]
[37]
Wang, L.; Qi, Y.; Wang, Y.; Tang, H.; Li, Z.; Wang, Y.; Tang, S.; Zhu, H. LncRNA MALAT1 suppression protects endothelium against oxLDL-induced inflammation via inhibiting expression of MiR-181b target gene TOX. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/8245810] [PMID: 31949884]
[38]
Mao, P.; Liu, X.; Wen, Y.; Tang, L.; Tang, Y. LncRNA SNHG12 regulates ox-LDL-induced endothelial cell injury by the miR-218-5p/IGF2 axis in atherosclerosis. Cell Cycle, 2021, 20(16), 1561-1577.
[http://dx.doi.org/10.1080/15384101.2021.1953755] [PMID: 34313533]
[39]
Wu, L.M.; Wu, S.G.; Chen, F.; Wu, Q.; Wu, C.M.; Kang, C.M.; He, X.; Zhang, R.Y.; Lu, Z.F.; Li, X.H.; Xu, Y.J.; Li, L.M.; Ding, L.; Bai, H.L.; Liu, X.H.; Hu, Y.W.; Zheng, L. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis, 2020, 293, 26-34.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.033] [PMID: 31830726]
[40]
Hu, Y.W.; Guo, F.X.; Xu, Y.J.; Li, P.; Lu, Z.F.; McVey, D.G.; Zheng, L.; Wang, Q.; Ye, J.H.; Kang, C.M.; Wu, S.G.; Zhao, J.J.; Ma, X.; Yang, Z.; Fang, F.C.; Qiu, Y.R.; Xu, B.M.; Xiao, L.; Wu, Q.; Wu, L.M.; Ding, L.; Webb, T.R.; Samani, N.J.; Ye, S. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J. Clin. Invest., 2019, 129(3), 1115-1128.
[http://dx.doi.org/10.1172/JCI98230] [PMID: 30589415]
[41]
Du, H.; Yang, L.; Zhang, H.; Zhang, X.; Shao, H. LncRNA TUG1 silencing enhances proliferation and migration of ox-LDL-treated human umbilical vein endothelial cells and promotes atherosclerotic vascular injury repairing via the Runx2/ANPEP axis. Int. J. Cardiol., 2021, 338, 204-214.
[http://dx.doi.org/10.1016/j.ijcard.2021.05.014] [PMID: 33971184]
[42]
Yan, H.Y.; Bu, S.Z.; Zhou, W.B.; Mai, Y.F. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20), 6922-6929.
[PMID: 30402858]
[43]
Yao, X.; Yan, C.; Zhang, L.; Li, Y.; Wan, Q. LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis. Medicine, 2018, 97(16), e0473.
[http://dx.doi.org/10.1097/MD.0000000000010473] [PMID: 29668625]
[44]
Zhang, S.; Zhu, X.; Li, G. E2F1/SNHG7/miR-186-5p/MMP2 axis modulates the proliferation and migration of vascular endothelial cell in atherosclerosis. Life Sci., 2020, 257, 118013.
[http://dx.doi.org/10.1016/j.lfs.2020.118013] [PMID: 32603818]
[45]
Yang, K.; Xue, Y.; Gao, X. LncRNA XIST promotes atherosclerosis by regulating miR-599/TLR4 axis. Inflammation, 2021, 44(3), 965-973.
[http://dx.doi.org/10.1007/s10753-020-01391-x] [PMID: 33566259]
[46]
Lu, G.; Tian, P.; Zhu, Y.; Zuo, X.; Li, X. LncRNA XIST knockdown ameliorates oxidative low-density lipoprotein-induced endothelial cells injury by targeting miR-204-5p/TLR4. J. Biosci., 2020, 45(1), 52.
[http://dx.doi.org/10.1007/s12038-020-0022-0] [PMID: 32345778]
[47]
Gao, H.; Guo, Z. LncRNA XIST regulates atherosclerosis progression in ox-LDL-induced HUVECs. Open Med., 2021, 16(1), 117-127.
[http://dx.doi.org/10.1515/med-2021-0200] [PMID: 33542956]
[48]
Li, Y.; Geng, Y.; Zhou, B.; Wu, X.; Zhang, O.; Guan, X.; Xue, Y.; Li, S.; Zhuang, X.; Zhou, J.; Chang, M.; Miao, G.; Wang, L. Long Non-coding RNA GAS5 worsens coronary atherosclerosis through MicroRNA-194-3p/TXNIP axis. Mol. Neurobiol., 2021, 58(7), 3198-3207.
[http://dx.doi.org/10.1007/s12035-021-02332-x] [PMID: 33638792]
[49]
Pan, J.X. LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(2), 322-328.
[PMID: 28165553]
[50]
Yang, Y.; Tang, F.; Wei, F.; Yang, L.; Kuang, C.; Zhang, H.; Deng, J.; Wu, Q. Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice. Aging, 2019, 11(22), 10016-10030.
[http://dx.doi.org/10.18632/aging.102388] [PMID: 31757932]
[51]
Gao, Y.; Yue, J.; Huang, Z. LncRNA MIAT mediates ox-LDL-induced endothelial cell injury via miR-206 /RAB22A axis. J. Surg. Res., 2021, 265, 303-312.
[http://dx.doi.org/10.1016/j.jss.2021.02.029] [PMID: 33965771]
[52]
Sun, C.; Fu, Y.; Gu, X.; Xi, X.; Peng, X.; Wang, C.; Sun, Q.; Wang, X.; Qian, F.; Qin, Z.; Qu, W.; Piao, M.; Zhong, S.; Liu, S.; Zhang, M.; Fang, S.; Tian, J.; Li, C.; Maegdefessel, L.; Tian, J.; Yu, B. Macrophage-enriched lncRNA RAPIA. Arterioscler. Thromb. Vasc. Biol., 2020, 40(6), 1464-1478.
[http://dx.doi.org/10.1161/ATVBAHA.119.313749] [PMID: 32268789]
[53]
Ye, J.; Wang, C.; Wang, D.; Yuan, H. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp. Cell Res., 2018, 369(2), 348-355.
[http://dx.doi.org/10.1016/j.yexcr.2018.05.039] [PMID: 29859752]
[54]
Shen, Z.; Li, H. Long non-coding RNA GAS5 knockdown facilitates proliferation and impedes apoptosis by regulating miR-128-3p/FBLN2 axis in ox-LDL-induced THP-1 cells. Clin. Hemorheol. Microcirc., 2021, 77(2), 153-164.
[http://dx.doi.org/10.3233/CH-200897] [PMID: 33074219]
[55]
Zhang, Y.; Lu, X.; Yang, M.; Shangguan, J.; Yin, Y. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Mol. Cell. Biochem., 2021, 476(2), 949-957.
[http://dx.doi.org/10.1007/s11010-020-03962-w] [PMID: 33128668]
[56]
An, J.H.; Chen, Z.Y.; Ma, Q.L.; Wang, H.J.; Zhang, J.Q.; Shi, F.W. LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17-5p/NF-κB signaling pathway in patients with atherosclerosis. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(19), 8665-8677.
[PMID: 31646601]
[57]
Wang, Z.; Kun, Y.; Lei, Z.; Dawei, W.; Lin, P.; Jibo, W. LncRNA MIAT downregulates IL-1β, TNF-ɑ to suppress macrophage inflammation but is suppressed by ATP-induced NLRP3 inflammasome activation. Cell Cycle, 2021, 20(2), 194-203.
[http://dx.doi.org/10.1080/15384101.2020.1867788] [PMID: 33459112]
[58]
Tang, X.; Yin, R.; Shi, H.; Wang, X.; Shen, D.; Wang, X.; Pan, C. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int. J. Cardiol., 2020, 315, 72-80.
[http://dx.doi.org/10.1016/j.ijcard.2020.03.056] [PMID: 32349937]
[59]
Yang, L.; Li, T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J. Cell. Mol. Med., 2020, 24(15), 8836-8848.
[http://dx.doi.org/10.1111/jcmm.15521] [PMID: 32597038]
[60]
Li, E.H.; Zhao, X.; Zhang, C.; Liu, W. Fragile X mental retardation protein participates in non-coding RNA pathways. Yi Chuan, 2018, 40(2), 87-94.
[PMID: 29428901]
[61]
Huang, S.F.; Zhao, G.; Peng, X.F.; Ye, W.C. The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Front. Cardiovasc. Med., 2021, 8, 770163.
[http://dx.doi.org/10.3389/fcvm.2021.770163] [PMID: 34820432]
[62]
Zhang, J.; Li, T.; Ye, J. Targeting KCNQ1OT1 in cardiovascular disease. Int. J. Cardiol., 2021, 339, 145.
[http://dx.doi.org/10.1016/j.ijcard.2021.07.009] [PMID: 34246723]
[63]
Ye, B.; Wu, Z.H.; Tsui, T.Y.; Zhang, B.F.; Su, X.; Qiu, Y.H.; Zheng, X.T. lncRNA KCNQ1OT1 suppresses the inflammation and proliferation of vascular smooth muscle cells through IκBa in intimal hyperplasia. Mol Ther Nucleic Acids, 2020, 20, 62-64.
[PMID: 33293505]
[64]
Yu, X.H.; Deng, W.Y.; Chen, J.J.; Xu, X.D.; Liu, X.X.; Chen, L.; Shi, M.W.; Liu, Q.X.; Tao, M.; Ren, K. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis., 2020, 11(12), 1043.
[PMID: 33293505]
[65]
Wang, Y.; Liu, L.; Li, J. LncRNA KCNQ1OT1 depletion inhibits the malignant development of atherosclerosis by miR-145-5p. Microvasc. Res., 2022, 139, 104236.
[http://dx.doi.org/10.1016/j.mvr.2021.104236] [PMID: 34464666]
[66]
Zhen, Z.; Ren, S.; Ji, H.; Ding, X.; Zou, P.; Lu, J. The lncRNA DAPK-IT1 regulates cholesterol metabolism and inflammatory response in macrophages and promotes atherogenesis. Biochem. Biophys. Res. Commun., 2019, 516(4), 1234-1241.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.113] [PMID: 31300197]
[67]
Zhao, Z.W.; Zhang, M.; Liao, L.X.; Zou, J.; Wang, G.; Wan, X.J.; Zhou, L.; Li, H.; Qin, Y.S.; Yu, X.H.; Tang, C.K. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(5), 158904.
[http://dx.doi.org/10.1016/j.bbalip.2021.158904] [PMID: 33578049]
[68]
Lu, W.; He, X.; Su, L.; Miao, J. Long noncoding RNA-CERNA1 stabilized atherosclerotic plaques in apolipoprotein E−/− mice. J. Cardiovasc. Transl. Res., 2019, 12(5), 425-434.
[http://dx.doi.org/10.1007/s12265-019-09883-4] [PMID: 30888631]
[69]
Simion, V.; Zhou, H.; Haemmig, S.; Pierce, J.B.; Mendes, S.; Tesmenitsky, Y.; Pérez-Cremades, D.; Lee, J.F.; Chen, A.F.; Ronda, N.; Papotti, B.; Marto, J.A.; Feinberg, M.W. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat. Commun., 2020, 11(1), 6135.
[http://dx.doi.org/10.1038/s41467-020-19664-2] [PMID: 33262333]
[70]
Hu, X.; Ma, R.; Fu, W.; Zhang, C.; Du, X. LncRNA UCA1 sponges miR-206 to exacerbate oxidative stress and apoptosis induced by ox-LDL in human macrophages. J. Cell. Physiol., 2019, 234(8), 14154-14160.
[http://dx.doi.org/10.1002/jcp.28109] [PMID: 30633352]
[71]
Lin, X.; Ouyang, S.; Zhi, C.; Li, P.; Tan, X.; Ma, W.; Yu, J.; Peng, T.; Chen, X.; Li, L.; Xie, W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch. Biochem. Biophys., 2022, 715, 109098.
[http://dx.doi.org/10.1016/j.abb.2021.109098] [PMID: 34856194]
[72]
Lin, L.; Zhang, M.X.; Zhang, L.; Zhang, D.; Li, C.; Li, Y.L. Autophagy pyroptosis and ferroptosis: New regulatory mechanisms for atherosclerosis. Front Cell Dev Biol, 2022, 9, 809955.
[73]
Ni, D.; Mo, Z.; Yi, G. Recent insights into atherosclerotic plaque cell autophagy. Exp. Biol. Med. (Maywood), 2021, 246(24), 2553-2558.
[http://dx.doi.org/10.1177/15353702211038894] [PMID: 34407677]
[74]
Yuan, Y.; Xu, L.; Geng, Z.; Liu, J.; Zhang, L.; Wu, Y.; He, D.; Qu, P. The role of non-coding RNA network in atherosclerosis. Life Sci., 2021, 265, 118756.
[http://dx.doi.org/10.1016/j.lfs.2020.118756] [PMID: 33189816]
[75]
Ren, K.; Xu, X.D.; Yu, X.H.; Li, M.Q.; Shi, M.W.; Liu, Q.X.; Jiang, T.; Zheng, X.L.; Yin, K.; Zhao, G.J. LncRNA-modulated autophagy in plaque cells: A new paradigm of gene regulation in atherosclerosis? Aging (Albany NY), 2020, 12(21), 22335-22349.
[http://dx.doi.org/10.18632/aging.103786] [PMID: 33154191]
[76]
Miao, J.; Zang, X.; Cui, X.; Zhang, J. Autophagy, hyperlipidemia and atherosclerosis. Adv. Exp. Med. Biol., 2020, 1207, 237-264.
[http://dx.doi.org/10.1007/978-981-15-4272-5_18] [PMID: 32671753]
[77]
Li, H.; Liu, X.; Zhang, L.; Li, X. LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget, 2017, 8(70), 114568-114575.
[http://dx.doi.org/10.18632/oncotarget.21603] [PMID: 29383102]
[78]
Wang, Y.; Guo, Q.; Zhao, Y.; Chen, J.; Wang, S.; Hu, J.; Sun, Y. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol. Lett., 2014, 8(5), 1947-1952.
[http://dx.doi.org/10.3892/ol.2014.2487] [PMID: 25289082]
[79]
Song, Z.; Wei, D.; Chen, Y.; Chen, L.; Bian, Y.; Shen, Y.; Chen, J.; Pan, Y. Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling. Toxicol. Appl. Pharmacol., 2019, 364, 45-54.
[http://dx.doi.org/10.1016/j.taap.2018.12.002] [PMID: 30529164]
[80]
Diao, L.; Bai, L.; Jiang, X.; Li, J.; Zhang, Q. Long-chain noncoding RNA GAS5 mediates oxidative stress in cardiac microvascular endothelial cells injury. J. Cell. Physiol., 2019, 234(10), 17649-17662.
[http://dx.doi.org/10.1002/jcp.28388] [PMID: 30825202]
[81]
Song, T.F.; Huang, L.W.; Yuan, Y.; Wang, H.; He, H.P.; Ma, W.J.; Huo, L.H.; Zhou, H.; Wang, N.; Zhang, T.C. LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy. Oncotarget, 2018, 9(4), 4411-4426.
[http://dx.doi.org/10.18632/oncotarget.23230] [PMID: 29435112]
[82]
Wang, K.; Yang, C.; Shi, J.; Gao, T. Ox-LDL-induced lncRNA MALAT1 promotes autophagy in human umbilical vein endothelial cells by sponging miR-216a-5p and regulating Beclin-1 expression. Eur. J. Pharmacol., 2019, 858, 172338.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.019] [PMID: 31029709]
[83]
Li, S.; Pan, X.; Yang, S.; Ma, A.; Yin, S.; Dong, Y.; Pei, H.; Bi, X.; Li, W. LncRNA MALAT1 promotes oxidized low-density lipoprotein-induced autophagy in HUVECs by inhibiting the PI3K/AKT pathway. J. Cell. Biochem., 2019, 120(3), 4092-4101.
[http://dx.doi.org/10.1002/jcb.27694] [PMID: 30485490]
[84]
Li, S.; Sun, Y.; Zhong, L.; Xiao, Z.; Yang, M.; Chen, M.; Wang, C.; Xie, X.; Chen, X. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr. Metab. Cardiovasc. Dis., 2018, 28(11), 1175-1187.
[http://dx.doi.org/10.1016/j.numecd.2018.06.017] [PMID: 30314869]
[85]
Wang, S.; Han, X.; Mao, Z.; Xin, Y.; Maharjan, S.; Zhang, B. MALAT1 lncRNA induces autophagy and protects brain microvascular endothelial cells against oxygen-glucose deprivation by binding to miR-200c-3p and upregulating SIRT1 expression. Neuroscience, 2019, 397, 116-126.
[http://dx.doi.org/10.1016/j.neuroscience.2018.11.024] [PMID: 30496821]
[86]
Li, Z.; Li, J.; Tang, N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience, 2017, 354, 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.017] [PMID: 28433650]
[87]
Gast, M.; Rauch, B.H.; Nakagawa, S.; Haghikia, A.; Jasina, A.; Haas, J.; Nath, N.; Jensen, L.; Stroux, A.; Böhm, A.; Friebel, J.; Rauch, U.; Skurk, C.; Blankenberg, S.; Zeller, T.; Prasanth, K.V.; Meder, B.; Kuss, A.; Landmesser, U.; Poller, W. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE−/− mice. Cardiovasc. Res., 2019, 115(2), 302-314.
[http://dx.doi.org/10.1093/cvr/cvy202] [PMID: 30101304]
[88]
Ren, K.; Jiang, T.; Zhou, H.F.; Liang, Y.; Zhao, G.J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell. Physiol. Biochem., 2018, 47(5), 2170-2184.
[http://dx.doi.org/10.1159/000491528] [PMID: 29975943]
[89]
Zhao, G.; Su, Z.; Song, D.; Mao, Y.; Mao, X. The long noncoding RNA MALAT1 regulates the lipopoly- saccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett., 2016, 590(17), 2884-2895.
[http://dx.doi.org/10.1002/1873-3468.12315] [PMID: 27434861]
[90]
Huang, S.; Lu, W.; Ge, D.; Meng, N.; Li, Y.; Su, L.; Zhang, S.; Zhang, Y.; Zhao, B.; Miao, J. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy, 2015, 11(12), 2172-2183.
[http://dx.doi.org/10.1080/15548627.2015.1106663] [PMID: 26565952]
[91]
Lu, Z.; Zhang, X.; Li, Y.; Lopes-Virella, M.F.; Huang, Y. TLR4 antagonist attenuates atherogenesis in LDL receptor-deficient mice with diet-induced type 2 diabetes. Immunobiology, 2015, 220(11), 1246-1254.
[http://dx.doi.org/10.1016/j.imbio.2015.06.016] [PMID: 26162692]
[92]
Chuang, S.Y.; Yang, C.H.; Chou, C.C.; Chiang, Y.P.; Chuang, T.H.; Hsu, L.C. TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc. Natl. Acad. Sci. USA, 2013, 110(40), 16079-16084.
[http://dx.doi.org/10.1073/pnas.1306556110] [PMID: 24043792]
[93]
Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.G.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.; Cleveland, J.L.; Withoff, S.; Green, D.R. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450(7173), 1253-1257.
[http://dx.doi.org/10.1038/nature06421] [PMID: 18097414]
[94]
Guo, F.X.; Wu, Q.; Li, P.; Zheng, L.; Ye, S.; Dai, X.Y.; Kang, C.M.; Lu, J.B.; Xu, B.M.; Xu, Y.J.; Xiao, L.; Lu, Z.F.; Bai, H.L.; Hu, Y.W.; Wang, Q. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ., 2019, 26(9), 1670-1687.
[http://dx.doi.org/10.1038/s41418-018-0235-z] [PMID: 30683918]
[95]
Gong, D.; Zhao, Z.W.; Zhang, Q.; Yu, X.; Wang, G.; Zou, J.; Zheng, X.; Zhang, D.; Yin, W.; Tang, C. The long noncoding RNA metastasis-associated lung adenocarcinoma transcript-1 regulates CCDC80 expression by targeting miR-141-3p/miR-200a-3p in vascular smooth muscle cells. J. Cardiovasc. Pharmacol., 2020, 75(4), 336-343.
[http://dx.doi.org/10.1097/FJC.0000000000000798] [PMID: 31934911]
[96]
Gong, D.; Zhang, Q.; Chen, L.; Yu, X.H.; Wang, G.; Zou, J.; Zheng, X.L.; Zhang, D.W.; Yin, W.; Tang, C. Coiled-coil domain-containing 80 accelerates atherosclerosis development through decreasing lipoprotein lipase expression via ERK1/2 phosphorylation and TET2 expression. Eur. J. Pharmacol., 2019, 843, 177-189.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.009] [PMID: 30439364]
[97]
Li, P.; Ruan, X.; Yang, L.; Kiesewetter, K.; Zhao, Y.; Luo, H.; Chen, Y.; Gucek, M.; Zhu, J.; Cao, H. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab., 2015, 21(3), 455-467.
[http://dx.doi.org/10.1016/j.cmet.2015.02.004] [PMID: 25738460]
[98]
Li, Y.; Sun, T.; Shen, S.; Wang, L.; Yan, J. LncRNA DYNLRB2-2 inhibits THP-1 macrophage foam cell formation by enhancing autophagy. Biol Chem, 2019, 400(8), 1047-1057.
[99]
Sallam, T.; Jones, M.; Thomas, B.J.; Wu, X.; Gilliland, T.; Qian, K.; Eskin, A.; Casero, D.; Zhang, Z.; Sandhu, J.; Salisbury, D.; Rajbhandari, P.; Civelek, M.; Hong, C.; Ito, A.; Liu, X.; Daniel, B.; Lusis, A.J.; Whitelegge, J.; Nagy, L.; Castrillo, A.; Smale, S.; Tontonoz, P. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat. Med., 2018, 24(3), 304-312.
[http://dx.doi.org/10.1038/nm.4479] [PMID: 29431742]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy