Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Mini-Review Article

Advances in the Treatment of Chronic Myeloid Leukemia

Author(s): Romeo G. Mihăilă*

Volume 19, Issue 1, 2024

Published on: 23 January, 2023

Page: [1 - 17] Pages: 17

DOI: 10.2174/1574892818666230111115040

Price: $65

conference banner
Abstract

Background: The treatment of chronic myeloid leukemia has progressed in recent decades, becoming a model for a disease whose pathogenesis is primarily based on a genetic mutation and has led to survivals comparable to those of the general population.

Objectives: This review aims to present recent therapeutic advances in this area.

Methods: A mini-review was achieved using the articles published in Web of Science and Pub- Med between January 2021 - May 2022, and new patents were made in this field.

Results: The three generations of tyrosine kinase inhibitors have transformed chronic myeloid leukemia into a manageable disorder and greatly improved the treatment results of the chronic phase, the prognosis, survival, and quality of life of patients. The therapeutic goals today include achieving a deep and lasting molecular response as soon as possible, successful treatment-free remission, and discovering and applying new therapeutic strategies to act on impaired immune modulation and dormant leukemic stem cells. The allosteric inhibitor asciminib targets the ABL myristoyl pocket, reduces Abl kinase activity, and is effective against most cells that have mutations in the ABL1 kinase domain. Progress and recommendations for achieving long-term treatment- free remission are set out. Nearly 50% of the patients who received first-line tyrosine kinase inhibitors required a change of treatment by 10 years due to intolerance or resistance to treatment. Their main side effects are presented.

Conclusion: Obtaining a deep and persistent molecular response contributes to achieving longterm treatment-free remission.

Keywords: Asciminib, bone marrow microenvironment, chronic myeloid leukemia, deep molecular response, leukemic stem cells, treatment-free remission, tyrosine kinase inhibitors.

Next »
[1]
Amarante-Mendes GP, Rana A, Datoguia TS, Hamerschlak N, Brumatti G. BCR-ABL1 tyrosine kinase complex signaling transduction: Challenges to overcome resistance in chronic myeloid leukemia. Pharmaceutics 2022; 14(1): 215.
[http://dx.doi.org/10.3390/pharmaceutics14010215] [PMID: 35057108]
[2]
Sant’Antonio E, Camerini C, Rizzo V, Musolino C, Allegra A. Genetic heterogeneity in chronic myeloid leukemia: How clonal hematopoiesis and clonal evolution may influence prognosis, treatment outcome, and risk of cardiovascular events. Clin Lymphoma Myeloma Leuk 2021; 21(9): 573-9.
[http://dx.doi.org/10.1016/j.clml.2021.04.014] [PMID: 34078586]
[3]
Ghalesardi OK, Khosravi A, Azizi E, et al. The prognostic importance of BCR-ABL transcripts in chronic myeloid leukemia: A systematic review and meta-analysis. Leuk Res 2021; 101: 106512.
[http://dx.doi.org/10.1016/j.leukres.2021.106512] [PMID: 33524640]
[4]
Osman AEG, Deininger MW. chronic myeloid leukemia: Modern therapies, current challenges and future directions. Blood Rev 2021; 49: 100825.
[http://dx.doi.org/10.1016/j.blre.2021.100825] [PMID: 33773846]
[5]
De Novellis D, Cacace F, Caprioli V, Wierda WG, Mahadeo KM, Tambaro FP. The TKI era in chronic leukemias. Pharmaceutics 2021; 13(12): 2201.
[http://dx.doi.org/10.3390/pharmaceutics13122201] [PMID: 34959482]
[6]
Chen K, Ruan Y, Tian K, et al. Impact of BCR-ABL1 transcript type on outcome in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: a pairwise and bayesian network meta-analysis. Front Oncol 2022; 12: 841546.
[http://dx.doi.org/10.3389/fonc.2022.841546] [PMID: 35223524]
[7]
Thakral B, Jain N, Tang G, et al. From the archives of MD Anderson Cancer Center: Concurrent BCR-ABL1 and CRLF2 rearrangements in B-lymphoblast phase of chronic myeloid leukemia. Ann Diagn Pathol 2021; 53: 151767.
[http://dx.doi.org/10.1016/j.anndiagpath.2021.151767] [PMID: 34118580]
[8]
Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: Toward gene expression-based biomarkers. Haematologica 2021; 107(2): 358-70.
[http://dx.doi.org/10.3324/haematol.2021.279317] [PMID: 34615339]
[9]
Egeli DB, Hanfstein B, Lauseker M, et al. SOCS-2 gene expression at diagnosis does not predict for outcome of chronic myeloid leukemia patients on imatinib treatment. Leuk Lymphoma 2022; 63(4): 955-62.
[http://dx.doi.org/10.1080/10428194.2021.2010059] [PMID: 34872441]
[10]
Sicuranza A, Raspadori D, Bocchia M. CD26/DPP-4 in Chronic Myeloid Leukemia. Cancers 2022; 14(4): 891.
[http://dx.doi.org/10.3390/cancers14040891] [PMID: 35205639]
[11]
Arzoun H, Srinivasan M, Thangaraj SR, Thomas SS, Mohammed L. The progression of chronic myeloid leukemia to myeloid sarcoma: a systematic review. Cureus 2022; 14(1): e21077.
[http://dx.doi.org/10.7759/cureus.21077] [PMID: 35036234]
[12]
Delgado N, Torres A. What do we currently know about chronic myeloid leukemia (CML) and COVID-19? Curr Oncol Rep 2022; 24(5): 645-50.
[http://dx.doi.org/10.1007/s11912-021-01169-w] [PMID: 35218499]
[13]
Haggenburg S, Lissenberg-Witte BI, van Binnendijk RS, et al. Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients. Blood Adv 2022; 6(5): 1537-46.
[http://dx.doi.org/10.1182/bloodadvances.2021006917] [PMID: 35114690]
[14]
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming resistance to kinase inhibitors: the paradigm of chronic myeloid leukemia. OncoTargets Ther 2022; 15: 103-16.
[http://dx.doi.org/10.2147/OTT.S289306] [PMID: 35115784]
[15]
Roskoski R Jr. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacol Res 2022; 178: 106156.
[http://dx.doi.org/10.1016/j.phrs.2022.106156] [PMID: 35257901]
[16]
Vuelta E, García-Tuñón I, Hernández-Carabias P, Méndez L, Sánchez-Martín M. Future approaches for treating chronic myeloid leukemia: CRISPR therapy. Biology 2021; 10(2): 118.
[http://dx.doi.org/10.3390/biology10020118] [PMID: 33557401]
[17]
Réa D, Mauro MJ, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs. bosutinib in CML after 2 or more prior TKIs. Blood 2021; 138(21): 2031-41.
[http://dx.doi.org/10.1182/blood.2020009984] [PMID: 34407542]
[18]
Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol 2022; 171: 103580.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103580] [PMID: 35021069]
[19]
Kumar V, Singh P, Gupta SK, Ali V, Verma M. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: A review. Mol Cell Biochem 2022; 477(4): 1261-79.
[http://dx.doi.org/10.1007/s11010-022-04376-6] [PMID: 35129779]
[20]
Kumar R, Krause DS. Recent advances in understanding chronic myeloid leukemia: where do we stand? Fac Rev 2021; 10: 35.
[http://dx.doi.org/10.12703/r/10-35] [PMID: 33977288]
[21]
Torres-Barrera P, Mayani H, Chávez-González A. Understanding the hematopoietic microenvironment in chronic myeloid leukemia: A concise review. Curr Res Transl Med 2021; 69(3): 103295.
[http://dx.doi.org/10.1016/j.retram.2021.103295] [PMID: 33962119]
[22]
Wolfe HR, Rein LAM. The evolving landscape of frontline therapy in chronic phase chronic myeloid leukemia (CML). Curr Hematol Malig Rep 2021; 16(5): 448-54.
[http://dx.doi.org/10.1007/s11899-021-00655-z] [PMID: 34661874]
[23]
Mu H, Zhu X, Jia H, Zhou L, Liu H. Combination therapies in chronic myeloid leukemia for potential treatment-free remission: Focus on leukemia stem cells and immune modulation. Front Oncol 2021; 11: 643382.
[http://dx.doi.org/10.3389/fonc.2021.643382] [PMID: 34055612]
[24]
Wang L, Li L, Chen R, Huang X, Ye X. Understanding and monitoring chronic myeloid leukemia blast crisis: How to better manage patients. Cancer Manag Res 2021; 13: 4987-5000.
[http://dx.doi.org/10.2147/CMAR.S314343] [PMID: 34188552]
[25]
Sasaki K, Jabbour EJ, Ravandi F, et al. The leukemia artificial intelligence program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. Am J Hematol 2021; 96(2): 241-50.
[http://dx.doi.org/10.1002/ajh.26047] [PMID: 33180322]
[26]
Shindo T, Ureshino H, Kojima H, Tanaka H, Kimura S. Allelic polymorphisms of KIRs and antitumor immunity against chronic myeloid leukemia. Immunol Med 2021; 44(2): 61-8.
[http://dx.doi.org/10.1080/25785826.2020.1796062] [PMID: 32715973]
[27]
Saifullah HH, Lucas CM. Treatment-free remission in chronic myeloid leukemia: Can we identify prognostic factors? Cancers 2021; 13(16): 4175.
[http://dx.doi.org/10.3390/cancers13164175] [PMID: 34439327]
[28]
Ito K, Ito K. Leukemia stem cells as a potential target to achieve therapy-free remission in chronic myeloid leukemia. Cancers 2021; 13(22): 5822.
[http://dx.doi.org/10.3390/cancers13225822] [PMID: 34830976]
[29]
Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia chromosome-positive leukemia in the lymphoid lineage-similarities and differences with the myeloid lineage and specific vulnerabilities. Int J Mol Sci 2020; 21(16): 5776.
[http://dx.doi.org/10.3390/ijms21165776] [PMID: 32806528]
[30]
Cerveira N, Bizarro S, Teixeira MR, Mariz JM. When to stop TKIs in patients with chronic myeloid leukemia and how to follow them subsequently. Curr Treat Options Oncol 2021; 22(6): 49.
[http://dx.doi.org/10.1007/s11864-021-00851-2] [PMID: 33866455]
[31]
Chen Y, Zou J, Cheng F, Li W. Treatment-Free Remission in Chronic Myeloid Leukemia and New Approaches by Targeting Leukemia Stem Cells. Front Oncol 2021; 11: 769730.
[http://dx.doi.org/10.3389/fonc.2021.769730] [PMID: 34778088]
[32]
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2022; 84: 153-69.
[http://dx.doi.org/10.1016/j.semcancer.2021.03.034] [PMID: 33895273]
[33]
Amouei A, Daeian N, Khezrnia SS, Mansouri A, Hadjibabaie M. Imatinib Efficacy, Safety and Resistance in Iranian Patients with Chronic Myeloid Leukemia: A Review of Literature. Int J Hematol Oncol Stem Cell Res 2021; 15(2): 114-31.
[http://dx.doi.org/10.18502/ijhoscr.v15i2.6042] [PMID: 34466210]
[34]
Alves R, Gonçalves AC, Rutella S, et al. Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers 2021; 13(19): 4820.
[http://dx.doi.org/10.3390/cancers13194820] [PMID: 34638304]
[35]
Barreto Vianna DR, Gotardi J, Baggio Gnoatto SC, Pilger DA. Natural and semisynthetic pentacyclic triterpenes for chronic myeloid leukemia therapy: Reality, challenges and perspectives. ChemMedChem 2021; 16(12): 1835-60.
[http://dx.doi.org/10.1002/cmdc.202100038] [PMID: 33682360]
[36]
Amir M, Javed S. A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front Genet 2021; 12: 742802.
[http://dx.doi.org/10.3389/fgene.2021.742802] [PMID: 34745216]
[37]
Breccia M, Abruzzese E, Annunziata M, Luciano L, Sica S. Clinical and psychological factors to consider in achieving treatment-free remission in patients with chronic myeloid leukemia. Front Oncol 2021; 11: 631570.
[http://dx.doi.org/10.3389/fonc.2021.631570] [PMID: 33777785]
[38]
Pungolino E, D’adda M, De Canal G, et al. Nilotinib‐induced bone marrow CD34+/lin‐Ph+ cells early clearance in newly diagnosed CP‐Chronic Myeloid Leukemia: Final report of the PhilosoPhi34 study. Eur J Haematol 2021; 107(4): 436-48.
[http://dx.doi.org/10.1111/ejh.13680] [PMID: 34139044]
[39]
Morita K, Sasaki K. Current status and novel strategy of CML. Int J Hematol 2021; 113(5): 624-31.
[http://dx.doi.org/10.1007/s12185-021-03127-5] [PMID: 33782818]
[40]
Soverini S, De Santis S, Monaldi C, Bruno S, Mancini M. Targeting leukemic stem cells in chronic myeloid leukemia: Is it worth the effort? Int J Mol Sci 2021; 22(13): 7093.
[http://dx.doi.org/10.3390/ijms22137093] [PMID: 34209376]
[41]
Heiney SP, Sorrell M, Sheng J, et al. Interventions to improve adherence to tyrosine kinase inhibitors in chronic myeloid leukemia. Am J Clin Oncol 2021; 44(6): 291-8.
[http://dx.doi.org/10.1097/COC.0000000000000818] [PMID: 33867480]
[42]
Tan BK, Bee PC, Chua SS, Chen LC. Monitoring and improving adherence to tyrosine kinase inhibitors in patients with chronic myeloid leukemia: A systematic review. Patient Prefer Adherence 2021; 15: 2563-75.
[http://dx.doi.org/10.2147/PPA.S269355] [PMID: 34819724]
[43]
Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: A randomized, open-label phase 2 clinical trial. Blood 2021; 138(21): 2042-50.
[http://dx.doi.org/10.1182/blood.2021012082] [PMID: 34407543]
[44]
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: Targeting therapeutic implications. Stem Cell Res Ther 2021; 12(1): 603.
[http://dx.doi.org/10.1186/s13287-021-02659-1] [PMID: 34922630]
[45]
Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: Current status and future directions. J Hematol Oncol 2021; 14(1): 44.
[http://dx.doi.org/10.1186/s13045-021-01055-9] [PMID: 33736651]
[46]
Rezaei M, Tan J, Zeng C, Li Y, Ganjalikhani-Hakemi M. TIM-3 in leukemia; immune response and beyond. Front Oncol 2021; 11: 753677.
[http://dx.doi.org/10.3389/fonc.2021.753677] [PMID: 34660319]
[47]
Baccarani M, Bonifazi F, Soverini S, et al. Questions concerning tyrosine kinase-inhibitor therapy and transplants in chronic phase chronic myeloid leukaemia. Leukemia 2022; 36(5): 1227-36.
[http://dx.doi.org/10.1038/s41375-022-01522-3] [PMID: 35338251]
[48]
Zhang XS, Gale RP, Zhang MJ, Huang XJ, Jiang Q. A predictive scoring system for therapy-failure in persons with chronic myeloid leukemia receiving initial imatinib therapy. Leukemia 2022; 36(5): 1336-42.
[http://dx.doi.org/10.1038/s41375-022-01527-y] [PMID: 35194158]
[49]
Andretta E, Costa C, Longobardi C, et al. Potential approaches versus approved or developing chronic myeloid leukemia therapy. Front Oncol 2021; 11: 801779.
[http://dx.doi.org/10.3389/fonc.2021.801779] [PMID: 34993151]
[50]
Shaya J, Pettit K, Kandarpa M, Bixby D, Mercer J, Talpaz M. Late responses in patients with chronic myeloid leukemia initially refractory to tyrosine kinase inhibitors. Clin Lymphoma Myeloma Leuk 2022; 22(1): 17-23.
[http://dx.doi.org/10.1016/j.clml.2021.07.001] [PMID: 34462243]
[51]
Kantarjian HM, Hughes TP, Larson RA, et al. Correction to long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 2021; 35(7): 2142-3.
[http://dx.doi.org/10.1038/s41375-021-01306-1] [PMID: 34108614]
[52]
Nakamae H, Yamamoto M, Sakaida E, et al. Nilotinib vs. imatinib in Japanese patients with newly diagnosed chronic myeloid leukemia in chronic phase: 10-year follow-up of the Japanese subgroup of the randomized ENESTnd trial. Int J Hematol 2022; 115(1): 33-42.
[http://dx.doi.org/10.1007/s12185-021-03216-5] [PMID: 34508295]
[53]
Zhang Y, Chen W, Pathak A, Yang Y, Yang D, Zhai Y. Burden of tyrosine kinase inhibitor failure in Chinese chronic myeloid leukemia patients: a systematic literature review. J Comp Eff Res 2022; 11(8): 621-37.
[http://dx.doi.org/10.2217/cer-2022-0032] [PMID: 35411807]
[54]
Chuah C, Koh LP, Numbenjapon T, et al. Efficacy and safety of bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia in the Asian subpopulation of the phase 3 BFORE trial. Int J Hematol 2021; 114(1): 65-78.
[http://dx.doi.org/10.1007/s12185-021-03144-4] [PMID: 33851349]
[55]
Wang Z, Wang X, Wang Z, et al. Comparison of hepatotoxicity associated with new BCR-ABL tyrosine kinase inhibitors vs. imatinib among patients with chronic myeloid leukemia. JAMA Netw Open 2021; 4(7): e2120165.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.20165] [PMID: 34292334]
[56]
Malagola M, Iurlo A, Abruzzese E, et al. Molecular response and quality of life in chronic myeloid leukemia patients treated with intermittent TKIs: First interim analysis of OPTkIMA study. Cancer Med 2021; 10(5): 1726-37.
[http://dx.doi.org/10.1002/cam4.3778] [PMID: 33594821]
[57]
Kwaśnik P, Giannopoulos K. Treatment-free remission-a new aim in the treatment of chronic myeloid leukemia. J Pers Med 2021; 11(8): 697.
[http://dx.doi.org/10.3390/jpm11080697] [PMID: 34442340]
[58]
Inzoli E, Aroldi A, Piazza R, Gambacorti-Passerini C. Tyrosine kinase inhibitor discontinuation in chronic myeloid leukemia: Eligibility criteria and predictors of success. Am J Hematol 2022; 97(8): 1075-85.
[http://dx.doi.org/10.1002/ajh.26556] [PMID: 35384030]
[59]
Hochhaus A, Saussele S, Rosti G, et al. Chronic myeloid leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28 (Suppl. 4): iv41-51.
[http://dx.doi.org/10.1093/annonc/mdx219] [PMID: 28881915]
[60]
NCCN guidelines for patients chronic myeloid leukemia. 2021. Available from: www.nccn.org
[61]
Ureshino H. Treatment-free remission and immunity in chronic myeloid leukemia. Int J Hematol 2021; 113(5): 642-7.
[http://dx.doi.org/10.1007/s12185-021-03117-7] [PMID: 33651270]
[62]
Soltani M, Zhao Y, Xia Z, Ganjalikhani Hakemi M, Bazhin AV. The importance of cellular metabolic pathways in pathogenesis and selective treatments of hematological malignancies. Front Oncol 2021; 11: 767026.
[http://dx.doi.org/10.3389/fonc.2021.767026] [PMID: 34868994]
[63]
Breccia M, Scalzulli E, Pepe S, et al. Emerging concepts for assessing and predicting treatment-free remission in chronic myeloid leukemia patients. Expert Rev Hematol 2022; 15(1): 25-32.
[http://dx.doi.org/10.1080/17474086.2022.2018296] [PMID: 34894984]
[64]
Stuckey R, López Rodríguez JF, Gómez-Casares MT. Discontinuation of tyrosine kinase inhibitors in patients with chronic myeloid leukemia: A review of the biological factors associated with treatment-free remission. Curr Oncol Rep 2022; 24(4): 415-26.
[http://dx.doi.org/10.1007/s11912-022-01228-w] [PMID: 35141859]
[65]
Houshmand M, Kazemi A, Anjam Najmedini A, et al. Shedding light on targeting chronic myeloid leukemia stem cells. J Clin Med 2021; 10(24): 5805.
[http://dx.doi.org/10.3390/jcm10245805] [PMID: 34945101]
[66]
Hsieh YC, Kirschner K, Copland M. Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia 2021; 35(5): 1229-42.
[http://dx.doi.org/10.1038/s41375-021-01238-w] [PMID: 33833387]
[67]
Webster JA, Robinson TM, Blackford AL, et al. A randomized, phase II trial of adjuvant immunotherapy with durable TKI-free survival in patients with chronic phase CML. Leuk Res 2021; 111: 106737.
[http://dx.doi.org/10.1016/j.leukres.2021.106737] [PMID: 34768161]
[68]
Di Q, Deng H, Zhao Y, Li B, Qin L. Second-generation tyrosine kinase inhibitor discontinuation in chronic myeloid leukemia patients with stable deep molecular response: A systematic review and a meta-analysis. Comput Math Methods Med 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/3110622] [PMID: 34956393]
[69]
Seguro FS, Maciel FVR, Santos FM, et al. MR 4log and low levels of NK cells are associated with higher molecular relapse after imatinib discontinuation: Results of a prospective trial. Leuk Res 2021; 101: 106516.
[http://dx.doi.org/10.1016/j.leukres.2021.106516] [PMID: 33517185]
[70]
Claudiani S, Metelli S, Kamvar R, et al. Introducing a predictive score for successful treatment free remission in chronic myeloid leukemia (CML). Blood 2019; 134 (Suppl. 1): 26.
[http://dx.doi.org/10.1182/blood-2019-131500]
[71]
Iurlo A, Cattaneo D, Bucelli C, Breccia M. Dose optimization of tyrosine kinase inhibitors in chronic myeloid leukemia: A new therapeutic challenge. J Clin Med 2021; 10(3): 515.
[http://dx.doi.org/10.3390/jcm10030515] [PMID: 33535564]
[72]
Shoukier M, Kubiak M, Cortes J. Review of new-generation tyrosine kinase inhibitors for chronic myeloid leukemia. Curr Oncol Rep 2021; 23(8): 91.
[http://dx.doi.org/10.1007/s11912-021-01087-x] [PMID: 34125316]
[73]
Wang Z, Jiang L, Yan H, Xu Z, Luo P. Adverse events associated with nilotinib in chronic myeloid leukemia: Mechanisms and management strategies. Expert Rev Clin Pharmacol 2021; 14(4): 445-56.
[http://dx.doi.org/10.1080/17512433.2021.1894129] [PMID: 33618586]
[74]
Lee H, Basso IN, Kim DDH. Target spectrum of the BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia. Int J Hematol 2021; 113(5): 632-41.
[http://dx.doi.org/10.1007/s12185-021-03126-6] [PMID: 33772728]
[75]
Bojan A, Torok-Vistai T, Parvu A. Assessment and management of cardiotoxicity in hematologic malignancies. Dis Markers 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/6616265] [PMID: 33613788]
[76]
Schoenbeck KL, Flynn KE. Health-related quality of life of patients with chronic myeloid leukemia as measured by patient-reported outcomes: Current state and future directions. Curr Hematol Malig Rep 2021; 16(6): 491-9.
[http://dx.doi.org/10.1007/s11899-021-00656-y] [PMID: 34648119]
[77]
Santoro M, Mancuso S, Accurso V, Di Lisi D, Novo G, Siragusa S. Cardiovascular issues in tyrosine kinase inhibitors treatments for chronic myeloid leukemia: A review. Front Physiol 2021; 12: 675811.
[http://dx.doi.org/10.3389/fphys.2021.675811] [PMID: 34290617]
[78]
Seguro FS, Silva CMPDC, Moura CMB, et al. Recommendations for the management of cardiovascular risk in patients with chronic myeloid leukemia on tyrosine kinase inhibitors: risk assessment, stratification, treatment and monitoring. Hematol Transfus Cell Ther 2021; 43(2): 191-200.
[http://dx.doi.org/10.1016/j.htct.2020.04.009] [PMID: 32631809]
[79]
Li Z, Qu W, He X, Zhao X, Luo Y, Wang J. A case report of imatinib-induced acute heart failure and literature review. J Coll Physicians Surg Pak 2022; 32(1): 114-6.
[http://dx.doi.org/10.29271/jcpsp.2022.01.114] [PMID: 34983162]
[80]
Erçalışkan A, Seyhan Erdoğan D, Eşkazan AE. Current evidence on the efficacy and safety of generic imatinib in CML and the impact of generics on health care costs. Blood Adv 2021; 5(17): 3344-53.
[http://dx.doi.org/10.1182/bloodadvances.2021004194] [PMID: 34477815]
[81]
Chen W, Du B, Liu K, Yu Z, Wang X, Yang P. Nilotinib related acute myocardial infarction with nonobstructive coronary arteries: a case report and literature review. BMC Cardiovasc Disord 2022; 22(1): 46.
[http://dx.doi.org/10.1186/s12872-022-02504-0] [PMID: 35152884]
[82]
Nekoukar Z, Moghimi M, Salehifar E. A narrative review on adverse effects of dasatinib with a focus on pharmacotherapy of dasatinib-induced pulmonary toxicities. Blood Res 2021; 56(4): 229-42.
[http://dx.doi.org/10.5045/br.2021.2021117] [PMID: 34776414]
[83]
He S, Bian J, Shao Q, et al. Therapeutic drug monitoring and individualized medicine of dasatinib: Focus on clinical pharmacokinetics and pharmacodynamics. Front Pharmacol 2021; 12: 797881.
[http://dx.doi.org/10.3389/fphar.2021.797881] [PMID: 34938198]
[84]
Knoebel RW, Larson RA. Pepsi® or Coke®? Influence of acid on dasatinib absorption. J Oncol Pharm Pract 2018; 24(2): 156-8.
[http://dx.doi.org/10.1177/1078155217692152] [PMID: 29284366]
[85]
Cortes JE, Kantarjian HM, Mauro MJ, et al. Long‐term cardiac, vascular, hypertension, and effusion safety of bosutinib in patients with Philadelphia chromosome–positive leukemia resistant or intolerant to prior therapy. Eur J Haematol 2021; 106(6): 808-20.
[http://dx.doi.org/10.1111/ejh.13608] [PMID: 33638218]
[86]
Kota V, Brümmendorf TH, Gambacorti-Passerini C, et al. Efficacy and safety following bosutinib dose reduction in patients with Philadelphia chromosome positive leukemias. Leuk Res 2021; 111: 106690.
[http://dx.doi.org/10.1016/j.leukres.2021.106690] [PMID: 34673442]
[87]
Singh AK, Hussain S, Ahmed R, et al. Impact of imatinib treatment on renal function in chronic myeloid leukaemia patients. Nephrology 2022; 27(4): 318-26.
[http://dx.doi.org/10.1111/nep.14014] [PMID: 34894374]
[88]
Aslaner Ak M, Ertop Doğan P, Sahip B. Tyrosine kinase inhibitor nilotinib induced palmoplantar erythrodysesthesia: A rare case. J Oncol Pharm Pract 2022; 28(3): 763-5.
[http://dx.doi.org/10.1177/10781552211072465] [PMID: 35465793]
[89]
Sennhenn P, Meier-Ewert S, Khandelwal N. Dasatinib and another 5-thiazolecarboxamide kinase inhibitor, and uses thereof US Patent 20210379067, 2021.
[90]
Rodriguez Perales S. Torres Ruiz Rl, Martinez-Lage M. Gene editing based cancer treatment US Patent 20210348161, 2021.
[91]
Sintim HO, Larocque E, Naganna N. Alkynyl nicotinamide compounds as kinase inhibitors US Patent 20220089599, 2022.
[92]
Spokoyny A, Logan JK, Saebi A, et al. Carborane-based histone deacetylase (HDAC) inhibitors US Patent 20220089616, 2022.
[93]
Wu L, Zhang F, Mei S, et al. Heterocyclic compounds as immunomodulators US Patent 20220089588, 2022.
[94]
Chen L, Wen Z, Luo L, Liu Q. Anti-PD-L1 diabodies and the use thereof US Patent 20220088232, 2022.
[95]
Saha A. EIF4E inhibitors and uses thereof US Patent 20220089587, 2022.
[96]
Cisar J, Kuduk S, Wang C, et al. Dihydroorotate dehydrogenase inhibitors US Patent 20220089568, 2022.
[97]
Verkman AS. Methods of treating tyrosine kinase inhibitor-induced diarrhea US Patent 20220088026, 2022.
[98]
Wang Z, Yao B, Yao Y, et al. Cyclic molecules as bruton's tyrosine kinase inhibitor US Patent 20220081445, 2022.
[99]
Lu L, Huang H, Zhang L, et al. JAK inhibitor compound and use thereof US Patent 20220073524, 2022.
[100]
Abraham J, Spetzler D, Korn WM. Genomic profiling similarity US Patent 20220093217, 2022.
[101]
Holm CK, Luo Y, Stougaard M, et al. Crispr gene therapy of fusion gene related cancers US Patent 20220064613, 2022.
[102]
Póvoa VMO, Delafiori J, Dias-Audibert FL, et al. Metabolic shift of chronic myeloid leukemia patients under imatinib-pioglitazone regimen and discontinuation. Med Oncol 2021; 38(9): 100.
[http://dx.doi.org/10.1007/s12032-021-01551-5] [PMID: 34302533]
[103]
Breccia M, Colafigli G, Scalzulli E, Martelli M. Asciminib: An investigational agent for the treatment of chronic myeloid leukemia. Expert Opin Investig Drugs 2021; 30(8): 803-11.
[http://dx.doi.org/10.1080/13543784.2021.1941863] [PMID: 34130563]
[104]
Li AJ, Dhanraj JP, Lopes G, Parker JL. Clinical trial risk in leukemia: Biomarkers and trial design. Hematol Oncol 2021; 39(1): 105-13.
[http://dx.doi.org/10.1002/hon.2818] [PMID: 33078436]
[105]
Javidi-Sharifi N, Hobbs G. Future directions in chronic phase CML treatment. Curr Hematol Malig Rep 2021; 16(6): 500-8.
[http://dx.doi.org/10.1007/s11899-021-00658-w] [PMID: 34648120]
[106]
Allison M, Mathews J, Gilliland T, Mathew SO. Natural killer cell-mediated immunotherapy for leukemia. Cancers 2022; 14(3): 843.
[http://dx.doi.org/10.3390/cancers14030843] [PMID: 35159109]
[107]
Martínez-López J, Mustjoki S, Porkka K, et al. The safety and efficacy of dasatinib plus nivolumab in patients with previously treated chronic myeloid leukemia: Results from a phase 1b dose-escalation study. Leuk Lymphoma 2021; 62(8): 2040-3.
[http://dx.doi.org/10.1080/10428194.2021.1889536] [PMID: 33653205]
[108]
Mihaila R. In: Textbook of Clinical Hematology.Lucian Blaga. University of Sibiu Publishing House: Sibiu 2020; pp. 1-466.
[109]
Summary of product characteristics. European Medicines Agency. Available from: www.ema.europa.eu

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy