Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

One-dimensional Polymeric Nanocomposites in Drug Delivery Systems

Author(s): Sumel Ashique, Aakash Upadhyay, Monica Gulati, Dilpreet Singh, Pooja A. Chawla* and Viney Chawla*

Volume 19, Issue 6, 2023

Published on: 07 February, 2023

Page: [825 - 839] Pages: 15

DOI: 10.2174/1573413719666230110110706

Price: $65

Abstract

Nanocomposites have become a promising approach for drug delivery in the pharmaceutical field due to several benefits and current research development. Polymer nanocomposites (PNCs) are blends of nanomaterials and polymers with at least one-dimensional structure and one component in the sub-100 nm range. By incorporating nanoparticles into the polymer matrix, it is feasible to create a new class of given characteristics. Nano-clay (a type of nanocomposite) is mainly used for the controlled release of therapeutics in various disease conditions. Nanocomposites are promising drug delivery systems due to several advantages, including surface and rheological characteristics. Considering physical and chemical properties, nanocomposites are divided into two different components. Polymer-fabricated nanocomposites are potentially used in multi-particulate systems, which results in a controlled drug release profile with improved mechanical integrity. Nanotechnology-based drug delivery nanocomposites offer an improved half-life, greater biocompatibility, minimum immunogenicity, site-specific targeting, and avoid membrane barriers. Specifically, one-dimensional (1D) nanocomposites show promising responses in theranostics due to improved surface area-to-volume ratios that offer specific targeting, improved encapsulation efficiency, and susceptibility to biomolecules.

Keywords: One-dimensional (1D) polymer nanostructures, properties of nanocomposites, synthesis, application in drug delivery, future perspectives, nanotechnology.

Graphical Abstract
[1]
Bhushan, B. Introduction to nanotechnology. In: Springer handbook of nanotechnology; Springer: Berlin, Heidelberg, 2017; pp. 1-19.
[http://dx.doi.org/10.1007/978-3-662-54357-3]
[2]
Wang, Z.L. Characterizing the structure and properties of individual wire-like nano entities. Adv. Mater., 2000, 12(17), 1295-1298.
[http://dx.doi.org/10.1002/1521-4095(200009)12:17<1295:AID-ADMA1295>3.0.CO;2-B]
[3]
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater., 2003, 15(5), 353-389.
[http://dx.doi.org/10.1002/adma.200390087]
[4]
Schmidt, V.; Wittemann, J.V.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev., 2010, 110(1), 361-388.
[http://dx.doi.org/10.1021/cr900141g] [PMID: 20070117]
[5]
Da Silva, R.R.; Yang, M.; Choi, S.I.; Chi, M.; Luo, M.; Zhang, C.; Li, Z.Y.; Camargo, P.H.C.; Ribeiro, S.J.L.; Xia, Y. Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano, 2016, 10(8), 7892-7900.
[http://dx.doi.org/10.1021/acsnano.6b03806] [PMID: 27483165]
[6]
Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[7]
Lu, X.; Zhao, Y.; Wang, C. Fabrication of PbS nanoparticles in polymer‐fiber matrices by electrospinning. Adv. Mater., 2005, 17(20), 2485-2488.
[http://dx.doi.org/10.1002/adma.200500196]
[8]
Cui, Y.; Kumar, S.; Rao Kona, B.; Van Houcke, D. Gas barrier properties of polymer/clay nanocomposites. RSC Advances, 2015, 5(78), 63669-63690.
[http://dx.doi.org/10.1039/C5RA10333A]
[9]
Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.; Mahapatra, C. Progress in polymer science polymeric materials for bone and cartilage repair. Carbohydr. Polym., 2014, 14, 167-182.
[10]
Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A. Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers, 2014, 6(7), 2037-2050.
[http://dx.doi.org/10.3390/polym6072037]
[11]
Tanahashi, M. Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials, 2010, 3(3), 1593-1619.
[http://dx.doi.org/10.3390/ma3031593]
[12]
Pleşa, I.; Noţingher, P.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of polymer composites used in high-voltage applications. Polymers, 2016, 8(5), 173.
[http://dx.doi.org/10.3390/polym8050173] [PMID: 30979265]
[13]
Zhang, D.; Wang, Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B, 2006, 134(1), 9-19.
[http://dx.doi.org/10.1016/j.mseb.2006.07.037]
[14]
Li, D.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res., 2009, 42(1), 135-145.
[http://dx.doi.org/10.1021/ar800080n] [PMID: 18986177]
[15]
Hatchett, D.W.; Josowicz, M. Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev., 2008, 108(2), 746-769.
[http://dx.doi.org/10.1021/cr068112h] [PMID: 18171087]
[16]
Aghabegi, M.A.; Khoshnevis, D.; Zarrabi, A. A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res., 2016, 6(3), 333-340.
[http://dx.doi.org/10.1007/s13346-015-0274-7] [PMID: 26744179]
[17]
Greil, P. Polymer derived engineering ceramics. Adv. Eng. Mater., 2000, 2(6), 339-348.
[http://dx.doi.org/10.1002/1527-2648(200006)2:6<339:AID-ADEM339>3.0.CO;2-K]
[18]
Yang, L.; Miyanaji, H. Ceramic additive manufacturing: a review of current status and challenges. 2017 International Solid Freeform Fabrication Symposium, 2017 August 7–9Austin, Texas, USA2017.
[19]
Almessiere, M.A.; Trukhanov, A.V.; Slimani, Y.; You, K.Y.; Trukhanov, S.V.; Trukhanova, E.L.; Esa, F.; Sadaqat, A.; Chaudhary, K.; Zdorovets, M.; Baykal, A. Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials, 2019, 9(2), 202.
[http://dx.doi.org/10.3390/nano9020202] [PMID: 30720737]
[20]
Almessiere, M.A.; Güner, S.; Slimani, Y.; Hassan, M.; Baykal, A.; Gondal, M.A.; Baig, U.; Trukhanov, S.V.; Trukhanov, A.V. Structural and magnetic properties of Co0. 5Ni0. 5Ga0. 01Gd0. 01Fe1. 98O4/ZnFe2O4 spinel ferrite nanocomposites: Comparative study between sol-gel and pulsed laser ablation in liquid approaches. Nanomaterials, 2021, 11(9), 2461.
[http://dx.doi.org/10.3390/nano11092461] [PMID: 34578779]
[21]
Chawla, N.; Shen, Y.L. Mechanical behavior of particle reinforced metal matrix composites. Adv. Eng. Mater., 2001, 3(6), 357-370.
[http://dx.doi.org/10.1002/1527-2648(200106)3:6<357:AID-ADEM357>3.0.CO;2-I]
[22]
Zhou, Q.; Li, C.M.; Li, J.; Cui, X.; Gervasio, D. Template-synthesized cobalt Porphyrin/polypyrrole nanocomposite and its electrocatalysis for oxygen reduction in neutral medium. J. Phys. Chem. C, 2007, 111(30), 11216-11222.
[http://dx.doi.org/10.1021/jp072390i]
[23]
Martin, C.R. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266(5193), 1961-1966.
[http://dx.doi.org/10.1126/science.266.5193.1961] [PMID: 17836514]
[24]
Long, Y.; Chen, Z.; Wang, N.; Zhang, Z.; Wan, M. Resistivity study of polyaniline doped with protonic acids. Phys. B, 2003, 325, 208-213.
[http://dx.doi.org/10.1016/S0921-4526(02)01526-0]
[25]
Almessiere, M.A.; Slimani, Y.; Algarou, N.A.; Vakhitov, M.G.; Klygach, D.S.; Baykal, A.; Zubar, T.I.; Trukhanov, S.V.; Trukhanov, A.V.; Attia, H.; Sertkol, M. Auwal, İ.A. Tuning the structure, magnetic, and high frequency properties of Sc‐doped Sr 0.5 Ba 0.5 Scx Fe 12‐x O 19/NiFe 2 O 4 hard/soft nanocomposites. Adv. Electron. Mater., 2022, 8(2), 2101124.
[http://dx.doi.org/10.1002/aelm.202101124]
[26]
Almessiere, M.A.; Algarou, N.A.; Slimani, Y.; Sadaqat, A.; Baykal, A.; Manikandan, A.; Trukhanov, S.V.; Trukhanov, A.V.; Ercan, I. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Mater. Today Nano, 2022, 18, 100186.
[http://dx.doi.org/10.1016/j.mtnano.2022.100186]
[27]
Long, Y.; Chen, Z.; Duvail, J.L.; Zhang, Z.; Wan, M. Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures. Phys. B, 2005, 370(1-4), 121-130.
[http://dx.doi.org/10.1016/j.physb.2005.09.009]
[28]
Turchenko, V.A.; Trukhanov, A.V.; Bobrikov, I.A.; Trukhanov, S.V.; Balagurov, A.M. Investigation of the crystal and magnetic structures of BaFe12 - x Al x O19 solid solutions (x = 0.1‒1.2). Crystallogr. Rep., 2015, 60(5), 629-635.
[http://dx.doi.org/10.1134/S1063774515030220]
[29]
Trukhanov, A.V.; Turchenko, V.O.; Bobrikov, I.A.; Trukhanov, S.V.; Kazakevich, I.S.; Balagurov, A.M. Crystal structure and magnetic properties of the BaFe12−Al O19 (x=0.1–1.2) solid solutions. J. Magn. Magn. Mater., 2015, 393, 253-259.
[http://dx.doi.org/10.1016/j.jmmm.2015.05.076]
[30]
Zhang, X.; Zhang, J.; Liu, Z. Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Appl. Phys., A Mater. Sci. Process., 2005, 80(8), 1813-1817.
[http://dx.doi.org/10.1007/s00339-003-2491-z]
[31]
Xu, J.; Li, X.; Liu, J.; Wang, X.; Peng, Q.; Li, Y. Solution route to inorganic nanobelt-conducting organic polymer core-shell nanocomposites. J. Polym. Sci. A Polym. Chem., 2005, 43(13), 2892-2900.
[http://dx.doi.org/10.1002/pola.20769]
[32]
Tariq, A.; Bhawani, S.A.; Asaruddin, M.R.; Alotaibi, K.M. Introduction to nanocomposites. In: Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering; Woodhead Publishing: United Kingdom, 2021; pp. 15-37.
[http://dx.doi.org/10.1016/B978-0-12-821230-1.00012-8]
[33]
Kuchibhatla, S.V.N.T.; Karakoti, A.S.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci., 2007, 52(5), 699-913.
[http://dx.doi.org/10.1016/j.pmatsci.2006.08.001]
[34]
Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today, 2017, 9, 419-433.
[http://dx.doi.org/10.1016/j.apmt.2017.09.001]
[35]
Das, T.K.; Prusty, S. Review on conducting polymers and their applications. Polym. Plast. Technol. Eng., 2012, 51(14), 1487-1500.
[http://dx.doi.org/10.1080/03602559.2012.710697]
[36]
LaVan, D.A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21(10), 1184-1191.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[37]
Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci., 2010, 35(7), 902-958.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.03.001]
[38]
Thakur, V.K.; Yan, J.; Lin, M.F.; Zhi, C.; Golberg, D.; Bando, Y.; Sim, R.; Lee, P.S. Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym. Chem., 2012, 3(4), 962-969.
[http://dx.doi.org/10.1039/c2py00612j]
[39]
Khanna, S. Polymer Nanocomposites, a smart material: synthesis, preparation, and properties. In: Advances in Nanotechnology and the Environmental Sciences; Apple Academic Press: New Jersey, 2019; pp. 151-164.
[http://dx.doi.org/10.1201/9780429425837-7]
[40]
Joseph, H. Polymer Nanocomposites: Processing, Characterization and Applications; McGraw- Hill: USA, 2006.
[41]
Sati, N.; Musa, R.; Rahul, G. Polymeric Nanocomposites: Theory and Practice; Carl Hanser Verlag: Germany, 2007, p. 396.
[http://dx.doi.org/10.3139/9783446418523.fm]
[42]
Calabrese, R.E.; Bury, E.; Haque, F.; Koh, A.; Park, C. Effects of filler composition, loading, and geometry on the dielectric loss, partial discharge, and dielectric strength of liquid metal polymer composites. Compos., Part B Eng., 2022, 234, 109686.
[http://dx.doi.org/10.1016/j.compositesb.2022.109686]
[43]
Pan, C.; Markvicka, E.J.; Malakooti, M.H.; Yan, J.; Hu, L.; Matyjaszewski, K.; Majidi, C. A liquid metal–elastomer nanocomposite for stretchable dielectric materials. Adv. Mater., 2019, 31(23), 1900663.
[http://dx.doi.org/10.1002/adma.201900663] [PMID: 30997710]
[44]
Ding, H.; Shen, J.; Wan, M.; Chen, Z. Formation mechanism of polyaniline nanotubes by a simplified template‐free method. Macromol. Chem. Phys., 2008, 209(8), 864-871.
[http://dx.doi.org/10.1002/macp.200700624]
[45]
Ding, H.; Wan, M.; Wei, Y. Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Adv. Mater., 2007, 19(3), 465-469.
[http://dx.doi.org/10.1002/adma.200600831]
[46]
Zhang, X.; Zhang, J.; Wang, R.; Zhu, T.; Liu, Z. Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties. ChemPhysChem, 2004, 5(7), 998-1002.
[http://dx.doi.org/10.1002/cphc.200301217] [PMID: 15298386]
[47]
Andrews, R.; Jacques, D.; Qian, D.L. Multiwall carbon nanotubes: Synthesis and application. Acc. Chem. Res., 2002, 35, 1008-1017.
[48]
Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res., 2002, 35(12), 1035-1044.
[http://dx.doi.org/10.1021/ar0101640] [PMID: 12484791]
[49]
Supramolecular chemistry of fullerenes and carbon nanotubes; Martin, N.; Nierengarten, J.F., Eds.; John Wiley & Sons: New Jersey, 2012.
[http://dx.doi.org/10.1002/9783527650125]
[50]
Sun, Y.P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res., 2002, 35(12), 1096-1104.
[http://dx.doi.org/10.1021/ar010160v] [PMID: 12484798]
[51]
Chen, J.; Hamon, M.A.; Hu, H.; Chen, Y.; Rao, A.M.; Eklund, P.C.; Haddon, R.C. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386), 95-98.
[http://dx.doi.org/10.1126/science.282.5386.95] [PMID: 9756485]
[52]
Qin, S.; Qin, D.; Ford, W.T.; Resasco, D.E.; Herrera, J.E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc., 2004, 126(1), 170-176.
[http://dx.doi.org/10.1021/ja037937v] [PMID: 14709081]
[53]
Yoon, H.; Jang, J. Conducting‐polymer nanomaterials for high‐performance sensor applications: Issues and challenges. Adv. Funct. Mater., 2009, 19(10), 1567-1576.
[http://dx.doi.org/10.1002/adfm.200801141]
[54]
Kumar, S.; Chen, S.M. Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes – A review. Sensors, 2008, 8(2), 739-766.
[http://dx.doi.org/10.3390/s8020739] [PMID: 27879732]
[55]
Deng, C.; Chen, J.; Chen, X.; Xiao, C.; Nie, Z.; Yao, S. Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem. Commun., 2008, 10(6), 907-909.
[http://dx.doi.org/10.1016/j.elecom.2008.04.015]
[56]
Downs, C.; Nugent, J.; Ajayan, P.M.; Duquette, D.J.; Santhanam, K.S.V. Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater., 1999, 11(12), 1028-1031.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N]
[57]
Hughes, M.; Chen, G.Z.; Shaffer, M.S.P.; Fray, D.J.; Windle, A.H. Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Compos. Sci. Technol., 2004, 64(15), 2325-2331.
[http://dx.doi.org/10.1016/j.compscitech.2004.01.026]
[58]
Chen, G.Z.; Shaffer, M.S.P.; Coleby, D.; Dixon, G.; Zhou, W.; Fray, D.J.; Windle, A.H. Carbon nanotube and polypyrrole composites: Coating and doping. Adv. Mater., 2000, 12(7), 522-526.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<522:AID-ADMA522>3.0.CO;2-S]
[59]
Wang, J.; Dai, J.; Yarlagadda, T. Carbon nanotube--conducting-polymer composite nanowires. Langmuir, 2005, 21(1), 9-12.
[http://dx.doi.org/10.1021/la0475977] [PMID: 15620278]
[60]
Tang, B.Z.; Xu, H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules, 1999, 32(8), 2569-2576.
[http://dx.doi.org/10.1021/ma981825k]
[61]
Philip, B.; Xie, J.; Abraham, J.K.; Varadan, V.K. Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym. Bull., 2005, 53(2), 127-138.
[http://dx.doi.org/10.1007/s00289-004-0321-x]
[62]
Yu, Y.; Ouyang, C.; Gao, Y.; Si, Z.; Chen, W.; Wang, Z.; Xue, G. Synthesis and characterization of carbon nanotube/polypyrrole core-shell nanocomposites via in situ inverse microemulsion. J. Polym. Sci. A Polym. Chem., 2005, 43(23), 6105-6115.
[http://dx.doi.org/10.1002/pola.21114]
[63]
Yakovenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Oliynyk, V.V.; Trukhanov, A.V.; Trukhanov, S.V.; Borovoy, M.O.; Tesel’ko, P.O.; Launets, V.L.; Syvolozhskyi, O.A.; Astapovich, K.A. Effect of magnetic fillers and their orientation on the electrodynamic properties of BaFe12-xGaxO19 (x = 0.1–1.2)—epoxy composites with carbon nanotubes within GHz range. Appl. Nanosci., 2020, 10(12), 4747-4752.
[http://dx.doi.org/10.1007/s13204-020-01477-w]
[64]
Yakovenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Oliynyk, V.V.; Zagorodnii, V.V.; Trukhanov, S.V.; Trukhanov, A.V. Electromagnetic properties of carbon nanotube/BaFe12− xGaxO19/Epoxy composites with random and oriented filler distributions. Nanomaterials, 2021, 11(11), 2873.
[http://dx.doi.org/10.3390/nano11112873] [PMID: 34835638]
[65]
Trukhanov, S.V.; Kasper, N.V.; Troyanchuk, I.O.; Tovar, M.; Szymczak, H.; Bärner, K. Evolution of magnetic state in the La1−xCaxMnO3−γ (x=0.30, 0.50) manganites depending on the oxygen content. J. Solid State Chem., 2002, 169(1), 85-95.
[http://dx.doi.org/10.1016/S0022-4596(02)00028-2]
[66]
Trukhanov, S.V.; Bushinsky, M.V.; Troyanchuk, I.O.; Szymczak, H. Magnetic ordering in La1−x SrxMnO3−x/2 anion-deficient manganites. J. Exp. Theor. Phys., 2004, 99(4), 756-765.
[http://dx.doi.org/10.1134/1.1826167]
[67]
Yakovenko, O.; Lazarenko, O.; Matzui, L.; Vovchenko, L.; Borovoy, M.; Tesel’ko, P.; Lozitsky, O.; Astapovich, K.; Trukhanov, A.; Trukhanov, S. Effect of Ga content on magnetic properties of BaFe12−xGaxO19/epoxy composites. J. Mater. Sci., 2020, 55(22), 9385-9395.
[http://dx.doi.org/10.1007/s10853-020-04661-z]
[68]
Trukhanov, A.V.; Tishkevich, D.I.; Podgornaya, S.V.; Kaniukov, E.; Darwish, M.A.; Zubar, T.I.; Timofeev, A.V.; Trukhanova, E.L.; Kostishin, V.G.; Trukhanov, S.V. Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites. Nanomaterials, 2022, 12(5), 868.
[http://dx.doi.org/10.3390/nano12050868] [PMID: 35269356]
[69]
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed., 2009, 48(1), 60-103.
[http://dx.doi.org/10.1002/anie.200802248] [PMID: 19053095]
[70]
Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Nanostructured polyaniline sensors. Chemistry, 2004, 10(6), 1314-1319.
[http://dx.doi.org/10.1002/chem.200305211] [PMID: 15034876]
[71]
Tseng, R.J.; Huang, J.; Ouyang, J.; Kaner, R.B.; Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett., 2005, 5(6), 1077-1080.
[http://dx.doi.org/10.1021/nl050587l] [PMID: 15943446]
[72]
Xu, J.; Hu, J.; Quan, B.; Wei, Z. Decorating polypyrrole nanotubes with au nanoparticles by an in situ reduction process. Macromol. Rapid Commun., 2009, 30(11), 936-940.
[http://dx.doi.org/10.1002/marc.200800764] [PMID: 21706552]
[73]
Chen, Z.; Xu, L.; Li, W.; Waje, M.; Yan, Y. Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology, 2006, 17(20), 5254-5259.
[http://dx.doi.org/10.1088/0957-4484/17/20/035]
[74]
Mallick, K.; Witcomb, M.J.; Dinsmore, A.; Scurrell, M.S. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route. Langmuir, 2005, 21(17), 7964-7967.
[http://dx.doi.org/10.1021/la050534j] [PMID: 16089406]
[75]
Zhang, Z.; Wan, M.; Wei, Y. Electromagnetic functionalized polyaniline nanostructures. Nanotechnology, 2005, 16(12), 2827-2832.
[http://dx.doi.org/10.1088/0957-4484/16/12/016]
[76]
Chiou, N.R.; Epstein, A.J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater., 2005, 17(13), 1679-1683.
[http://dx.doi.org/10.1002/adma.200401000]
[77]
Mao, H.; Lu, X.; Chao, D.; Cui, L.; Li, Y.; Zhang, W. Preparation and characterization of PEDOT/-Fe3+O(OH,Cl) nanospindles with controllable sizes in aqueous solution. J. Phys. Chem. C, 2008, 112(51), 20469-20480.
[http://dx.doi.org/10.1021/jp807988f]
[78]
Zhang, W.; Wen, X.; Yang, S. Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir, 2003, 19(10), 4420-4426.
[http://dx.doi.org/10.1021/la020894w]
[79]
Malhotra, B.D.; Chaubey, A.; Singh, S.P. Prospects of conducting polymers in biosensors. Anal. Chim. Acta, 2006, 578(1), 59-74.
[http://dx.doi.org/10.1016/j.aca.2006.04.055] [PMID: 17723695]
[80]
Ko, S.; Jang, J. Label-free target DNA recognition using oligonucleotide-functionalized polypyrrole nanotubes. Ultramicroscopy, 2008, 108(10), 1328-1333.
[http://dx.doi.org/10.1016/j.ultramic.2008.04.045] [PMID: 18554802]
[81]
Nickels, P.; Dittmer, W.U.; Beyer, S.; Kotthaus, J.P.; Simmel, F.C. Polyaniline nanowire synthesis templated by DNA. Nanotechnology, 2004, 15(11), 1524-1529.
[http://dx.doi.org/10.1088/0957-4484/15/11/026]
[82]
Wang, Z.G.; Zhan, P.; Ding, B. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline. ACS Nano, 2013, 7(2), 1591-1598.
[http://dx.doi.org/10.1021/nn305424e] [PMID: 23272944]
[83]
Numata, M.; Hasegawa, T.; Fujisawa, T.; Sakurai, K.; Shinkai, S. Beta-1,3-glucan (schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures. Org. Lett., 2004, 6(24), 4447-4450.
[http://dx.doi.org/10.1021/ol0483448] [PMID: 15548047]
[84]
Lee, K.P.; Gopalan, A.I.; Santhosh, P.; Lee, S.H.; Nho, Y.C. Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos. Sci. Technol., 2007, 67(5), 811-816.
[http://dx.doi.org/10.1016/j.compscitech.2005.12.030]
[85]
Giuseppe; Riela, S.; Fakhrullin, R.F. Clay-based drug-delivery systems: What does the future hold? Ther. Deliv., 2017, 8(8), 633-646.
[http://dx.doi.org/10.4155/tde-2017-0041] [PMID: 28730937]
[86]
Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J., 2019, 120, 109191.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[87]
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[88]
Li, Y.; Neoh, K.G.; Kang, E.T. Controlled release of heparin from polypyrrole-poly(vinyl alcohol) assembly by electrical stimulation. J. Biomed. Mater. Res. A, 2005, 73A(2), 171-181.
[http://dx.doi.org/10.1002/jbm.a.30286] [PMID: 15759258]
[89]
Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release. Chem. Rev., 1999, 99(11), 3181-3198.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[90]
Abidian, M.R.; Kim, D.H.; Martin, D.C. Conducting‐polymer nanotubes for controlled drug release. Adv. Mater., 2006, 18(4), 405-409.
[http://dx.doi.org/10.1002/adma.200501726] [PMID: 21552389]
[91]
Singh, A.; Singh, N. Recent review on nanofiber for drug delivery systems. World J. Pharm. Res., 2017, 6, 611-631.
[http://dx.doi.org/10.20959/wjpr20174-8190]
[92]
Purvya, M.; Meena, M.S. A review on role of prakriti in aging. Ayu, 2011, 32(1), 20-24.
[http://dx.doi.org/10.4103/0974-8520.85719] [PMID: 22131753]
[93]
Chen, G. Nanotube-based controlled drug delivery. Pharm. Anal. Acta, 2012, 3(9), 2153-2435.
[http://dx.doi.org/10.4172/2153-2435.1000e136]
[94]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[95]
Chen, S.; Li, R.; Li, X.; Xie, J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev., 2018, 132, 188-213.
[http://dx.doi.org/10.1016/j.addr.2018.05.001] [PMID: 29729295]
[96]
Mishra, S.; Sharma, S.; Javed, M.N.; Pottoo, F.H.; Barkat, M.A. Harshita; Alam, M.S.; Amir, M.; Sarafroz, M. Bioinspired nanocomposites: Applications in disease diagnosis and treatment. Pharm. Nanotechnol., 2019, 7(3), 206-219.
[http://dx.doi.org/10.2174/2211738507666190425121509] [PMID: 31030662]
[97]
Armagan, E.; Ozaydin, I.G. Coaxial nanotubes of stimuli responsive polymers with tunable release kinetics. Soft Matter, 2015, 11(41), 8069-8075.
[http://dx.doi.org/10.1039/C5SM01074H] [PMID: 26333009]
[98]
Chen, G.; Chen, R.; Zou, C.; Yang, D.; Chen, Z.S. Fragmented polymer nanotubes from sonication-induced scission with a thermo-responsive gating system for anti-cancer drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(10), 1327-1334.
[http://dx.doi.org/10.1039/C3TB21512A] [PMID: 32261447]
[99]
Newland, B.; Taplan, C.; Pette, D.; Friedrichs, J.; Steinhart, M.; Wang, W.; Voit, B.; Seib, F.P.; Werner, C. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale, 2018, 10(18), 8413-8421.
[http://dx.doi.org/10.1039/C8NR00603B] [PMID: 29714385]
[100]
Zhang, X.; Shi, X.; Gautrot, J.E.; Peijs, T. Nanoengineered electrospun fibers and their biomedical applications: A review. Nanocomposites, 2021, 7(1), 1-34.
[http://dx.doi.org/10.1080/20550324.2020.1857121]
[101]
Mu, C.; Wu, Q. Electrospun poly (ε-caprolactone) composite nanofibers with controlled release of cis-diamminediiodoplatinum for a higher anticancer activity. Nanoscale Res. Lett., 2017, 12(1), 318.
[http://dx.doi.org/10.1186/s11671-017-2092-y] [PMID: 28460490]
[102]
Tipduangta, P.; Belton, P.; Fábián, L.; Wang, L.Y.; Tang, H.; Eddleston, M.; Qi, S. Electrospun polymer blend nanofibers for tunable drug delivery: the role of transformative phase separation on controlling the release rate. Mol. Pharm., 2016, 13(1), 25-39.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00359] [PMID: 26655957]
[103]
Slemming, A.P.; Song, J.; Dong, M.; Besenbacher, F.; Chen, M. In situ cross‐linked PNIPAM/gelatin nanofibers for thermo‐responsive drug release. Macromol. Mater. Eng., 2015, 300(12), 1226-1231.
[http://dx.doi.org/10.1002/mame.201500160]
[104]
Demirci, S.; Celebioglu, A.; Aytac, Z.; Uyar, T. pH-responsive nanofibers with controlled drug release properties. Polym. Chem., 2014, 5(6), 2050-2056.
[http://dx.doi.org/10.1039/C3PY01276J]
[105]
Kim, Y.J.; Ebara, M.; Aoyagi, T. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv. Funct. Mater., 2013, 23(46), 5753-5761.
[http://dx.doi.org/10.1002/adfm.201300746]
[106]
George, P.M.; LaVan, D.A.; Burdick, J.A.; Chen, C.Y.; Liang, E.; Langer, R. Electrically controlled drug delivery from biotin‐doped conductive polypyrrole. Adv. Mater., 2006, 18(5), 577-581.
[http://dx.doi.org/10.1002/adma.200501242]
[107]
Wang, Y.; Wang, B.; Qiao, W.; Yin, T. A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. J. Pharm. Sci., 2010, 99(12), 4805-4811.
[http://dx.doi.org/10.1002/jps.22189] [PMID: 20821381]
[108]
Meng, Z.X.; Xu, X.X.; Zheng, W.; Zhou, H.M.; Li, L.; Zheng, Y.F.; Lou, X. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf. B Biointerfaces, 2011, 84(1), 97-102.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.022] [PMID: 21227661]
[109]
Mendes, A.C.; Gorzelanny, C.; Halter, N.; Schneider, S.W.; Chronakis, I.S. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm., 2016, 510(1), 48-56.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.016] [PMID: 27286632]
[110]
Ezrahi, S.; Tuval, E.; Aserin, A. Properties, main applications and perspectives of worm micelles. Adv. Colloid Interface Sci., 2006, 128-130, 77-102.
[http://dx.doi.org/10.1016/j.cis.2006.11.017] [PMID: 17239810]
[111]
Dreiss, C.A. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter, 2007, 3(8), 956-970.
[http://dx.doi.org/10.1039/b705775j] [PMID: 32900044]
[112]
Zhang, L.; Eisenberg, A. Multiple morphologies of” crew-cut” aggregates of polystyrene-b-poly (acrylic acid) block copolymers. Science, 1995, 268(5218), 1728-1731.
[http://dx.doi.org/10.1126/science.268.5218.1728] [PMID: 17834990]
[113]
Won, Y.Y.; Davis, H.T.; Bates, F.S. Giant wormlike rubber micelles. Science, 1999, 283(5404), 960-963.
[http://dx.doi.org/10.1126/science.283.5404.960] [PMID: 9974383]
[114]
Jain, S.; Bates, F.S. On the origins of morphological complexity in block copolymer surfactants. Science, 2003, 300(5618), 460-464.
[http://dx.doi.org/10.1126/science.1082193] [PMID: 12702869]
[115]
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2(4), 249-255.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[116]
Geng, Y.; Discher, D.E. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc., 2005, 127(37), 12780-12781.
[http://dx.doi.org/10.1021/ja053902e] [PMID: 16159254]
[117]
Qian, J.; Zhang, M.; Manners, I.; Winnik, M.A. Nanofiber micelles from the self-assembly of block copolymers. Trends Biotechnol., 2010, 28(2), 84-92.
[http://dx.doi.org/10.1016/j.tibtech.2009.11.003] [PMID: 19962775]
[118]
Venkataraman, S.; Hedrick, J.L.; Ong, Z.Y.; Yang, C.; Ee, P.L.R.; Hammond, P.T.; Yang, Y.Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1228-1246.
[http://dx.doi.org/10.1016/j.addr.2011.06.016] [PMID: 21777633]
[119]
Lazzari, M.; López, Q.M.A. Micellization phenomena in semicrystalline block copolymers: reflexive and critical views on the formation of cylindrical micelles. Macromol. Rapid Commun., 2009, 30(21), 1785-1791.
[http://dx.doi.org/10.1002/marc.200900232] [PMID: 21638454]
[120]
Nazemi, A.; Boott, C.E.; Lunn, D.J.; Gwyther, J.; Hayward, D.W.; Richardson, R.M.; Winnik, M.A.; Manners, I. Monodisperse cylindrical micelles and block comicelles of controlled length in aqueous media. J. Am. Chem. Soc., 2016, 138(13), 4484-4493.
[http://dx.doi.org/10.1021/jacs.5b13416] [PMID: 27049840]
[121]
Li, N.; Lu, W.; Yu, J.; Xiao, Y.; Liu, S.; Gan, L.; Huang, J. Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: A fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release. Mater. Sci. Eng. C, 2018, 91, 179-189.
[http://dx.doi.org/10.1016/j.msec.2018.04.099] [PMID: 30033244]
[122]
You, Y.; He, L.; Ma, B.; Chen, T. High‐drug‐loading mesoporous silica Nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv. Funct. Mater., 2017, 27(42), 1703313.
[http://dx.doi.org/10.1002/adfm.201703313]
[123]
Chen, X.; Soeriyadi, A.H.; Lu, X.; Sagnella, S.M.; Kavallaris, M.; Gooding, J.J. Dual bioresponsive mesoporous silica nanocarrier as an “AND” logic gate for targeted drug delivery cancer cells. Adv. Funct. Mater., 2014, 24(44), 6999-7006.
[http://dx.doi.org/10.1002/adfm.201402339]
[124]
Wani, A.; Savithra, G.H.L.; Abyad, A.; Kanvinde, S.; Li, J.; Brock, S.; Oupický, D. Surface PEGylation of Mesoporous Silica Nanorods (MSNR): Effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells. Sci. Rep., 2017, 7(1), 2274.
[http://dx.doi.org/10.1038/s41598-017-02531-4] [PMID: 28536462]
[125]
Trukhanov, S.V.; Troyanchuk, I.O.; Fedotova, V.V.; Ryzhov, V.A.; Maignan, A.; Flahaut, D.; Szymczak, H.; Szymczak, R. Magnetic properties of the nonstoichiometric Sr‐doped manganites. Phys. Status Solidi (B), 2005, 242(5), 1123-1131.
[126]
Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Khomchenko, V.A.; Fedotova, V.V.; Troyanchuk, I.O.; Szymczak, H. Microstructure evolution and magnetoresistance of the A-site ordered Ba-doped manganites. Semiconductors, 2007, 41(5), 507-511.
[http://dx.doi.org/10.1134/S1063782607050041]
[127]
Wan, Y.; Li, J.; Yang, Z.; Ao, H.; Xiong, L.; Luo, H. Simultaneously depositing polyaniline onto bacterial cellulose nanofibers and graphene nanosheets toward electrically conductive nanocomposites. Curr. Appl. Phys., 2018, 18(8), 933-940.
[http://dx.doi.org/10.1016/j.cap.2018.05.008]
[128]
Jana, S.; Sen, K.K. Chitosan — Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int. J. Biol. Macromol., 2017, 102, 878-884.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.097] [PMID: 28456644]
[129]
Shariatinia, Z.; Zahraee, Z. Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J. Colloid Interface Sci., 2017, 501, 60-76.
[http://dx.doi.org/10.1016/j.jcis.2017.04.036] [PMID: 28433886]
[130]
Hossain, S.; Yamamoto, H.; Chowdhury, E.H.; Wu, X.; Hirose, H.; Haque, A.; Doki, Y.; Mori, M.; Akaike, T. Fabrication and intracellular delivery of doxorubicin/carbonate apatite nanocomposites: effect on growth retardation of established colon tumor. PLoS One, 2013, 8(4), e60428.
[http://dx.doi.org/10.1371/journal.pone.0060428] [PMID: 23613726]
[131]
Chen, X.; Niu, S.; Bremner, D.H.; Zhang, X.; Zhang, H.; Zhang, Y.; Li, S.; Zhu, L.M. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr. Polym., 2020, 247, 116672.
[http://dx.doi.org/10.1016/j.carbpol.2020.116672] [PMID: 32829800]
[132]
Abd Elwakil, M.M.; Mabrouk, M.T.; Helmy, M.W.; Abdelfattah, E.Z.A.; Khiste, S.K.; Elkhodairy, K.A.; Elzoghby, A.O. Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine, 2018, 13(16), 2015-2035.
[http://dx.doi.org/10.2217/nnm-2018-0039] [PMID: 30191764]
[133]
Liu, K.H.; Liu, T.Y.; Chen, S.Y.; Liu, D.M. Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater., 2008, 4(4), 1038-1045.
[http://dx.doi.org/10.1016/j.actbio.2008.01.012] [PMID: 18337198]
[134]
Parida, U.K.; Nayak, A.K.; Binhani, B.K.; Nayak, P.L. Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J. Biomater. Nanobiotechnol., 2011, 2(4), 414-425.
[http://dx.doi.org/10.4236/jbnb.2011.24051]
[135]
Zhang, H.; Wang, C.; Chen, B.; Wang, X. Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int. J. Nanomedicine, 2012, 7, 235-242.
[PMID: 22275838]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy