Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Chromosome-level Genome Assembly and Sex-specific Differential Transcriptome of the White-backed Planthopper, Sogatella furcifera

Author(s): Yu-Xuan Ye, Dan-Ting Li, Si-Yu Zhang, Zhi-Cheng Shen and Chuan-Xi Zhang*

Volume 23, Issue 6, 2022

Published on: 17 January, 2023

Page: [400 - 411] Pages: 12

DOI: 10.2174/1389202924666230102092822

open access plus

Abstract

Background: The white-backed planthopper (WBPH), Sogatella furcifera, causes great damage to many crops (mainly rice) by direct feeding or transmitting plant viruses. The previous genome assembly was generated by second-generation sequencing technologies, with a contig N50 of only 51.5 kb, and contained a lot of heterozygous sequences.

Methods: We utilized third-generation sequencing technologies and Hi-C data to generate a highquality chromosome-level assembly. We also provide a large amount of transcriptome data for fulllength transcriptome analysis and gender differential expression analysis.

Results: The final assembly comprised 56.38 Mb, with a contig N50 of 2.20 Mb and a scaffold N50 of 45.25 Mb. Fourteen autosomes and one X chromosome were identified. More than 99.5% of the assembled bases located on the 15 chromosomes. 95.9% of the complete BUSCO Hemiptera genes were detected in the final assembly and 16,880 genes were annotated. 722 genes were relatively highly expressed in males, while 60 in the females.

Conclusion: The integrated genome, definite sex chromosomes, comprehensive transcriptome profiles, high efficiency of RNA interference and short life cycle substantially made WBPH an efficient research object for functional genomics.

Keywords: Chromosome-level genome assembly, White-backed planthopper (WBPH), Sogatella furcifera, BUSCO, RNA interference, sex chromosomes.

Graphical Abstract
[1]
Tang, J.; Hu, B.; Wang, J. Outbreak analysis of rice migratory pests in China and management strategies recommended. Acta Ecol. Sin., 1996, 16, 167-173.
[2]
Khan, Z.R.; Saxena, R.C. Behavioral and physiological responses of Sogatella furcifera (Homoptera: Delphacidae) to selected resistant and susceptible rice cultivars. J. Econ. Entomol., 1985, 78(6), 1280-1286.
[http://dx.doi.org/10.1093/jee/78.6.1280]
[3]
Pu, L.; Xie, G.; Ji, C.; Ling, B.; Zhang, M.; Xu, D.; Zhou, G. Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Prot., 2012, 41, 71-76.
[http://dx.doi.org/10.1016/j.cropro.2012.04.026]
[4]
Matsumura, M.; Takeuchi, H.; Satoh, M.; Sanada-Morimura, S.; Otuka, A.; Watanabe, T.; Van Thanh, D. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manag. Sci., 2008, 64(11), 1115-1121.
[http://dx.doi.org/10.1002/ps.1641] [PMID: 18803329]
[5]
Xu, H.J.; Xue, J.; Lu, B.; Zhang, X.C.; Zhuo, J.C.; He, S.F.; Ma, X.F.; Jiang, Y.Q.; Fan, H.W.; Xu, J.Y.; Ye, Y.X.; Pan, P.L.; Li, Q.; Bao, Y.Y.; Nijhout, H.F.; Zhang, C.X. Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 2015, 519(7544), 464-467.
[http://dx.doi.org/10.1038/nature14286] [PMID: 25799997]
[6]
Wang, L.; Tang, N.; Gao, X.; Chang, Z.; Zhang, L.; Zhou, G.; Guo, D.; Zeng, Z.; Li, W.; Akinyemi, I.A. Genome sequence of a rice pest, the white-backed planthopper (Sogatella furcifera). Gigascience, 2017.
[7]
Ma, W.; Xu, L.; Hua, H.; Chen, M.; Guo, M.; He, K.; Zhao, J.; Li, F. Chromosomal‐level genomes of three rice planthoppers provide new insights into sex chromosome evolution. Mol. Ecol. Resour., 2021, 21(1), 226-237.
[http://dx.doi.org/10.1111/1755-0998.13242] [PMID: 32780934]
[8]
Senol Cali, D.; Kim, J.S.; Ghose, S.; Alkan, C.; Mutlu, O. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions. Brief. Bioinform., 2019, 20(4), 1542-1559.
[http://dx.doi.org/10.1093/bib/bby017] [PMID: 29617724]
[9]
Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; Sandstrom, R.; Bernstein, B.; Bender, M.A.; Groudine, M.; Gnirke, A.; Stamatoyannopoulos, J.; Mirny, L.A.; Lander, E.S.; Dekker, J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950), 289-293.
[http://dx.doi.org/10.1126/science.1181369] [PMID: 19815776]
[10]
Burton, J.N.; Adey, A.; Patwardhan, R.P.; Qiu, R.; Kitzman, J.O.; Shendure, J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol., 2013, 31(12), 1119-1125.
[http://dx.doi.org/10.1038/nbt.2727] [PMID: 24185095]
[11]
Cook, D.E.; Valle-Inclan, J.E.; Pajoro, A.; Rovenich, H.; Thomma, B.P.H.J.; Faino, L. Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiol., 2019, 179(1), 38-54.
[http://dx.doi.org/10.1104/pp.18.00848] [PMID: 30401722]
[12]
Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience, 2019, 8(9)giz100
[http://dx.doi.org/10.1093/gigascience/giz100] [PMID: 31494669]
[13]
Nagano, T.; Várnai, C.; Schoenfelder, S.; Javierre, B.M.; Wingett, S.W.; Fraser, P. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol., 2015, 16(1), 175.
[http://dx.doi.org/10.1186/s13059-015-0753-7] [PMID: 26306623]
[14]
Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun., 2020, 11(1), 1432.
[http://dx.doi.org/10.1038/s41467-020-14998-3] [PMID: 32188846]
[15]
Ruan, J.; Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods, 2020, 17(2), 155-158.
[http://dx.doi.org/10.1038/s41592-019-0669-3] [PMID: 31819265]
[16]
Hu, J.; Fan, J.; Sun, Z.; Liu, S. NextPolish: a fast and efficient genome polishing tool for long read assembly. Bioinformatics, 2019.
[PMID: 31778144]
[]

[17]
Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; Earl, A.M. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 2014, 9(11)e112963
[http://dx.doi.org/10.1371/journal.pone.0112963] [PMID: 25409509]
[18]
Huang, S.; Kang, M.; Xu, A. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics, 2017, 33(16), 2577-2579.
[http://dx.doi.org/10.1093/bioinformatics/btx220] [PMID: 28407147]
[19]
Roach, M.J.; Schmidt, S.A.; Borneman, A.R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics, 2018, 19(1), 460.
[http://dx.doi.org/10.1186/s12859-018-2485-7] [PMID: 30497373]
[20]
Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; Aiden, E.L. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 2017, 356(6333), 92-95.
[http://dx.doi.org/10.1126/science.aal3327] [PMID: 28336562]
[21]
Hall, A.B.; Qi, Y.; Timoshevskiy, V.; Sharakhova, M.V.; Sharakhov, I.V.; Tu, Z. Six novel Y chromosome genes in Anophelesmosquitoes discovered by independently sequencing males and females. BMC Genomics, 2013, 14(1), 273.
[http://dx.doi.org/10.1186/1471-2164-14-273] [PMID: 23617698]
[22]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[23]
Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16), 2078-2079.
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[24]
Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA, 2015, 6(1), 11.
[http://dx.doi.org/10.1186/s13100-015-0041-9] [PMID: 26045719]
[25]
Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res, 2006, 34(Web Server), W435-W439.
[http://dx.doi.org/10.1093/nar/gkl200] [PMID: 16845043]
[26]
Birney, E.; Clamp, M.; Durbin, R. GeneWise and Genomewise. Genome Res., 2004, 14(5), 988-995.
[http://dx.doi.org/10.1101/gr.1865504] [PMID: 15123596]
[27]
Haas, B.J.; Delcher, A.L.; Mount, S.M.; Wortman, J.R.; Smith, R.K., Jr; Hannick, L.I.; Maiti, R.; Ronning, C.M.; Rusch, D.B.; Town, C.D.; Salzberg, S.L.; White, O. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res., 2003, 31(19), 5654-5666.
[http://dx.doi.org/10.1093/nar/gkg770] [PMID: 14500829]
[28]
Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol., 2008, 9(1), R7.
[http://dx.doi.org/10.1186/gb-2008-9-1-r7] [PMID: 18190707]
[29]
Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; Rao, B.S.; Smirnov, S.; Sverdlov, A.V.; Vasudevan, S.; Wolf, Y.I.; Yin, J.J.; Natale, D.A. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003, 4(1), 41.
[http://dx.doi.org/10.1186/1471-2105-4-41] [PMID: 12969510]
[30]
Mitchell, A.; Chang, H.Y.; Daugherty, L.; Fraser, M.; Hunter, S.; Lopez, R.; McAnulla, C.; McMenamin, C.; Nuka, G.; Pesseat, S.; Sangrador-Vegas, A.; Scheremetjew, M.; Rato, C.; Yong, S.Y.; Bateman, A.; Punta, M.; Attwood, T.K.; Sigrist, C.J.A.; Redaschi, N.; Rivoire, C.; Xenarios, I.; Kahn, D.; Guyot, D.; Bork, P.; Letunic, I.; Gough, J.; Oates, M.; Haft, D.; Huang, H.; Natale, D.A.; Wu, C.H.; Orengo, C.; Sillitoe, I.; Mi, H.; Thomas, P.D.; Finn, R.D. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res., 2015, 43(D1), D213-D221.
[http://dx.doi.org/10.1093/nar/gku1243] [PMID: 25428371]
[31]
Bairoch, A.; Apweiler, R.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L-S.L. UniProt. Nucleic Acids Res., 2004, 33(Database issue), D154-D159.
[http://dx.doi.org/10.1093/nar/gki070] [PMID: 15608167]
[32]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[33]
Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; von Mering, C.; Bork, P. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res., 2019, 47(D1), D309-D314.
[http://dx.doi.org/10.1093/nar/gky1085] [PMID: 30418610]
[34]
Ye, Y.X.; Zhang, H.H.; Li, D.T.; Zhuo, J.C.; Shen, Y.; Hu, Q.L.; Zhang, C.X. Chromosome‐level assembly of the brown planthopper genome with a characterized Y chromosome. Mol. Ecol. Resour., 2021, 21(4), 1287-1298.
[http://dx.doi.org/10.1111/1755-0998.13328] [PMID: 33460519]
[35]
Krzywinski, M.; Schein, J.; Birol, İ.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res., 2009, 19(9), 1639-1645.
[http://dx.doi.org/10.1101/gr.092759.109] [PMID: 19541911]
[36]
Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol., 2019, 1962, 227-245.
[http://dx.doi.org/10.1007/978-1-4939-9173-0_14] [PMID: 31020564]
[37]
Sahraeian, S.M.E.; Mohiyuddin, M.; Sebra, R.; Tilgner, H.; Afshar, P.T.; Au, K.F.; Bani Asadi, N.; Gerstein, M.B.; Wong, W.H.; Snyder, M.P.; Schadt, E.; Lam, H.Y.K. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat. Commun., 2017, 8(1), 59.
[http://dx.doi.org/10.1038/s41467-017-00050-4] [PMID: 28680106]
[38]
Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc., 2016, 11(9), 1650-1667.
[http://dx.doi.org/10.1038/nprot.2016.095] [PMID: 27560171]
[39]
Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30(7), 923-930.
[http://dx.doi.org/10.1093/bioinformatics/btt656] [PMID: 24227677]
[40]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[41]
Thelwall, M.; Kousha, K. Figshare a universal repository for academic resource sharing? Online Information Review,, 2016.
[42]
Pal, A.; Vicoso, B. The X Chromosome of Hemipteran Insects: Conservation, Dosage Compensation and Sex-Biased Expression. Genome Biol. Evol., 2015, 7(12), 3259-3268.
[http://dx.doi.org/10.1093/gbe/evv215] [PMID: 26556591]
[43]
Noda, H.; Tatewaki, R. Re-examination of chromosomes of three species of rice planthoppers (Homoptera: Delphacidae). Appl. Entomol. Zool., 1990, 25(4), 538-540.
[http://dx.doi.org/10.1303/aez.25.538]
[44]
Wu, S.; Sun, W.; Xu, Z.; Zhai, J.; Li, X.; Li, C.; Zhang, D.; Wu, X.; Shen, L.; Chen, J.; Ren, H.; Dai, X.; Dai, Z.; Zhao, Y.; Chen, L.; Cao, M.; Xie, X.; Liu, X.; Peng, D.; Dong, J.; Hsiao, Y.Y.; Chen, S.; Tsai, W.C.; Lan, S.; Liu, Z.J. The genome sequence of star fruit (Averrhoa carambola). Hortic. Res., 2020, 7(1), 95.
[http://dx.doi.org/10.1038/s41438-020-0307-3] [PMID: 32528707]

© 2024 Bentham Science Publishers | Privacy Policy