Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Hetero Cyclic Compounds in the Treatment of Triple-Negative Breast Cancer

Author(s): Sudip Kumar Mandal, Agnidipta Das, Anindya Bose, Vagish Dwibedi, Paramita Ganguly, Sipra Sarkar, Ranjana Prakash, Biplab Kumar Dey, Sanjeet Mandal and Santosh Kumar Rath*

Volume 19, Issue 3, 2023

Published on: 15 March, 2023

Page: [237 - 259] Pages: 23

DOI: 10.2174/1573394719666221230111838

Price: $65

conference banner
Abstract

Triple-negative breast cancer (TNBC) holds just about 15% of all breast tumours and subtypes of breast cancer with distinct characteristics of negative expressions for the progesterone receptor, estrogen receptor, and human epidermal growth factor receptor 2. Unfortunately, treatment options for TNBCs are minimal. Most currently available therapies proved inefficient in holding back this aggressive natural treatment of TNBC, in most cases calling for an immediate need for more effective and safer anti-TNBC agents. Based on research reported in recent years, this review presents the report's overview of anti-TNBC compounds and their efficacy, being classified according to the structures. Breast Cancer type 1 and type 2 genes (BRCA1/2) mutations are associated with TNBC. Poly (ADP-Ribose) Polymerases (PARPs) are a family of enzymes involved in numerous cellular processes, including DNA repair. PARP-1 inhibition is involved in the loss of DNA repair via BRCA-dependent mechanisms. PARP-1 inhibitors like Olaparib, Rucaparib, Niraparib, and Talazoparib have proved as promising therapeutic medications as monotherapy and in combination with cytotoxic therapy or radiotherapy in various types of cancers. This review is focused on presenting the status of therapeutics against TNBC. The critical spotlight of this review is to encapsulate the versatility and notable success of heterocyclic pharmacophores-based molecules in treating TNBC.

Keywords: Breast cancer, triple-negative breast cancers, heterocyclic compound, BRCA1 gene, FDA-approved drug, lump.

Graphical Abstract
[1]
Roy A, Mandal SK, Ramadan MA. Prevention and treatment of cancer with alternative anticancer approach: Current scenario. Egypt J Chem 2020; 63(9): 3229-45.
[2]
Ferlay J, Héry C, Autier P, Sankaranarayanan R. Global burden of breast cancerBreast cancer epidemiology. New York, NY: Springer 2010; pp. 1-19.
[http://dx.doi.org/10.1007/978-1-4419-0685-4_1]
[3]
Allweis TM, Hermann N, Berenstein-Molho R, Guindy M. Personalized screening for breast cancer: Rationale, present practices, and future directions. Ann Surg Oncol 2021; 28(8): 4306-17.
[http://dx.doi.org/10.1245/s10434-020-09426-1] [PMID: 33398646]
[4]
Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: An overview. J Adv Pharm Technol Res 2010; 1(2): 109-26.
[PMID: 22247839]
[5]
Karki S, Shrestha A, Shrestha B. Adenolipoma of the breast: A case report. JNMA J Nepal Med Assoc 2021; 59(243): 1189-91.
[http://dx.doi.org/10.31729/jnma.6925] [PMID: 35199756]
[6]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[7]
Johnson RH, Anders CK, Litton JK, Ruddy KJ, Bleyer A. Breast cancer in adolescents and young adults. Pediatr Blood Cancer 2018; 65(12): e27397.
[http://dx.doi.org/10.1002/pbc.27397] [PMID: 30156052]
[8]
Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 2009; 1(2): i-iv.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[9]
Krishnan CG, Theerthagiri P, Nishan A. Cancerous or non-cancerous cell detection on a field-programmable gate array medical image segmentation using xilinx system society 50 and the future of emerging computational technologies. CRC Press 2022; pp. 173-97.
[10]
Das AK, Biswas SK, Bhattacharya A, Alam E. Introduction to breast cancer and awareness. 7th international conference on advanced computing and communication systems (ICACCS).
[11]
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-An updated review. Cancers (Basel) 2021; 13(17): 4287.
[http://dx.doi.org/10.3390/cancers13174287] [PMID: 34503097]
[12]
Cao W, Li J, Hao Q, Vadgama JV, Wu Y. AMP-activated protein kinase: A potential therapeutic target for triple-negative breast cancer. Breast Cancer Res 2019; 21(1): 29.
[http://dx.doi.org/10.1186/s13058-019-1107-2] [PMID: 30791936]
[13]
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13(15): 4429-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[14]
Catalano A, Iacopetta D, Ceramella J, et al. New Achievements for the Treatment of Triple-Negative Breast Cancer. Appl Sci (Basel) 2022; 12(11): 5554.
[http://dx.doi.org/10.3390/app12115554]
[15]
Ismail-Khan R, Bui MM. A review of triple-negative breast cancer. Cancer Contr 2010; 17(3): 173-6.
[http://dx.doi.org/10.1177/107327481001700305] [PMID: 20664514]
[16]
Anders CK, Abramson V, Tan T, Dent R. The evolution of triple-negative breast cancer: From biology to novel therapeutics. Am Soc Clin Oncol Educ Book 2016; 35(36): 34-42.
[http://dx.doi.org/10.1200/EDBK_159135] [PMID: 27249684]
[17]
Yao Y, Chu Y, Xu B, Hu Q, Song Q. Risk factors for distant metastasis of patients with primary triple-negative breast cancer. Biosci Rep 2019; 39(6): BSR20190288.
[http://dx.doi.org/10.1042/BSR20190288] [PMID: 31113872]
[18]
Oakman C, Viale G, Di Leo A. Management of triple negative breast cancer. Breast 2010; 19(5): 312-21.
[http://dx.doi.org/10.1016/j.breast.2010.03.026] [PMID: 20382530]
[19]
Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther 2010; 10(10): 955-60.
[http://dx.doi.org/10.4161/cbt.10.10.13879] [PMID: 21057215]
[20]
Herschkowitz JI, Simin K, Weigman VJ, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8(5): R76.
[http://dx.doi.org/10.1186/gb-2007-8-5-r76] [PMID: 17493263]
[21]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[22]
Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12(5): R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[23]
Sørlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100(14): 8418-23.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[24]
Vrignaud P, Sémiond D, Lejeune P, et al. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin Cancer Res 2013; 19(11): 2973-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3146] [PMID: 23589177]
[25]
Perez EA, Patel T, Moreno-Aspitia A. Efficacy of ixabepilone in ER/PR/HER2-negative (triple-negative) breast cancer. Breast Cancer Res Treat 2010; 121(2): 261-71.
[http://dx.doi.org/10.1007/s10549-010-0824-0] [PMID: 20229176]
[26]
Yin L, Duan JJ, Bian XW, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 2020; 22(1): 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[27]
Lehmann BD, Jovanović B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One 2016; 11(6): e0157368.
[http://dx.doi.org/10.1371/journal.pone.0157368] [PMID: 27310713]
[28]
Park JH, Ahn JH, Kim SB. How shall we treat early triple-negative breast cancer (TNBC): From the current standard to upcoming immuno-molecular strategies. ESMO Open 2018; 3 (Suppl. 1): e000357.
[http://dx.doi.org/10.1136/esmoopen-2018-000357] [PMID: 29765774]
[29]
Petrucelli N, Daly MB, Pal T. BRCA1-and BRCA2-associated hereditary breast and ovarian cancer. Gene Reviews 2016.
[30]
Santana-Davila R, Perez EA. Treatment options for patients with triple-negative breast cancer. J Hematol Oncol 2010; 3(1): 42.
[http://dx.doi.org/10.1186/1756-8722-3-42] [PMID: 20979652]
[31]
Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 2000; 21(9): 1761-5.
[http://dx.doi.org/10.1093/carcin/21.9.1761] [PMID: 10964110]
[32]
Young SR, Pilarski RT, Donenberg T, et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer 2009; 9(1): 86.
[http://dx.doi.org/10.1186/1471-2407-9-86] [PMID: 19298662]
[33]
Aysola K, Desai A, Welch C, et al. Triple-negative breast cancer-An overview. Hereditary genetics: Current research Hereditary Genet 2013; 2013(Suppl 2): 001.
[34]
Keam B, Im SA, Kim HJ, et al. Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: Paradoxical features of the triple negative breast cancer. BMC Cancer 2007; 7(1): 203.
[http://dx.doi.org/10.1186/1471-2407-7-203] [PMID: 17976237]
[35]
Banerjee S, Bose S, Mandal SC, et al. Pharmacological property of pentacyclic triterpenoids. Egypt J Chem 2019; 62(1): 13-35.
[36]
Mandal SK, Das A, Dey S, et al. Bioactivities of Allicin and related organosulfur compounds from garlic: Overview of the literature since 2010. Egypt J Chem 2019; 62: 1-11.
[37]
Mandal SK, Debnath U, Kumar A, et al. Natural sesquiterpene lactones in the prevention and treatment of inflammatory disorders and cancer: A systematic study of this emerging therapeutic approach based on chemical and pharmacological aspect. Lett Drug Des Discov 2020; 17(9): 1102-16.
[http://dx.doi.org/10.2174/1570180817999200421144007]
[38]
Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin Cancer Biol 2016; 40-41: 209-32.
[http://dx.doi.org/10.1016/j.semcancer.2015.11.001] [PMID: 26774195]
[39]
Martins P, Jesus J, Santos S, et al. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015; 20(9): 16852-91.
[40]
Most Frequent Rings in FDA Approved Drugs. Chemical Compounds. 2015. Available from: http://www.click2drug.org/encyclopedia/chemistry/fda-based-rings.html
[41]
Dungo RT, Keating GM. Afatinib: First global approval. Drugs 2013; 73(13): 1503-15.
[http://dx.doi.org/10.1007/s40265-013-0111-6] [PMID: 23982599]
[42]
Massarelli E, Papadimitrakopoulou V. Ceritinib for the treatment of late-stage (metastatic) non-small cell lung cancer. Clin Cancer Res 2015; 21(4): 670-4.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1291] [PMID: 25564153]
[43]
Quandt D, Fiedler E, Boettcher D, Marsch WC, Seliger B. B7-h4 expression in human melanoma: Its association with patients’ survival and antitumor immune response. Clin Cancer Res 2011; 17(10): 3100-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2268] [PMID: 21378130]
[44]
Flaherty KT, Yasothan U, Kirkpatrick P. Vemurafenib. Nat Rev Drug Discov 2011; 10(11): 811-2.
[http://dx.doi.org/10.1038/nrd3579] [PMID: 22037033]
[45]
Sorensen S, Ellis L, Wu Y, Hutchins V, Linnehan JE, Senbetta M. Budgetary impact on a U.S. health plan adopting abiraterone acetate plus prednisone for the treatment of patients with metastatic castration-resistant prostate cancer. J Manag Care Pharm 2013; 19(9): 799-808.
[http://dx.doi.org/10.18553/jmcp.2013.19.9.799] [PMID: 24156649]
[46]
Chau NG, Haddad RI. Vandetanib for the treatment of medullary thyroid cancer. Clin Cancer Res 2013; 19(3): 524-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2353] [PMID: 23231950]
[47]
Frankfurt O, Licht JD. Ponatinib--a step forward in overcoming resistance in chronic myeloid leukemia. Clin Cancer Res 2013; 19(21): 5828-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0258] [PMID: 23935038]
[48]
Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol 2013; 9(8): 1083-92.
[http://dx.doi.org/10.2217/fon.13.128] [PMID: 23902240]
[49]
Ettrich TJ, Seufferlein T. Regorafenib. Small Mol Oncol 2018; pp. 45-56.
[50]
Amsberg GK, Schafhausen P. Bosutinib in the management of chronic myelogenous leukemia. Biologics 2013; 7: 115-22.
[PMID: 23674887]
[51]
Ramadan W, Kabbara W, Al Basiouni Al Masri H. Enzalutamide for patients with metastatic castration-resistant prostate cancer. OncoTargets Ther 2015; 8: 871-6.
[http://dx.doi.org/10.2147/OTT.S80488] [PMID: 25945058]
[52]
Xue TM, Tao L, Zhang M, Xu G-C, Zhang J, Zhang P-J. miR-20b overexpression is predictive of poor prognosis in gastric cancer. OncoTargets Ther 2015; 8: 1871-6.
[53]
Axelson M, Liu K, Jiang X, et al. U.S. Food and Drug Administration approval: Vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clin Cancer Res 2013; 19(9): 2289-93.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1956] [PMID: 23515405]
[54]
Tyler T. Axitinib: Newly approved for renal cell carcinoma. J Adv Pract Oncol 2012; 3(5): 333-5.
[PMID: 25031963]
[55]
Herrera AF, Jacobsen ED. Ibrutinib for the treatment of mantle cell lymphoma. Clin Cancer Res 2014; 20(21): 5365-71.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0010] [PMID: 25361916]
[56]
Fouquet G, Bories C, Guidez S, et al. Pomalidomide for multiple myeloma. Expert Rev Hematol 2014; 7(6): 719-31.
[http://dx.doi.org/10.1586/17474086.2014.966074] [PMID: 25265911]
[57]
Deeks ED. Olaparib: First global approval. Drugs 2015; 75(2): 231-40.
[http://dx.doi.org/10.1007/s40265-015-0345-6] [PMID: 25616434]
[58]
Shah A, Mangaonkar A. Idelalisib. Ann Pharmacother 2015; 49(10): 1162-70.
[http://dx.doi.org/10.1177/1060028015594813] [PMID: 26185276]
[59]
Khozin S, Blumenthal GM, Zhang L, et al. FDA approval: Ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res 2015; 21(11): 2436-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3157] [PMID: 25754348]
[60]
Laubach JP, Moreau P, San-Miguel JF, Richardson PG. Panobinostat for the treatment of multiple myeloma. Clin Cancer Res 2015; 21(21): 4767-73.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0530] [PMID: 26362997]
[61]
Scott LJ. Lenvatinib: First global approval. Drugs 2015; 75(5): 553-60.
[http://dx.doi.org/10.1007/s40265-015-0383-0] [PMID: 25795101]
[62]
Wedam S, Fashoyin-Aje L, Bloomquist E, et al. FDA approval summary: Palbociclib for male patients with metastatic breast cancer. Clin Cancer Res 2020; 26(6): 1208-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2580] [PMID: 31649043]
[63]
Owellen RJ, Hartke CA, Dickerson RM, Hains FO. Inhibition of tubulin-microtubule polymerization by drugs of the Vinca alkaloid class. Cancer Res 1976; 36(4): 1499-502.
[PMID: 1260766]
[64]
Özdemir F, Akalın G, Şen M, et al. Towards novel anti-tumor strategies for hepatic cancer: Ɛ-viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells. OMICS 2014; 18(5): 324-34.
[http://dx.doi.org/10.1089/omi.2013.0045] [PMID: 24341688]
[65]
Ferguson PJ, Phillips JR, Selner M, Cass CE. Differential activity of vincristine and vinblastine against cultured cells. Cancer Res 1984; 44(8): 3307-12.
[PMID: 6744266]
[66]
Martins P, Jesus J, Santos S, et al. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015; 20(9): 16852-91.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[67]
Huang SM, Hsu PC, Chen MY, et al. The novel indole compound SK228 induces apoptosis and FAK/Paxillin disruption in tumor cell lines and inhibits growth of tumor graft in the nude mouse. Int J Cancer 2012; 131(3): 722-32.
[http://dx.doi.org/10.1002/ijc.26401] [PMID: 22015944]
[68]
Sharma GVM, Ramesh A, Singh A, et al. Imidazole derivatives show anticancer potential by inducing apoptosis and cellular senescence. MedChemComm 2014; 5(11): 1751-60.
[http://dx.doi.org/10.1039/C4MD00277F]
[69]
Hou J, Zhao W, Huang ZN, et al. Evaluation of Novel N -(piperidine-4-yl)benzamide derivatives as potential cell cycle inhibitors in HepG2 Cells. Chem Biol Drug Des 2015; 86(2): 223-31.
[http://dx.doi.org/10.1111/cbdd.12484] [PMID: 25430863]
[70]
Husain A, Rashid M, Shaharyar M, Siddiqui AA, Mishra R. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents. Eur J Med Chem 2013; 62: 785-98.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.011] [PMID: 23333063]
[71]
Husain A, Rashid M, Mishra R, Parveen S, Shin DS, Kumar D. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: Design and synthesis as anticancer agents. Bioorg Med Chem Lett 2012; 22(17): 5438-44.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.038] [PMID: 22840417]
[72]
Jain S, Vahdat LT. Eribulin mesylate. Clin Cancer Res 2011; 17(21): 6615-22.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1807] [PMID: 21859830]
[73]
Galsky MD, Dritselis A, Kirkpatrick P, Oh WK. Cabazitaxel. Nat Rev Drug Discov 2010; 9(9): 677-8.
[http://dx.doi.org/10.1038/nrd3254] [PMID: 20811375]
[74]
Nazha A, Kantarjian H, Cortes J, Quintás-Cardama A. Omacetaxine mepesuccinate (synribo) - newly launched in chronic myeloid leukemia. Expert Opin Pharmacother 2013; 14(14): 1977-86.
[http://dx.doi.org/10.1517/14656566.2013.821464] [PMID: 23875628]
[75]
Herndon TM, Deisseroth A, Kaminskas E, et al. U.S. Food and Drug Administration approval: Carfilzomib for the treatment of multiple myeloma. Clin Cancer Res 2013; 19(17): 4559-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0755] [PMID: 23775332]
[76]
Wright CJM, McCormack PL. Trametinib: First global approval. Drugs 2013; 73(11): 1245-54.
[http://dx.doi.org/10.1007/s40265-013-0096-1] [PMID: 23846731]
[77]
Barbuti AM, & Chen ZS. (2015) Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers 7(4): 2360-2371.
[78]
Devriese LA. Mergui-Roelvink, M., Wanders, J., Jenner, A., Edwards, G., Reyderman, L., & Schellens, J. H. M. (2013) Eribulin mesylate pharmacokinetics in patients with solid tumors receiving repeated oral ketoconazole. Investigational new drugs 31(2): 381-389.
[79]
Yadagiri B. Holagunda, U. D., Bantu, R., Nagarapu, L., Kumar, C.G., Pombala, S., & Sridhar, B. (2014) Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents. Europ J Medi Chem 79: 260-265.
[80]
Murti Y, & Mishra P. (2014) Synthesis and evaluation of flavanones as anticancer agents. Ind J pharmaceut Sci 76(2): 163.
[81]
Choi M, Jo H, Park HJ. Kumar, A. S., Lee, J., Yun, J., & Lee,H. (2015) Design, synthesis, and biological evaluation of benzofuran-and 2, 3-dihydrobenzofuran-2-carboxylic acid N-(substituted) phenylamide derivatives as anticancer agents and inhibitors of NF-κB. B Bioorg Medic Chem Let 25(12): 2545-2549.
[82]
Andrade SF. Teixeira, C. S., Ramos, J. P., Lopes, M. S., Pádua, R. M., Oliveira, M. C., & Alves, R. J. (2014) Synthesis of a novel series of 2, 3, 4-trisubstituted oxazolidines designed by isosteric replacement or rigidification of the structure and cytotoxic evaluation. Med Chem Comm 5(11): 1693-1699.
[83]
Toohey J, Cooper A. Thiosulfoxide (sulfane) sulfur: New chemistry and new regulatory roles in biology. Molecules 2014; 19(8): 12789-813.
[http://dx.doi.org/10.3390/molecules190812789] [PMID: 25153879]
[84]
Makki MST, Abdel-Rahman RM, El-Shahawi MS. Synthesis of new bioactive sulfur compounds bearing heterocyclic moiety and their analytical applications. Int J Chem 2011; 3(1): 181-92.
[http://dx.doi.org/10.5539/ijc.v3n1p181]
[85]
García-Valverde M, Torroba T. Sulfur-nitrogen heterocycles. Molecules 2005; 10(2): 318-20.
[http://dx.doi.org/10.3390/10020318]
[86]
Ballantyne AD, Garnock-Jones KP. Dabrafenib: First global approval. Drugs 2013; 73(12): 1367-76.
[http://dx.doi.org/10.1007/s40265-013-0095-2] [PMID: 23881668]
[87]
Waters EA, McNeel TS, Stevens WM, Freedman AN. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat 2012; 134(2): 875-80.
[http://dx.doi.org/10.1007/s10549-012-2089-2] [PMID: 22622807]
[88]
Said M, Elshihawy H. Synthesis, anticancer activity and structure-activity relationship of some anticancer agents based on cyclopenta (b) thiophene scaffold. Pak J Pharm Sci 2014; 27(4): 885-92.
[PMID: 25015456]
[89]
Ghorab MM, Bashandy MS, Alsaid MS. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm 2014; 64(4): 419-31.
[http://dx.doi.org/10.2478/acph-2014-0035] [PMID: 25531783]
[90]
Laczkowski Z. Synthesis and in vitro anti-proliferative activity of thiazole-based nitrogen mustards: The hydrogen bonding interaction between model systems and nucleobases. Anticancer Agents Med Chem 2014; 14(9): 1271-81.
[91]
Penthala NR, Sonar VN, Horn J, Leggas M, Yadlapalli JSKB, Crooks PA. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. MedChemComm 2013; 4(7): 1073-8.
[http://dx.doi.org/10.1039/c3md00130j] [PMID: 23956835]
[92]
Reddy SM, Carroll E, Nanda R. Atezolizumab for the treatment of breast cancer. Expert Rev Anticancer Ther 2020; 20(3): 151-8.
[http://dx.doi.org/10.1080/14737140.2020.1732211] [PMID: 32067545]
[93]
FDA approves atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple-negative breast cancer. 2019. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm633065.htm (Accessed on: 08 March, 2019).
[94]
Heimes AS, Schmidt M. Atezolizumab for the treatment of triple-negative breast cancer. Expert Opin Investig Drugs 2019; 28(1): 1-5.
[http://dx.doi.org/10.1080/13543784.2019.1552255] [PMID: 30474425]
[95]
Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 2017; 18(12): e731-41.
[http://dx.doi.org/10.1016/S1470-2045(17)30607-1] [PMID: 29208439]
[96]
Kaklamani VG, Jeruss JS, Hughes E, et al. Phase II neoadjuvant clinical trial of carboplatin and eribulin in women with triple negative early-stage breast cancer (NCT01372579). Breast Cancer Res Treat 2015; 151(3): 629-38.
[http://dx.doi.org/10.1007/s10549-015-3435-y] [PMID: 26006067]
[97]
Lopus M, Smiyun G, Miller H, Oroudjev E, Wilson L, Jordan MA. Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype. Cancer Chemother Pharmacol 2015; 76(5): 1013-24.
[http://dx.doi.org/10.1007/s00280-015-2863-z] [PMID: 26416565]
[98]
Shalini , Lata S, Saha ST, et al. Tetrahydro-β-carbolinenaphthalimide hybrids: Synthesis and anti-proliferative evaluation on estrogen-dependent and triple-negative breast cancer cells. J Mol Struct 2022; 1262: 133053.
[http://dx.doi.org/10.1016/j.molstruc.2022.133053]
[99]
Yang DL, Zhang YJ, Lei J, et al. Discovery of fused benzimidazole-imidazole autophagic flux inhibitors for treatment of triple-negative breast cancer. Eur J Med Chem 2022; 240: 114565.
[http://dx.doi.org/10.1016/j.ejmech.2022.114565] [PMID: 35797901]
[100]
Madia VN, Nicolai A, Messore A, et al. Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules 2021; 26(3): 771.
[http://dx.doi.org/10.3390/molecules26030771] [PMID: 33540875]
[101]
Silvestri S, Cirilli I, Marcheggiani F, et al. Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models. Mitochondrion 2021; 56: 25-34.
[http://dx.doi.org/10.1016/j.mito.2020.11.004] [PMID: 33220497]
[102]
Eldehna WM. EL-Naggar DH, Hamed AR, Ibrahim HS, Ghabbour HA, Abdel-Aziz HA. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J Enzyme Inhib Med Chem 2018; 33(1): 309-18.
[http://dx.doi.org/10.1080/14756366.2017.1417276] [PMID: 29281924]
[103]
Noel K, D'incalci M. Method of treating triple-negative breast cancer using thienotriazolodiazepine compounds: Google Patents. 2017.
[104]
Noori MS, O’Brien JD, Champa ZJ, et al. Phenylmethimazole and a thiazole derivative of phenylmethimazole inhibit IL-6 expression by triple negative breast cancer cells. Eur J Pharmacol 2017; 803: 130-7.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.049] [PMID: 28343970]
[105]
Zhang CH, Chen K, Jiao Y, et al. From lead to drug candidate: Optimization of 3-(Phenylethynyl)-1 H -pyrazolo[3,4- d]pyrimidin-4-amine derivatives as agents for the treatment of triple negative breast cancer. J Med Chem 2016; 59(21): 9788-805.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00943] [PMID: 27739679]
[106]
Morales P, Blasco-Benito S, Andradas C, et al. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer. J Med Chem 2015; 58(5): 2256-64.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00078] [PMID: 25671648]
[107]
Terashima M, Sakai K, Togashi Y, et al. Synergistic antitumor effects of S-1 with eribulin in vitro and in vivo for triple-negative breast cancer cell lines. Springerplus 2014; 3(1): 417.
[http://dx.doi.org/10.1186/2193-1801-3-417] [PMID: 25140293]
[108]
Chougule MB, Patel AR, Jackson T, Singh M. Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer. PLoS One 2011; 6(3): e17733.
[http://dx.doi.org/10.1371/journal.pone.0017733] [PMID: 21423660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy