Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

ZnO Nanostructure Based Gas Sensors: Critical Review Based on their Synthesis and Morphology Towards Various Oxidizing and Reducing Gases

Author(s): Tarannum Shaikh and Shilpa Jain*

Volume 8, Issue 4, 2023

Published on: 02 February, 2023

Page: [336 - 360] Pages: 25

DOI: 10.2174/2405461508666221229103713

Price: $65

Abstract

Nanotechnology has enabled sensors to detect and sense a very small amount of chemical vapors. Sensors play a major role in our daily life. The use of sensors has made human life easy. One such type of sensor is the Gas sensor made up of Semiconducting metal oxides. These sensors have their own unique features which help in the easy monitoring of toxic gases. Out of all the metal oxide present, the gas sensors made up of ZnO nanostructures are mostly used in the gas sensing industry. ZnO has become a research hotspot of gas-sensing material because of the variation in resistance observed on the surface. These resistance changes are observed due to the adsorption and desorption of gases. In this review, we will be discussing the ZnO nanostructures, their preparation and their applications in the sensing of various toxic and flammable gases.

Keywords: Gas sensors, ZnO, nanostructures, morphology, dopants, sensor response.

Graphical Abstract
[1]
Nanotechnology in India - origins, uses, developments [UPSC]. Available From: https://byjus.com/free-ias-prep/nanotechnology/(accessed Jan. 12, 2021)
[2]
Feynman R P. There’s plenty of room at the bottom. 1960. Accessed: Jan. 12, 2021
[3]
What is sensor? - Definition from WhatIs.com. Available From: https://whatis.techtarget.com/definition/sensor(accessed Jan. 12, 2021)
[4]
International union of pure and applied chemistry analytical chemistry, Division commission on general aspects of analytical chemistry. Chemical sensors definitions and classification prepared for publication by adam hulanicki. staniseaw geab and folke ingman2 1960. Accessed: Jan. 12, 2021.
[5]
Bhati VS, Hojamberdiev M, Kumar M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports 2020; 6 (Suppl. 4): 46-62.
[http://dx.doi.org/10.1016/j.egyr.2019.08.070]
[6]
Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for no2 gas–sensor applications: A review. Nano-Micro Lett 2015; 7(2): 97-120.
[http://dx.doi.org/10.1007/s40820-014-0023-3] [PMID: 30464961]
[7]
Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators, A: Phys 2017; 267: 242-61.
[http://dx.doi.org/10.1016/j.sna.2017.10.021]
[8]
The Air and its major pollutants. Available From: http://edugreen.teri.res.in/explore/air/major.htm (accessed Jan. 12, 2021)
[9]
Gupta SK, Joshi A, Kaur M. Development of gas sensors using ZnO nanostructures. J Chem Sci 2010; 122: 57-62.
[http://dx.doi.org/10.1007/s12039-010-0006-y]
[10]
Guillén-Bonilla H, Rodríguez-Betancourtt VM, Guillen-Bonilla J, et al. Sensitivity tests of pellets made from manganese antimonate nanoparticles in carbon monoxide and propane atmospheres. Sensors 2018; 18(7): 2299.
[http://dx.doi.org/10.3390/s18072299] [PMID: 30012964]
[11]
Seiyama T, Kato A, Fujiishi K, Nagatani M. A new detector for gaseous components using semiconductive thin films. Anal Chem 1962; 34(11): 1502-3.
[http://dx.doi.org/10.1021/ac60191a001]
[12]
Korotcenkov G. Introduction.Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 1: Conventional Approaches (Integrated Analytical Systems). Springer Science, Business Media. 2013.
[http://dx.doi.org/10.1007/978-1-4614-7165-3_1]
[13]
Dejous C, Hallil H, Raimbault V, Rukkumani R, Yakhmi JV. Using microsensors to promote the development of innovative therapeutic nanostructuresNanostructures for Novel Therapy: Synthesis, Characterization and Applications. Elsevier Inc. 2017; pp. 539-66.
[http://dx.doi.org/10.1016/B978-0-323-46142-9.00020-7]
[14]
All about electrical sensors - current and voltage sensors. Available From: https://www.thomasnet.com/articles/instruments-controls/all-about-electrical-sensors/ (accessed Jan. 17, 2021)
[15]
Chemical gas mixture analysis and the electronic nose: Current status, future trends? Available from: https://www.research gate.net/publication/288761394_Chemical_gas_mixture_analysis_and_the_electronic_nose_Current_status_future_trends (accessed Jan. 17, 2021)
[16]
Bodenhöfer K, Hierlemann A, Noetzel G, Weimar U, Göpel W. Performances of mass-sensitive devices for gas sensing: Thickness shear mode and surface acoustic wave transducers. Anal Chem 1996; 68(13): 2210-8.
[http://dx.doi.org/10.1021/ac9600215] [PMID: 21619307]
[17]
Korotcenkov G. Introduction 1-45 2013.
[http://dx.doi.org/10.1007/978-1-4614-7165-3_1]
[18]
Magnetic sensor: Working, different types, and its applications. Available from: https://www.elprocus.com/magnetic-sensor-working-and-its-applications/ (accessed Jan. 17, 2021)
[19]
Magnetic sensor applications | crocus technology. Available from: https://crocus-technology.com/applications/ (accessed Jan. 17, 2021)
[20]
Pathakoti K, Manubolu M, Hwang HM. Nanotechnology applications for environmental industry Handbook of Nanomaterials for Industrial Applications. Elsevier 2018; pp. 894-907.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00050-X]
[21]
Different types of sensors and their uses (i.e., electrical sensors). Available from: https://www.thomasnet.com/articles/instruments-controls/sensors/#temperature(accessed Jan. 17, 2021)
[22]
Cass T. Nanosensors: Physical, Chemical, and Biological. Phys Today 2012; 65(3): 55.
[http://dx.doi.org/10.1063/PT.3.1480]
[23]
Wohltjen H, Barger WR, Snow AW, Jarvis NL. A vapor-sensitive chemiresistor fabricated with planar microelectrodes and a Langmuir-Blodgett organic semiconductor film. IEEE Trans Electron Dev 1985; 32(7): 1170-4.
[http://dx.doi.org/10.1109/T-ED.1985.22095]
[24]
Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B 2007; 139(1): 1-23.
[http://dx.doi.org/10.1016/j.mseb.2007.01.044]
[25]
Wang C, Yin L, Zhang L, Xiang D, Gao R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 2010; 10(3): 2088-106.
[http://dx.doi.org/10.3390/s100302088] [PMID: 22294916]
[26]
Sarf F. Metal oxide gas sensors by nanostructures. In:Gas Sensors. IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.88858]
[27]
Summary of advantages and disadvantages of MOX and CP sensors. | Download Table. Available From: https://www. researchgate.net/figure/Summary-of-advantages-and-disadvantages- of-MOX-and-CP-sensors-modified-from-54_tbl1_ 258038510 (accessed Jan. 17, 2021)
[29]
Rai P, Kim YS, Song HM, Song MK, Yu YT. The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens Actuators B Chem 2012; 165(1): 133-42.
[http://dx.doi.org/10.1016/j.snb.2012.02.030]
[30]
Zheng J, Jiang ZY, Kuang Q, Xie ZX, Huang R-B, Zheng L-S. Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties. J Solid State Chem 2009; 182(1): 115-21.
[http://dx.doi.org/10.1016/j.jssc.2008.10.009]
[31]
What is a gas sensor? Construction, types & working of gas sensors. Available from: https://components101.com/articles/ introduction-to-gas-sensors-types-working-and-applications (accessed Jan. 14, 2021).
[32]
Kumar M, Singh Bhati V, Ranwa S, Singh J, Kumar M. Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen. Scientific Report 2017; 7: 236.
[http://dx.doi.org/10.1038/s41598-017-00362-x]
[33]
Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. ScientificWorldJournal 2014; 2014: 925494.
[http://dx.doi.org/10.1155/2014/925494]
[34]
Parihar V, Raja M, Paulose R. A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev Adv Mat Sci 2018. Accessed: Jan. 05, 2021
[http://dx.doi.org/10.1515/rams-2018-0009]
[35]
Li M, Chokshi N, DeLeon RL, Tompa G, Anderson WA. Radio frequency sputtered zinc oxide thin films with application to metal–semiconductor–metal photodetectors. Thin Solid Films 2007; 515(18): 7357-63.
[http://dx.doi.org/10.1016/j.tsf.2007.03.026]
[36]
Özgür Ü, Alivov YI, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys 2005; 98(4): 041301.
[http://dx.doi.org/10.1063/1.1992666]
[37]
Theerthagiri J, et al. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology 30(39): 392001.2019.
[http://dx.doi.org/10.1088/1361-6528/ab268a]
[38]
Wang X, Ding Y, Summers CJ, Wang ZL. large-scale synthesis of six-nanometer-wide ZnO nanobelts. J Phys Chem B 2004; 108(26): 8773-7.
[http://dx.doi.org/10.1021/jp048482e]
[39]
Schmidt-Mende L, MacManus-Driscoll JL. ZnO – nanostructures, defects, and devices. Mater Today 2007; 10(5): 40-8.
[http://dx.doi.org/10.1016/S1369-7021(07)70078-0]
[40]
Kumar M, Sasikumar C. Electrodeposition of nanostructured zno thin film: A review. Am J Mater Sci Eng 2014; 2(2): 18-23.
[http://dx.doi.org/10.12691/ajmse-2-2-2]
[41]
Wei A, Pan L, Huang W. Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B 2011; 176(18): 1409-21.
[http://dx.doi.org/10.1016/j.mseb.2011.09.005]
[42]
Tiwale N. Zinc oxide nanowire gas sensors: Fabrication, functionalisation and devices. Mater Sci Technol 2015; 31(14): 1681-97.
[http://dx.doi.org/10.1179/1743284714Y.0000000747]
[43]
Arafat MM, Dinan B, Akbar SA, Haseeb ASMA. Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 2012; 12(6): 7207-58.
[http://dx.doi.org/10.3390/s120607207] [PMID: 22969344]
[44]
Jansi Santhosam A, Ravichandran K, Ahamad T. Donated free electrons induced enhancement in the NH3 sensing ability of ZnO thin films - Effect of terbium loading. Sens Actuators A Phys 2020; 316: 112376.
[http://dx.doi.org/10.1016/j.sna.2020.112376]
[45]
Wagner R, Schönauer-Kamin D, Moos R. Influence of humidity and different gases on a resistive room temperature NO2 gas dosimeter based on al-doped ZnO for ppb-concentration detection. J Electrochem Soc 2020; 167(16): 167516.
[http://dx.doi.org/10.1149/1945-7111/abcb65]
[46]
Khojier K. Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater Sci Semicond Process 2021; 121: 105283.
[http://dx.doi.org/10.1016/j.mssp.2020.105283]
[47]
Cheng IK, Lin CY, Pan FM. Gas sensing behavior of ZnO toward H2 at temperatures below 300°C and its dependence on humidity and Pt-decoration. Appl Surf Sci 541(1): 90-117.2021;
[http://dx.doi.org/10.1016/j.apsusc.2020.148551]
[48]
Tripathy N, Kim DH. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg 2018; 5(1): 27.
[http://dx.doi.org/10.1186/s40580-018-0159-9] [PMID: 30467757]
[49]
Shukla M, Pramila IA, Palani IA, Singh V. Effect of immobilization technique on performance ZnO nanorods based enzymatic electrochemical glucose biosensor. J Phys Conf Ser 2017; 924(1): 012013.
[http://dx.doi.org/10.1088/1742-6596/924/1/012013]
[50]
Umar A, Rahman M, Alhajry A, Hahn Y. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 2009; 78(1): 284-9.
[http://dx.doi.org/10.1016/j.talanta.2008.11.018] [PMID: 19174239]
[51]
Pan Y, Zuo J, Hou Z, Huang Y, Huang C. Preparation of electrochemical sensor based on zinc oxide nanoparticles for simultaneous determination of AA, DA, and UA. Front Chem 2020; 8: 592538.
[http://dx.doi.org/10.3389/fchem.2020.592538] [PMID: 33324612]
[52]
Jang M, Lee J, Park SY, et al. Rational surface modification of ZnO with siloxane polymers for room-temperature-operated thin-film transistor-based gas sensors. Appl Surf Sci 2021; 542: 148704.
[http://dx.doi.org/10.1016/j.apsusc.2020.148704]
[53]
What is chemical vapour deposition (CVD)? - TWI. Available from: https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-chemical-vapour-deposition-cvd(accessed Jan. 23, 2021)
[54]
Sol–gel process - Wikipedia. Available from: https://en.wikipedia.org/wiki/Sol%E2%80%93gel_process(accessed Jan. 23, 2021).
[55]
Parashar M, Shukla VK, Singh R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J Mater Sci Mater Electron 2020; 31(5): 3729-49.
[http://dx.doi.org/10.1007/s10854-020-02994-8]
[56]
Palanisamy P, Chavali M, Kumar EM, Etika KC. Hybrid nanocomposites and their potential applications in the field of nanosensors/gas and biosensors Nanofabrication for Smart Nanosensor Applications. Elsevier 2020; pp. 253-80.
[http://dx.doi.org/10.1016/B978-0-12-820702-4.00011-8]
[57]
Choi KJ, Jang HW. One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 2010; 10(4): 4083-99.
[http://dx.doi.org/10.3390/s100404083] [PMID: 22319343]
[58]
Mudusu D, Reddy Nandanapalli K, Dugasani SR, Park SH, Tu CW. Zinc oxide nanorods shielded with an ultrathin nickel layer: Tailoring of physical properties OPEN. Nature Publishing Group. Nature Publishing Group 2016.
[http://dx.doi.org/10.1038/srep28561]
[59]
Rodwihok C, Choopun S, Ruankham P, Gardchareon A, Phadungdhitidhada S, Wongratanaphisan D. UV sensing properties of ZnO nanowires/nanorods. Appl Surf Sci 2019; 477: 159-65.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.056]
[60]
Tam KH, Cheung CK, Leung YH, et al. Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B 2006; 110(42): 20865-71.
[http://dx.doi.org/10.1021/jp063239w] [PMID: 17048900]
[61]
Sundara Venkatesh P, Dong CL, Chen CL, Pong WF, Asokan K, Jeganathan K. Local electronic structure of ZnO nanorods grown by radio frequency magnetron sputtering. Mater Lett 2014; 116: 206-8.
[http://dx.doi.org/10.1016/j.matlet.2013.11.034]
[62]
Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 2002; 12(5): 323-31.
[http://dx.doi.org/10.1002/1616-3028(20020517)12:5<323:AID-ADFM323>3.0.CO;2-G]
[63]
Ayana DG, Ceccato R, Collini C, Lorenzelli L, Prusakova V, Dirè S. Sol-gel derived oriented multilayer ZnO thin films with memristive response. Thin Solid Films 2016; 615: 427-36.
[http://dx.doi.org/10.1016/j.tsf.2016.07.025]
[64]
Umar A, Akhtar MS, Al-Hajry A, Al-Assiri MS, Almehbad NY. Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications. Mater Res Bull 2012; 47(9): 2407-14.
[http://dx.doi.org/10.1016/j.materresbull.2012.05.028]
[65]
Dilonardo E, Penza M, Alvisi M, et al. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases. Beilstein J Nanotechnol 2016; 7(1): 22-31.
[http://dx.doi.org/10.3762/bjnano.7.3] [PMID: 26925349]
[66]
Wang JX, Sun XW, Yang Y, Wu CML. N–P transition sensing behaviors of ZnO nanotubes exposed to NO 2 gas. Nanotechnology 2009; 20(46): 465501.
[http://dx.doi.org/10.1088/0957-4484/20/46/465501] [PMID: 19843994]
[67]
Öztürk S. Kılınç N, Öztürk ZZ. Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position. J Alloys Compd 2013; 581: 196-201.
[http://dx.doi.org/10.1016/j.jallcom.2013.07.063]
[68]
Rai P, Raj S, Ko KJ, Park KK, Yu YT. Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens Actuators B Chem 2013; 178: 107-12.
[http://dx.doi.org/10.1016/j.snb.2012.12.031]
[69]
Bai S, Sun C, Guo T, et al. Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors. Electrochim Acta 2013; 90: 530-4.
[http://dx.doi.org/10.1016/j.electacta.2012.12.060]
[70]
Hjiri M, El Mir L, Leonardi S, Donato N, Neri G. CO and NO2 Selective Monitoring by ZnO-Based Sensors. Nanomaterials 2013; 3(3): 357-69.
[http://dx.doi.org/10.3390/nano3030357] [PMID: 28348340]
[71]
Godse PR, Mane AT, Navale YH, Navale ST, Mulik RN, Patil VB. Hydrothermally grown 1D ZnO nanostructures for rapid detection of NO2 gas. SN Applied Sciences 2021; 3(3): 360.
[http://dx.doi.org/10.1007/s42452-021-04357-2]
[72]
Agarwal S, Rai P, Gatell EN, et al. Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B Chem 2019; 292(April): 24-31.
[http://dx.doi.org/10.1016/j.snb.2019.04.083]
[73]
Choi HJ, Kwon SH, Lee WS, et al. Ultraviolet photoactivated room temperature NO2 gas sensor of ZnO hemitubes and nanotubes covered with TiO2 nanoparticles. Nanomaterials 2020; 10(3): 462.
[http://dx.doi.org/10.3390/nano10030462] [PMID: 32143528]
[74]
Wang J, Fan S, Xia Y, Yang C, Komarneni S. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3. J Hazard Matter 2020; 381: 120919.
[http://dx.doi.org/10.1016/j.jhazmat.2019.120919]
[75]
Shimpi NG, Jain S, Karmakar N, Shah A, Kothari DC, Mishra S. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor. Appl Surf Sci 2016; 390: 17-24.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.050]
[76]
Gurav KV, Gang MG, Shin SW, et al. Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios. Sens Actuators B Chem 2014; 190: 439-45.
[http://dx.doi.org/10.1016/j.snb.2013.08.069]
[77]
Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han SH. Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor. Mater Sci Eng B 2007; 137(1-3): 119-25.
[http://dx.doi.org/10.1016/j.mseb.2006.11.008]
[78]
Sivapunniyam A, Wiromrat N, Myint MTZ, Dutta J. High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sens Actuators B Chem 2011; 157(1): 232-9.
[http://dx.doi.org/10.1016/j.snb.2011.03.055]
[79]
Nkosi SS, et al. The effect of stabilized ZnO nanostructures green luminescence towards LPG sensing capabilities. Mater Chem Phys 2020; 242: 122452.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122452]
[80]
Muthuvinayagam A, Dhara S. Enhanced LPG sensing property of sol–gel synthesized ZnO nanoparticles-based gas sensors. Bull Mater Sci 2021; 44(2): 159.
[http://dx.doi.org/10.1007/s12034-021-02455-w]
[81]
Singh A, Sikarwar S, Yadav BC. Design and fabrication of quick responsive and highly sensitive LPG sensor using ZnO/SnO 2 hetero-structured film. Mater Res Express 2021; 8(4): 045013.
[http://dx.doi.org/10.1088/2053-1591/abf52e]
[82]
Choudhary S, Annapoorni S, Malik R. Evolution and growth mechanism of hexagonal ZnO nanorods and their LPG sensing response at low operating temperature. Sens Actuators A Phys 2019; 293: 207-14.
[http://dx.doi.org/10.1016/j.sna.2019.04.048]
[83]
Kanaparthi S, Singh SG. Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection. ACS Appl Nano Mater 2019; 2(2): 700-6.
[http://dx.doi.org/10.1021/acsanm.8b01763]
[84]
Dhahri R, Hjiri M, El Mir L, et al. ZnO:Ca nanopowders with enhanced CO 2 sensing properties. J Phys D Appl Phys 2015; 48(25): 255503.
[http://dx.doi.org/10.1088/0022-3727/48/25/255503]
[85]
Ghanbari Shohany B, Motevalizadeh L, Ebrahimizadeh Abrishami M. Investigation of ZnO thin-film sensing properties for CO2 detection: effect of Mn doping. Journal of Theoretical and Applied Physics 2018; 12(3): 219-25.
[http://dx.doi.org/10.1007/s40094-018-0302-3]
[86]
Hjiri M, El Mir L, Leonardi SG, Pistone A, Mavilia L, Neri G. Al-doped ZnO for highly sensitive CO gas sensors. Sens Actuators B Chem 2014; 196: 413-20.
[http://dx.doi.org/10.1016/j.snb.2014.01.068]
[87]
Krishnakumar T, Jayaprakash R, Pinna N, et al. CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens Actuators B Chem 2009; 143(1): 198-204.
[http://dx.doi.org/10.1016/j.snb.2009.09.039]
[88]
Jaballah S, Dahman H, Neri G, El Mir L. Effect of Al and Mg Co-doping on the Microstructural and Gas-Sensing Characteristics of ZnO Nanoparticles. J Inorg Organomet Polym Mater 2021; 31(4): 1653-67.
[http://dx.doi.org/10.1007/s10904-020-01796-z]
[89]
Jamshidi Bandari A, Nasirian S. Carbon monoxide gas sensing features of zinc oxide nanoneedles: practical selectivity and long-term stability. J Mater Sci Mater Electron 2019; 30(11): 10073-81.
[http://dx.doi.org/10.1007/s10854-019-01111-8]
[90]
Ani A, Poornesh P, Nagaraja KK, et al. Evaluation of spray pyrolysed In:ZnO nanostructures for CO gas sensing at low concentration. J Mater Sci Mater Electron 2021; 32(17): 22599-616.
[http://dx.doi.org/10.1007/s10854-021-06745-1]
[91]
Yuliarto B, Ramadhani MF, Nugraha NLW, Septiani NLW, Hamam KA. Enhancement of SO2 gas sensing performance using ZnO nano-rod thin films: The role of deposition time. J Mater Sci 2017; 52(8): 4543-54.
[http://dx.doi.org/10.1007/s10853-016-0699-5]
[92]
Zhou Q, Xie B, Jin L, Chen W, Li J. Hydrothermal Synthesis and Responsive Characteristics of Hierarchical Zinc Oxide Nanoflowers to Sulfur Dioxide. J Nanotechnol 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/6742104]
[93]
Dhingra V, Kumar S, Kumar R, Garg A, Chowdhuri A. Room temperature SO2 and H2 gas sensing using hydrothermally grown GO–ZnO nanorod composite films. Mater Res Express 2020; 7(6): 065012.
[http://dx.doi.org/10.1088/2053-1591/ab9ae7]
[94]
Zhou Q, Zeng W, Chen W, Xu L, Kumar R, Umar A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens Actuators B Chem 2019; 298(May): 126870.
[http://dx.doi.org/10.1016/j.snb.2019.126870]
[95]
Shingange K, Tshabalala ZP, Ntwaeaborwa OM, Motaung DE, Mhlongo GH. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J Colloid Interface Sci 2016; 479: 127-38.
[http://dx.doi.org/10.1016/j.jcis.2016.06.046] [PMID: 27388126]
[96]
Mhlongo G H, Motaung D E, Cummings F R, Swart H C, Ray S. A highly responsive NH3 sensor based on pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Sci Rep
[http://dx.doi.org/10.1038/s41598-019-46247-z]
[97]
Ganesh RS, Durgadevi E, Navaneethan M, et al. Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sens Actuators A Phys 2018; 269: 331-41.
[http://dx.doi.org/10.1016/j.sna.2017.11.042]
[98]
Mani GK, Rayappan JBB. Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl Surf Sci 2014; 311: 405-12.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.075]
[99]
Nakarungsee P, Srirattanapibul S, Issro C, Tang IM, Thongmee S. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens Actuators A Phys 2020; 314: 112230.
[http://dx.doi.org/10.1016/j.sna.2020.112230]
[100]
Wongrat E, Nuengnit T, Panyathip R, Chanlek N, Hongsith N, Choopun S. Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs). Sens Actuators B Chem 2021; 326: 128983.
[http://dx.doi.org/10.1016/j.snb.2020.128983]
[101]
Ali I, Kashyout AEHB, Tayel M, Shokry Hassan H, Rizk M. Ruthenium (Ru) doped zinc oxide nanostructure-based radio frequency identification (RFID) gas sensors for NH3 detection. J Mater Res Technol 2020; 9(6): 15693-704.
[http://dx.doi.org/10.1016/j.jmrt.2020.11.033]
[102]
Waikar MR, Raste PM, Sonker RK, et al. Enhancement in NH3 sensing performance of ZnO thin-film via gamma-irradiation. J Alloys Compd 2020; 830(2): 154641.
[http://dx.doi.org/10.1016/j.jallcom.2020.154641]
[103]
Kim J, Yong K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J Phys Chem C 2011; 115(15): 7218-24.
[http://dx.doi.org/10.1021/jp110129f]
[104]
Nimbalkar AR, Patil MG. Synthesis of ZnO thin film by sol-gel spin coating technique for H 2 S gas sensing application. Physica B 2017; 527: 7-15.
[http://dx.doi.org/10.1016/j.physb.2017.09.112]
[105]
Guo W, Li X, Qin H, Wang Z. PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: Structure, growth and gas sensor properties. Physica E 2015; 73: 163-8.
[http://dx.doi.org/10.1016/j.physe.2015.05.006]
[106]
Onkar SG, Nagdeote SB, Wadatkar AS, Kharat PB. Gas sensing behavior of ZnO thick film sensor towards H2 S, NH3, LPG and CO2. J Phys Conf Ser 2020; 1644(1): 012060.
[http://dx.doi.org/10.1088/1742-6596/1644/1/012060]
[107]
Kim H, Pak Y, Jeong Y, Kim W, Kim J, Jung GY. Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability. Sens Actuators B Chem 2018; 262: 460-8.
[http://dx.doi.org/10.1016/j.snb.2018.02.025]
[108]
Kumar M, Bhatt V, Kumar A, Yun JH. Nano lily-buds garden like ZnO nanostructures based gas sensor for H2 detection. Mater Lett 2019; 240: 13-6.
[http://dx.doi.org/10.1016/j.matlet.2018.12.113]
[109]
Vishwa Bhatt MK, Kima J, Abhyankar AC, Hak-Jun Chung K. Holey engineered 2D ZnO-nanosheets architecture for supersensitive ppm level H2 gas detection at room temperature. Sensors Actuators B Chem 2021; 326: 128839.
[http://dx.doi.org/10.1016/j.snb.2020.128839]
[110]
Dilonardo E, Penza M, Alvisi M, et al. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors. Beilstein J Nanotechnol 2017; 8(1): 82-90.
[http://dx.doi.org/10.3762/bjnano.8.9] [PMID: 28144567]
[111]
Jaisutti R, Lee M, Kim J, et al. Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na: ZnO Nanoflowers for Diabetes Detection. ACS Appl Mater Interfaces 2017; 9(10): 8796-804.
[http://dx.doi.org/10.1021/acsami.7b00673] [PMID: 28224789]
[112]
Xu XL, Chen Y, Ma SY, Li WQ, Mao YZ. Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens Actuators B Chem 2015; 213: 222-33.
[http://dx.doi.org/10.1016/j.snb.2015.02.073]
[113]
Huang J, Zhou J, Liu Z, et al. Enhanced acetone-sensing properties to ppb detection level using Au/Pd-doped ZnO nanorod. Sens Actuators B Chem 2020; 310(April): 127129.
[http://dx.doi.org/10.1016/j.snb.2019.127129]
[114]
Hung CM, Van Duy L, Thanh Le DT, Nguyen H, Van Duy N, Hoa ND. ZnO coral-like nanoplates decorated with Pd nanoparticles for enhanced VOC gas sensing. J Sci Adv Mater Devices 2021; 6(3): 453-61.
[http://dx.doi.org/10.1016/j.jsamd.2021.05.005]
[115]
Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N, Choopun S. Ethanol sensor based on ZnO and Au-doped ZnO nanowires. Ceram Int 2008; 34(4): 823-6.
[http://dx.doi.org/10.1016/j.ceramint.2007.09.099]
[116]
Lia Q, Chena D, Miao J, et al. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. Sensors Actuators B Chem 2020; 326: 128952.
[http://dx.doi.org/10.1016/j.snb.2020.128952]
[117]
Hu J, Gao F, Zhao Z, et al. Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl Surf Sci 2016; 363: 181-8.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.024]
[118]
Gunasekaran E, Ezhilan M, Mani GK, et al. Fluorine doped ZnO thin film as acetaldehyde sensor. Semicond Sci Technol 2018; 33(9): 095005.
[http://dx.doi.org/10.1088/1361-6641/aad2ab]
[119]
Umar A, Ibrahim AA, Kumar R, et al. CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environ Res 2021; 200: 111377.
[http://dx.doi.org/10.1016/j.envres.2021.111377] [PMID: 34058181]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy