Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Overview of High-Performance Thin Layer Chromatography and its Applications in Pesticide Analysis

Author(s): Selvakumar Muruganantham, Venkateshwaran Krishnaswami, Shanmugarathinam Alagarsamy and Ruckmani Kandasamy*

Volume 19, Issue 3, 2023

Published on: 02 February, 2023

Page: [240 - 261] Pages: 22

DOI: 10.2174/1573411019666221226160446

Price: $65

Abstract

In recent decades, increased demand for food has been caused by a rapid rise in the human population, which triggers agricultural intensification. To resist undesired pests from infecting crops, farmers widely utilize pesticides to improve agricultural production during the pre-harvest period. Despite the fact that pesticides cause a number of health risks, there is insufficient monitoring of these toxins. Therefore, it is important to develop a specific, accurate, and efficient method for determining the pesticides in varied samples in order to safeguard health against potential risks. Due to the lower concentrations of active compounds and their diversity of availability, it is challenging to detect pesticide residues in different samples. In this case, to effectively separate, identify, and accurately quantify pesticides at low concentrations in a variety of samples, a reliable analytical methodology is needed. Recently, the application of high-performance thin layer chromatography (HPTLC) offers a wider scope with excellent separation, identification, and quantitative/qualitative determination in pesticide analysis. In spite of their extremely low quantities, pesticide residues can be accurately and precisely identified using HPTLC. HPTLC has a number of benefits, such as easy sample preparation, automation, densitometry, and hyphenation, and is particularly well suited for identification and detection. Concerning this, the proposed review paper provides an overview of stationary phases, mobile phases, sample applicators, visualization, derivatization, and detection of HPTLC utilized for the identification and detection of pesticide residues in agriculture and environmental samples.

Keywords: Pesticides, HPTLC, chromatogram development, derivatization, automated multiple development, hyphenation.

Graphical Abstract
[1]
Sweedler, J.V. The continued evolution of hyphenated instruments. Anal. Bioanal. Chem., 2002, 373(6), 321-322.
[http://dx.doi.org/10.1007/s00216-002-1358-z] [PMID: 12206131]
[2]
Attimarad, M.; Mueen Ahmed, K.K.; Aldhubaib, B.E.; Harsha, S. High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharm. Methods, 2011, 2(2), 71-75.
[http://dx.doi.org/10.4103/2229-4708.84436] [PMID: 23781433]
[3]
World Health Organization and Food and Agricultural Organization of the United Nations. 2014. Available from: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/CODE_2014Sep_ENG. pdf
[4]
Płonka, M.; Walorczyk, S.; Miszczyk, M. Chromatographic methods for the determination of active substances and characterization of their impurities in pesticide formulations. TrAC. Trends Analyt. Chem., 2016, 85, 67-80.
[5]
Delaney, J.; Clarke, E.; Hughes, D.; Rice, M. Modern agrochemical research: a missed opportunity for drug discovery? Drug Discov. Today, 2006, 11(17-18), 839-845.
[http://dx.doi.org/10.1016/j.drudis.2006.07.002] [PMID: 16935753]
[6]
Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol., 2009, 2(1), 1-12.
[http://dx.doi.org/10.2478/v10102-009-0001-7] [PMID: 21217838]
[7]
Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; Filippi, L.; Hutjes, R.W.A.; Noordam, M.Y.; Pisante, M.; Piva, G.; Prandini, A.; Toti, L.; van den Born, G.J.; Vespermann, A. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol., 2009, 47(5), 1009-1021.
[http://dx.doi.org/10.1016/j.fct.2009.02.005] [PMID: 19353812]
[8]
Jardim, A.N.O.; Caldas, E.D. Brazilian monitoring programs for pesticide residues in food – Results from 2001 to 2010. Food Control, 2012, 25(2), 607-616.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.001]
[9]
Freire, C.; Koifman, S. Pesticides, depression and suicide: A systematic review of the epidemiological evidence. Int. J. Hyg. Environ. Health, 2013, 216(4), 445-460.
[http://dx.doi.org/10.1016/j.ijheh.2012.12.003] [PMID: 23422404]
[10]
Oellig, C.; Schwack, W. Planar solid phase extraction—A new clean-up concept in multi-residue analysis of pesticides by liquid chroma-tography–mass spectrometry. J. Chromatogr. A, 2011, 1218(37), 6540-6547.
[http://dx.doi.org/10.1016/j.chroma.2011.06.108] [PMID: 21794869]
[11]
Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health, 2021, 18(3), 1112.
[http://dx.doi.org/10.3390/ijerph18031112] [PMID: 33513796]
[12]
Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci., 2020, 45(2), 54-74.
[http://dx.doi.org/10.1584/jpestics.D20-201] [PMID: 33132734]
[13]
Albert, K.; Krucker, M.; Glaser, T.; Schefer, A.; Lienau, A.; Zeeb, D. Hyphenated techniques. Anal. Bioanal. Chem., 2002, 372(1), 25-26.
[http://dx.doi.org/10.1007/s00216-001-1158-x] [PMID: 11939202]
[14]
Wenlock, M.C.; Austin, R.P.; Barton, P.; Davis, A.M.; Leeson, P.D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem., 2003, 46(7), 1250-1256.
[http://dx.doi.org/10.1021/jm021053p] [PMID: 12646035]
[15]
Sethi, P.D. High performance thin layer chromatography, quantitative analysis of pharmaceutical formulations; CBS Publishers: New Delhi, India, 1996.
[16]
Vundac, B.V.; Zeljan, M.; Misko, P.; Petra, G.; Biserka, C.C. HPTLC determination of flavonoids and phenolic acids in some Croatian Stachys taxa. JPC-J. Planar. Chromat., 2005, 18, 269-273.
[17]
Chewchinda, S.; Kongkiatpaiboon, S. A validated HPTLC method for quantitative analysis of morin in Maclura cochinchinensis heart-wood. Chin. Herb. Med., 2020, 12(2), 200-203.
[http://dx.doi.org/10.1016/j.chmed.2019.09.008] [PMID: 36119802]
[18]
Mukherjee, P.K. Quality Control and Evaluation of Herbal Drugs in High-Performance. In: Thin-Layer Chromatography (HPTLC) for Analysis of Herbal Drugs; Elsevier: Susan Dennis, 2019; pp. 377-420.https://sci-hub.se/10.1016/B978-0-12-813374-3.00009-0
[19]
Sharma, T.; Kaur Khurana, R.; Borges, B.; Kaur, R.; Katare, O.P.; Singh, B. An HPTLC densitometric method for simultaneous quantifica-tion of sorafenib tosylate and chrysin: Analytical method development, validation and applications. Microchem. J., 2021, 162105821
[http://dx.doi.org/10.1016/j.microc.2020.105821]
[20]
Miyazaki, M.; Yonesige, A.; Matsuda, J.; Kuroda, Y.; Kojima, N.; Suzuki, A. High-performance thin-layer chromatography/mass spec-trometry for rapid analysis of neutral glycosphingolipids. J. AOAC Int., 2008, 91(5), 1218-1226.
[http://dx.doi.org/10.1093/jaoac/91.5.1218] [PMID: 18980144]
[21]
Kasote, D.; Ahmad, A.; Chen, W.; Combrinck, S.; Viljoen, A. HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochem. Lett., 2015, 11, 326-331.
[http://dx.doi.org/10.1016/j.phytol.2014.08.017]
[22]
Chewchinda, S.; Vongsak, B. Development and validation of a high-performance thin layer chromatography method for the simultaneous quantitation of α- and γ-mangostins in Thai stingless bee propolis. Rev. Bras. Farmacogn., 2019, 29(3), 333-338.
[http://dx.doi.org/10.1016/j.bjp.2018.12.004]
[23]
Rashmin, P.; Mrunali, P.; Nitin, D.; Nidhi, D.; Bharat, P. HPTLC Method Development and Validation: Strategy to Minimize Methodologi-cal Failures. Yao Wu Shi Pin Fen Xi, 2012, 20(4), 794-804.
[24]
Variyar, P.S.; Chatterjee, S.; Sharma, A. Fundamentals and Theory of HPTLC-Based Separation. In: High-Performance Thin-Layer Chromatography (HPTLC); Srivastava, M.M., Ed.; Springer: Verlag Berlin, Heidelberg, 2010; pp. 27-39.
[25]
John, J.; Reghuwanshi, A.; Aravind, U.K.; Aravindakumar, C.T. Development and validation of a high-performance thin layer chromatog-raphy method for the determination of cholesterol concentration. Yao Wu Shi Pin Fen Xi, 2015, 23(2), 219-224.
[PMID: 28911376]
[26]
Shewiyo, D.H.; Kaale, E.; Risha, P.G.; Dejaegher, B.; Smeyers-Verbeke, J.; Heyden, Y.V. HPTLC methods to assay active ingredients in pharmaceutical formulations: A review of the method development and validation steps. J. Pharm. Biomed. Anal., 2012, 66, 11-23.
[http://dx.doi.org/10.1016/j.jpba.2012.03.034] [PMID: 22494517]
[27]
Sherma, J. Planar chromatography. Anal. Chem., 2004, 76(12), 3251-3262.
[http://dx.doi.org/10.1021/ac0304166] [PMID: 15193106]
[28]
Mishra, J.; Hande, P.; Sharma, P.; Bhardwaj, A.; Rajput, R.; Misra, K. Characterization of nucleobases in sea buckthorn leaves: An HPTLC approach. J. Liq. Chromatogr. Relat. Technol., 2017, 40(1), 50-57.
[http://dx.doi.org/10.1080/10826076.2017.1283517]
[29]
Kamboj, A.; Saluja, A.K. Development of validated HPTLC method for quantification of stigmasterol from leaf and stem of Bryophyllum pinnatum. Arab. J. Chem., 2017, 10(S2), S2644-S2650.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.006]
[30]
Juszczak, A.M.; Zovko-Končić, M.; Tomczyk, M. Recent trends in the application of chromatographic techniques in the analysis of luteo-lin and its derivatives. Biomolecules, 2019, 9(11), 731-768.
[http://dx.doi.org/10.3390/biom9110731] [PMID: 31726801]
[31]
Mishra, J.; Rajput, R.; Singh, K.; Puri, S.; Goyal, M.; Bansal, A.; Misra, K. Antibacterial natural peptide fractions from Indian Ganoderma lucidum. Int. J. Pept. Res. Ther., 2018, 24(4), 543-554.
[http://dx.doi.org/10.1007/s10989-017-9643-z]
[32]
Sherma, J. Recent advances in the thin-layer chromatography of pesticides: a review. J. AOAC Int., 2003, 86(3), 602-611.
[http://dx.doi.org/10.1093/jaoac/86.3.602] [PMID: 12852582]
[33]
Sherma, J. Review of advances in the thin layer chromatography of pesticides: 2004–2006. J. Environ. Sci. Health B, 2007, 42(4), 429-440.
[http://dx.doi.org/10.1080/03601230701316440] [PMID: 17474023]
[34]
Sherma, J. Review of advances in the thin layer chromatography of pesticides: 2006–2008. J. Environ. Sci. Health B, 2009, 44(3), 193-203.
[http://dx.doi.org/10.1080/03601230902728021] [PMID: 19280471]
[35]
Sherma, J. Review of advances in the thin layer chromatography of pesticides: 2008–2010. J. Environ. Sci. Health B, 2011, 46(7), 557-568.
[http://dx.doi.org/10.1080/03601234.2011.586589] [PMID: 21722083]
[36]
Sherma, J. Review of advances in the thin layer chromatography of pesticides: 2012–2014. J. Environ. Sci. Health B, 2015, 50(5), 301-316.
[http://dx.doi.org/10.1080/03601234.2015.1000163] [PMID: 25826098]
[37]
Sherma, J. Review of thin-layer chromatography in pesticide analysis: 2014–2016. J. Liq. Chromatogr. Relat. Technol., 2017, 40(5-6), 226-238.
[http://dx.doi.org/10.1080/10826076.2017.1298024]
[38]
Sherma, J.; Rabel, F. Review of thin layer chromatography in pesticide analysis: 2016-2018. J. Liq. Chromatogr. Relat. Technol., 2019, 41(19-20), 1-14.
[39]
Gocan, S. Stationary phases for thin-layer chromatography. J. Chromatogr. Sci., 2002, 40(10), 538-549.
[http://dx.doi.org/10.1093/chromsci/40.10.538] [PMID: 12515356]
[40]
Sherma, J. Chromatographic Methods of Analysis: Thin Layer Chromatography. In: Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Ed.; Informa Healthcare, 2007; pp. 538-550.
[41]
Spangenberg, B.; Poole, C.F.; Weins, C. The Stationary Phase in Thin-Layer Chromatography. In: Quantitative Thin-Layer Chromatography; Springer: Verlag Berlin, Heidelberg, 2011; pp. 53-79.
[42]
Lu, J.; Ma, H.; Zhang, W.; Ma, Z.; Yao, S. Separation of berberine hydrochloride and tetrahydropalmatine and their quantitative analysis with thin layer chromatography involved with ionic liquids. J. Anal. Methods Chem., 2015, 2015642401
[http://dx.doi.org/10.1155/2015/642401] [PMID: 26609463]
[43]
Jain, A.; Parashar, A.K.; Nema, R.K.; Narsinghani, T. High performance thin layer chromatography (hptlc): A modern analytical tool for chemical analysis. Curr. Res. Pharm. Sci., 2014, 4(1), 8-14.
[44]
Scott, R.P.W. Chromatography: Liquid. Mechanisms: Normal Phase. In: Encyclopedia of Separation Science; Elsevier: Amsterdam, 2000; pp. 706-711.
[http://dx.doi.org/10.1016/B0-12-226770-2/00301-X]
[45]
Robards, K.; Haddad, P.R.; Jackson, P.E. High-Performance Liquid Chromatography – Separations. In: Principles and Practice of Modern Chromatographic Methods; Elsevier, 2004; pp. 305-380.
[http://dx.doi.org/10.1016/B978-0-08-057178-2.50009-1]
[46]
Del Bubba, M.; Checchini, L.; Lepri, L. Thin-layer chromatography enantioseparations on chiral stationary phases: a review. Anal. Bioanal. Chem., 2013, 405(2-3), 533-554.
[http://dx.doi.org/10.1007/s00216-012-6514-5] [PMID: 23161065]
[47]
Fan, W.; Yue, Y.; Tang, F.; Cao, H. Use of HPTLC for simultaneous determination of three fungicides in tomatoes. J. Planar Chromatogr. Mod. TLC, 2007, 20(6), 419-421.
[http://dx.doi.org/10.1556/JPC.20.2007.6.5]
[48]
Rezk, M.R.; Abd El-Aleem, A.E-A.B.; Khalile, S.M.; El-Naggar, O.K. Thin-layer chromatography fractionation and densitometric determi-nation of residues of diazinon and chlorpyrifos pesticides in lavender and rosemary leaves. J. Planar Chromatogr. Mod. TLC, 2018, 31(3), 243-249.
[http://dx.doi.org/10.1556/1006.2018.31.3.10]
[49]
Dzido, T.H. Modern TLC chambers. In: Planar Chromatography.; A Retrospective View for the Third Millennium; Nyiredy, Sz., Ed.; Springer: Budapest, 2001; pp. 68-87.
[50]
Poole, C.F. Solvent Selection and Method Development. In: Instrumental Thin-Layer Chromatography; Elsevier: Amsterdam, 2015; pp. 313-350.
[http://dx.doi.org/10.1016/B978-0-12-417223-4.00012-1]
[51]
Poole, C.F.; Dias, N.C. Practitioner’s guide to method development in thin-layer chromatography. J. Chromatogr. A, 2000, 892(1-2), 123-142.
[http://dx.doi.org/10.1016/S0021-9673(00)00162-X] [PMID: 11045484]
[52]
Grillini, P.M. Thin-layer chromatography. In: Modern Instrumental Analysis; Ahuja, S.; Jespersen, N., Eds.; Comprehensive Analytical Chemistry, 2006; Vol. 47, pp. 413-442.
[http://dx.doi.org/10.1016/S0166-526X(06)47013-6]
[53]
Mohamed, F.A.; Ali, M.F.B.; Rageh, A.H.; Mostafa, A.M. A highly sensitive HPTLC method for estimation of oxcarbazepine in two binary mixtures with two metabolically related antiepileptic drugs: Application to pharmaceutical and biological samples. Microchem. J., 2019, 146, 414-422.
[http://dx.doi.org/10.1016/j.microc.2019.01.031]
[54]
Liu, Y.; Brettell, T.A.; Victoria, J.; Wood, M.R.; Staretz, M.E. High performance thin-layer chromatography (HPTLC) analysis of canna-binoids in cannabis extracts. Forensic Chem., 2020, 19100249
[http://dx.doi.org/10.1016/j.forc.2020.100249]
[55]
Sherma, J. Planar chromatography. Anal. Chem., 2008, 80(12), 4253-4267.
[http://dx.doi.org/10.1021/ac7023415]
[56]
Nyiredy, S. Thin Layer Chromatographyin Phytochemistry. Chromatographia, 2006, 64, 11-12.
[57]
Snyder, L.R. Classification of the solvent properties of common liquids. J. Chromatogr. Sci., 1978, 16(6), 223-234.
[http://dx.doi.org/10.1093/chromsci/16.6.223]
[58]
Nyiredy, S. Essential guide to method development. In: Thin-Layer (Planar) Chromatograph; Academic Press: Budakalas, Hungary, 2006; pp. 4652-4666.
[59]
Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, 1997.
[60]
Sabaté, L.G.; Tomás, X. Optimization of the mobile phase in TLC by the simplex method. Part 1: Mixtures of solvents. J. High Resolut. Chromatogr., 1984, 7(2), 104-106.
[http://dx.doi.org/10.1002/jhrc.1240070212]
[61]
Nurok, D. Strategies for optimizing the mobile phase in planar chromatography. Chem. Rev., 1989, 89(2), 363-375.
[http://dx.doi.org/10.1021/cr00092a007]
[62]
Nyiredy, S. Planar chromatographic method development using the PRISMA optimization system and flow charts. J. Chromatogr. Sci., 2002, 40(10), 553-563.
[http://dx.doi.org/10.1093/chromsci/40.10.553] [PMID: 12515358]
[63]
Nyiredy, S.; Szűcs, Z.; Szepesy, L. Stationary phase optimized selectivity liquid chromatography: Basic possibilities of serially connected columns using the “PRISMA” principle. J. Chromatogr. A, 2007, 1157(1-2), 122-130.
[http://dx.doi.org/10.1016/j.chroma.2007.04.041] [PMID: 17498720]
[64]
Nyiredy, S. Planar chromatography. In: Chromatography-Fundamentals and applications of chromatography and related differential mi-gration methods, 6th ed; Heftmann, E., Ed.; Elsevier: Amsterdam, 2004; Vol. 69, pp. 253-296.
[65]
Choukaife, A.E.; Aljerf, L. A novel method to chromatographically resolution of sulphonamides by vapour-programmed thin-layer chro-matography. MOJ Biorg. Org. Chem., 2017, 1(4), 131-134.
[66]
Raj, D. Thin-layer chromatography with eutectic mobile phases—preliminary results. J. Chromatogr. A, 2020, 1621461044
[http://dx.doi.org/10.1016/j.chroma.2020.461044] [PMID: 32273090]
[67]
Nareshkumar, B.; Sangnalmath, P.U.; Gayatridevi, S.; Sreeramulu, K. A simple method for the separation and detection of trace levels of buprofezin, flubendiamide and imidacloprid by NP-HPTLC and RP-HPTLC. Curr. Sci., 2018, 115(5), 895-903.
[http://dx.doi.org/10.18520/cs/v115/i5/895-903]
[68]
Ar, J.; Fakhari, H.; Modaresi, M.; Shayeghi, M.; Mohammad, A. The amount of dursban pesticide residues in Isfahan sugar beet. Proc Environ. Sci., 2011, 8, 235-239.
[69]
Bammanahalli, S.; Sanganalmath, P. Rapid Detection of Pesticides of Forensic Importance by HPTLC. HPTLC 2017. In: International Symposium for High Performance Thin Layer Chromatography; Berlin, Germany, 2017; pp. 4-8.https://www.hptlc.com/version-2017/Book-of-abstracts-HPTLC-2017.pdf
[70]
Makadiya, J.; Pandey, A. Detection of pesticides in buffalo milk collected from different areas of gandhinagar and ahmedabad by thin layer chromatography. Int. J. Chemtech Res., 2017, 10, 231-238.
[71]
Saenmanot, S.; Insung, A.; Pumnuan, J.; Tawatsin, A.; Thavara, U.; Phumee, A.; Gay, F.; Tachaboonyakiat, W.; Siriyasatien, P. Insecticidal activity of thai botanical extracts against development stages of german cockroach.; Blattella germanica (L.) (Orthoptera: Blattellidae). SE Asian J. Trop. Med. Public Health, 2018, 49, 46-59.
[72]
Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R. Development method of high-performance thin-layer chromatographic detection of synthetic organophosphate insecticide profenofos in visceral samples. JPC-J. Planar. Chromat., 2020, 33, 203-206.
[73]
Hegazy, A.M.; Abdelfatah, R.M.; Mahmoud, H.M.; Elsayed, M.A. Development and validation of two robust simple chromatographic methods for estimation of tomatoes specific pesticides’ residues for safety monitoring prior to food processing line and evaluation of lo-cal samples. Food Chem., 2020, 306125640
[http://dx.doi.org/10.1016/j.foodchem.2019.125640] [PMID: 31606625]
[74]
Akkad, R.; Schwack, W. Determination of organophosphorus and carbamate insecticides in fresh fruits and vegetables by high-performance thin-layer chromatography-multienzyme inhibition assay. J. AOAC Int., 2012, 95(5), 1371-1377.
[http://dx.doi.org/10.5740/jaoacint.SGE_Akkad] [PMID: 23175968]
[75]
Deshpande, D.; Gadmale, D.; Bakre, S.; Srivastava, A.K. High-performance thin-layer chromatographic method for the determination of chlorpyrifos and its metabolite in visceral samples. JPC – J. Planar. Chromat., 2016, 29(6), 429-434.
[76]
Sharma, K.K. Determination of active ingredient in synthetic pyrethroid formulations by high-performance thin-layer chromatog-raphy/densitometry. J. AOAC Int., 2002, 85(6), 1420-1424.
[http://dx.doi.org/10.1093/jaoac/85.6.1420] [PMID: 12477208]
[77]
Jalalizand, A.R. Determination of deltamethrin residue in imported sugar beet to the isfahan sugar factory. J. Chem. Pharm. Res., 2013, 8(6), 360-363.
[78]
Patil, K.P.; Patil, A.S.; Patil, A.B.; Kulkarni, P.M.; Chandegaonkar, V.R.; More, B.P. A new chromogenic spray reagent for the detection and identification of 2.;4-dichlorophenol.; an intermediate of 2.;4-D herbicide in biological material by high-performance thin-layer chro-matography. J. Planar Chromatogr. Mod. TLC, 2019, 32(5), 431-434.
[http://dx.doi.org/10.1556/1006.2019.32.5.11]
[79]
Kulkarni, U.K.; Kulkarni, K.V.; Pardeshi, R.K.; Mane, D.V. High-performance thin-layer chromatographic detection of endosulfan from biological samples. J. Planar Chromatogr. Mod. TLC, 2016, 29(5), 391-393.
[http://dx.doi.org/10.1556/1006.2016.29.5.11]
[80]
Ge, S.; Tang, F.; Yue, Y.; Hua, R.; Zhang, R. HPTLC determination of pyrethroid residues in vegetables. J. Planar Chromatogr. Mod. TLC, 2004, 17(5), 365-368.
[http://dx.doi.org/10.1556/JPC.17.2004.5.8]
[81]
Cao, H.; Yue, Y.; Hua, R.; Tang, F.; Zhang, R.; Fan, W.; Chen, H.; Hua, Y. HPTLC determination of imidacloprid, fenitrothion and parathi-on in Chinese cabbage. J. Planar Chromatogr. Mod. TLC, 2005, 18(102), 151-154.
[http://dx.doi.org/10.1556/JPC.18.2005.2.11]
[82]
More, P.V.; Chandegaonkar, V.R.; Gosavi, N.R.; More, B.P.; Kulkarni, K.V. A new chromogenic spray reagent for detection and identifica-tion of indoxacarb in visceral material by HPTLC. Int. J. Appl. Biol. Pharm. Technol., 2019, 10, 3-7.
[83]
Martel, A.C.; Porthault, M. Pesticide residues in raspberries and lettuce: extraction and comparison of three chromatographic methods: HPLC. HPTLC and GC. J. Liq. Chromatogr. Relat. Technol., 2000, 23(19), 3043-3058.
[http://dx.doi.org/10.1081/JLC-100101842]
[84]
Muszy_nska, B.; Ma_slanka, A.; Sułkowska-Ziaja, K.; Opoka, W.; Szopa, A. Analysis of 5-methyltryptamine.; L-tryptophan.; 5-hydroxy-L-tryptophan.; and melatonin in the bulbs of garlic by thin-layer chromatographic method coupled with densitometric detection. JPC – J. Planar Chromat., 2014, 27, 210-216.
[http://dx.doi.org/10.1556/JPC.27.2014.3.11]
[85]
Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K.; Farooqui, M.; Shinde, D.B. New chromogenic reagent for high-performance thin-layer chromatographic detection of organophosphorus insecticide monocrotophos in biological materials. J. Planar Chromatogr. Mod. TLC, 2019, 32(1), 61-64.
[http://dx.doi.org/10.1556/1006.2019.32.1.10]
[86]
Yue, Y.; Zhang, R.; Fan, W.; Tang, F. High-performance thin-layer chromatographic analysis of selected organophosphorous pesticide residues in tea. J. AOAC Int., 2008, 91(5), 1210-1217.
[http://dx.doi.org/10.1093/jaoac/91.5.1210] [PMID: 18980143]
[87]
Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K.; Shinde, D.B. Use of cupric ferrocyanide reagent for the thin-layer chromato-graphic detection of organophosphate insecticide profenophos. J. Planar Chromatogr. Mod. TLC, 2018, 31(5), 405-407.
[http://dx.doi.org/10.1556/1006.2018.31.5.9]
[88]
Sanganalmath, P.U.; Bharath, N.; Sreeramulu, K. Normal- and reversed-phase thin-layer chromatography of three structurally related or-ganophosphorus pesticides of forensic importance. J. Planar Chromatogr. Mod. TLC, 2017, 30(3), 154-163.
[http://dx.doi.org/10.1556/1006.2017.30.3.1]
[89]
[90]
Renger, B.; Végh, Z.; Ferenczi-Fodor, K. Validation of thin layer and high performance thin layer chromatographic methods. J. Chromatogr. A, 2011, 1218(19), 2712-2721.
[http://dx.doi.org/10.1016/j.chroma.2011.01.059] [PMID: 21329932]
[91]
Pieniak, A.; Sajewicz, M.; Kaczmarski, K.; Kowalska, T. The initial stage of the development of planar chromatograms. J. Planar Chromatogr. Mod. TLC, 2005, 18(101), 13-18.
[http://dx.doi.org/10.1556/JPC.18.2005.1.2]
[92]
Omori, T. Modern sample application methods. In: Planar Chromatography: A Retrospective View for the Third Millennium; Nyiredy, Sz., Ed.; Springer: Budapest, 2001; pp. 120-136.
[93]
Bernard-Savary, P.; Poole, C.F. Instrument platforms for thin-layer chromatography. J. Chromatogr. A, 2015, 1421, 184-202.
[http://dx.doi.org/10.1016/j.chroma.2015.08.002] [PMID: 26260842]
[94]
Costanzo, S.J. High performance thin layer chromatography. J. Chem. Educ., 1984, 61(11), 1015-1018.
[http://dx.doi.org/10.1021/ed061p1015]
[95]
Maboundou, C.W.; Grosse, P.Y.; Delvordre, P.; Vermerie, N. Qualitative and quantitative evaluation of a new and economical thin-layer chromatography manual multi applicator. JPC – J Planar Chromat., 1999, 12, 373-377.
[96]
NIKYANG. The system Camag Nanomat and Capillary Dispensor. Available from: http://www.kobis.si/material/Nanomat4brochure.pdf
[97]
Kavrakovski, Z.S.; Rafajlovska, V.G. Development and validation of thin layer chromatography method for simultaneous determination of seven chlorophenoxy and benzoic acid herbicides in water. J. Anal. Chem., 2015, 70(8), 995-1000.
[http://dx.doi.org/10.1134/S1061934815080122]
[98]
Chandra, P.; Rathore, A.S.; Sathiyanarayanan, L.; Mahadik, K.R. Application of high-performance thin-layer chromatographic method for the simultaneous determination of Lamivudine and tenofovir disoproxil fumarate in pharmaceutical dosage form. J. Chil. Chem. Soc., 2011, 56(2), 702-705.
[http://dx.doi.org/10.4067/S0717-97072011000200017]
[99]
Abdelfatah, R.M.; Hegazy, A.M.; Mahmoud, H.M.; Elsayed, M.A. Two chromatographic methods for the quantitative determination of some pesticides applied for cucumber pests in Egypt. Separ. Sci. Plus, 2018, 1(5), 334-342.
[http://dx.doi.org/10.1002/sscp.201800012]
[100]
Skowron, M.; Zakrzewski, R.; Ciesielski, W. Application of image analysis technique for the determination of thiophanate methyl by thin-layer chromatography. Int. J. Environ. Anal. Chem., 2018, 98(3), 286-294.
[http://dx.doi.org/10.1080/03067319.2018.1435782]
[101]
Patel, R.B.; Patel, M.R.; Bhatt, K.K.; Patel, B.G. Development and validation of a HPTLC method for estimation of Carbamazepine in for-mulations and is in vitro release study. Chromatogr. Res. Int., 2011, 2011, 1-8.
[http://dx.doi.org/10.4061/2011/684369]
[102]
Leiva, B.; Monzon, M.; Monzon, O. Quantification of Cypermethrin in Shampoo by HPTLC. In: International Symposium for High Per-formance Thin Layer Chromatography; Berlin, Germany, 2017; pp. 4-8.
[103]
Jain, R.; Garg, V. Degradation of monocrotophos in soil, microbial versus enzymatic method. J. Environ. Occup. Sci., 2015, 4(1), 44.
[http://dx.doi.org/10.5455/jeos.20141214124733]
[104]
CAMAG® Automatic TLC Sampler 4 (ATS 4). Available from:https://www.camag.com/product/camag-automatic-tlc-sampler-4-ats-4 (Accessed on: December 21, 2021).
[105]
[106]
Tuzimski, T. Determination of pesticides in water samples from the Wieprz-krzna Canal in the Leczyńsko-Włodawskie Lake District of southeastern Poland by thin-layer chromatography with diode array scanning and high-performance column liquid chromatography with diode array detection. J. AOAC Int., 2008, 91(5), 1203-1209.
[http://dx.doi.org/10.1093/jaoac/91.5.1203] [PMID: 18980142]
[107]
Affonso, R.S.; Lima, J.A.; Lessa, B.M.; Caetano, J.V.O.; Obara, M.T.; Nóbrega, A.B.; Nepovimova, E.; Musilek, K.; Kuca, K.; Slana, G.B.C.A.; França, T.C.C. Quantification through TLC-densitometric analysis, repellency and anticholinesterase activity of the homemade extract of Indian cloves. Biomed. Chromatogr., 2018, 32(2)e4096
[http://dx.doi.org/10.1002/bmc.4096] [PMID: 28913959]
[108]
Esters, V.; Angenot, L.; Brandt, V.; Frédérich, M.; Tits, M.; Nerum, C.V.; Wauters, J.N.; Hubert, P. Validation of a high-performance thin-layer chromatography/densitometry method for the quantitative determination of glucosamine in a herbal dietary supplement. J. Chromatogr. A, 2006, 1112(1-2), 156-164.
[http://dx.doi.org/10.1016/j.chroma.2006.01.035] [PMID: 16472532]
[109]
Quantachrome. Gas Pycnometers. 2014. Available from: http://dlu.com.ua/Files/ProductLine/Brochure_Linomat_5_EN_2014.pdf
[110]
Camag. The Instrumental thin-layer chromatography.; Catalogue 2010/11. Switzerland. 2010/11. Available from: http://www.camag.com/downloads/free/brochures/CAMAG TLC10-11 E.pdf
[111]
Kulkarni, U.K.; Kulkarni, K.V.; Pardeshi, R.K.; Mane, D.V. Specific spray reagent for the identification and detection of carbaryl in bio-logical materials. J. Planar Chromatogr. Mod. TLC, 2016, 29(3), 227-228.
[http://dx.doi.org/10.1556/1006.2016.29.3.10]
[112]
Patel, R.B.; Patel, M.R.; Batel, B.G. Experimental Aspects and Implementation of HPTLC. In: High-Performance Thin-Layer Chromatography (HPTLC); Srivastava, M.M. Springer: Verlag Berlin, Heidelberg, 2011; pp. 41-54.
[http://dx.doi.org/10.1007/978-3-642-14025-9_3]
[113]
Nyiredy, S. Planer Chromatography. In: fundamentals and applications of chromatography and related differential migration methods; part A: fundamentals and techniques; Heftmann, E., Ed.; Elsevier: Amsterdam, 1992; 51A, pp. 109-150.
[114]
Braithwaite, A.; Smith, F.J. Planar chromatography. In: Chromatographic Methods; Springer: Dordrecht, 1999; pp. 44-116.
[http://dx.doi.org/10.1007/978-94-011-0599-6_3]
[115]
Cieśla, Ł.; Waksmundzka-Hajnos, M. Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites. J. Chromatogr. A, 2009, 1216(7), 1035-1052.
[http://dx.doi.org/10.1016/j.chroma.2008.12.057] [PMID: 19144342]
[116]
Matysik, G.; Soczewiński, E. Stepwise gradient development in thin-layer chromatography. J. Chromatogr. A, 1986, 369, 19-25.
[http://dx.doi.org/10.1016/S0021-9673(00)90095-5]
[117]
Poole, C.F. Planar chromatography at the turn of the century. J. Chromatogr. A, 1999, 856(1-2), 399-427.
[http://dx.doi.org/10.1016/S0021-9673(99)00430-6] [PMID: 10526797]
[118]
Nyiredy, S. Progress in forced-flow planar chromatography. J. Chromatogr. A, 2003, 1000(1-2), 985-999.
[http://dx.doi.org/10.1016/S0021-9673(03)00308-X] [PMID: 12877209]
[119]
Aboul Ela, M.A.; Hammoda, H.M.; Zaki, C.S.; El-Lakany, A.M.; Ghazy, N.M.; Omar, H.G. Studies on Artemisia monosperma. Part II. HPTLC study and biological activity. Alex. J. Pharm. Sci., 2008, 22, 107-110.
[120]
Milošević, N.; Janjić, N.; Milić, N.; Milanović, M.; Popović, J.; Antonović, D. Pharmacokinetics and toxicity predictors of new s-triazines, herbicide candidates, in correlation with chromatogrpahic retention constants. J. Agric. Food Chem., 2014, 62(34), 8579-8585.
[http://dx.doi.org/10.1021/jf502405k] [PMID: 25093448]
[121]
Poole, C.F.; Poole, S.K. Multidimensionality in planar chromatography. J. Chromatogr. A, 1995, 703(1-2), 573-612.
[http://dx.doi.org/10.1016/0021-9673(94)01286-N]
[122]
Petruczynik, A.; Karczmarz, A.; Waksmundzka-Hajnos, M. Effect of multiple development techniques on the chromatographic parameters and separation selectivity of some alkaloids on C18 and CN-silica layers. J. Planar Chromatogr. Mod. TLC, 2014, 27(5), 333-339.
[http://dx.doi.org/10.1556/JPC.27.2014.5.2]
[123]
Poole, C.F. Thin-layer chromatography: challenges and opportunities. J. Chromatogr. A, 2003, 1000(1-2), 963-984.
[http://dx.doi.org/10.1016/S0021-9673(03)00435-7] [PMID: 12877208]
[124]
Membrado, L.; Vicente, L.C.; Jarne, C.; Garriga, R.; Bernard-Savary, P.; Vela, J. Automated multiple development. In: Instrumental Thin-Layer Chromatography; Poole, C.F., Ed.; Elsevier: Amsterdam, 2015; pp. 73-105.
[http://dx.doi.org/10.1016/B978-0-12-417223-4.00004-2]
[126]
Tuzimski, T.; Sherma, J. Thin‐Layer Chromatography. In: Encyclopedia of Analytical Chemistry: Applications.; Theory and Instrumenta-tion; Meyers, R.A., Ed.; John Wiley and Sons, Ltd., 2006; pp. 1-26.
[129]
Tyihak, E.; Mincsovics, E. Over pressured-layer chromatography (optimum performance laminar chromatography) (OPLC). In: Planar Chromatography: A Retrospective View for the Third Millennium; Nyiredy, Sz., Ed.; Springer, Scientific Publishers: Budapest, Hungary, 2001; pp. 137-176.
[130]
Mincsovics, E.; Moricz, A.M.; Tyihak, E. Forced-flow development in over pressured layer chromatography. In: Instrumental Thin-Layer Chromatography; Poole, C.F., Ed.; Elsevier: Amsterdam, 2015; pp. 107-133.
[http://dx.doi.org/10.1016/B978-0-12-417223-4.00005-4]
[131]
Tyihák, E.; Mincsovics, E.; Móricz, Á.M. Overpressured layer chromatography: From the pressurized ultramicro chamber to BioArena system. J. Chromatogr. A, 2012, 1232, 3-18.
[http://dx.doi.org/10.1016/j.chroma.2011.11.049] [PMID: 22186489]
[132]
Grysinska, H.; Slasak, P.; Torbiez, A.; Sajewicz, M.; Dzido, T.H. A modified device for pressurized planar electro chromatography and preliminary results with online sample application. Chromatographia, 2013, 76, 1271-1279.
[http://dx.doi.org/10.1007/s10337-013-2430-x] [PMID: 24078740]
[133]
Nyiredy, S. The bridge between TLC and HPLC: overpressured layer chromatography (OPLC). Trends Analyt. Chem., 2001, 20(2), 91-101.
[http://dx.doi.org/10.1016/S0165-9936(00)00047-9]
[134]
Kalasz, H.; Bathori, H.M.; Valko, K.L. Basis and pharmaceutical applications of thin-layer chromatography. In: Separation Methods in Drug Synthesis and Purification (Handbook of Analytical Separations); Elsevier: Amsterdam, 2020; Vol. 8, pp. 523-585.
[http://dx.doi.org/10.1016/B978-0-444-64070-3.00010-2]
[135]
Markowski, W.; Wrobiewski, K.; Dzido, T.H. Stepwise gradient elution in RP-HPTLC with a new horizontal development chamber. J. Planar Chromat., 2012, 25, 2000-2007.
[136]
Ranjane, P.N.; Gandhi, S.V.; Kadukar, S.S.; Bothara, K.G. HPTLC determination of cefuroxime axetil and ornidazole in combined tablet dosage form. J. Chromatogr. Sci., 2010, 48(1), 26-28.
[http://dx.doi.org/10.1093/chromsci/48.1.26] [PMID: 20056032]
[137]
El Haddad, D.; Bitam, I.; Bouchenak, O.; Toubal, S.; Yahiaoui, K.; Arab, K.; Boumaza, S. Acaricidal activity of flavonoids extract of Borago officinalis L. (Boraginaceae) against brown dog tick, Rhipicephalus sanguineus (Latreille, 1806). Trop. Biomed., 2018, 35(2), 383-391.
[PMID: 33601812]
[138]
Giacinti, G.; Raynaud, C.; Capblancq, S.; Simon, V. Evaluation and prevention of the negative matrix effect of terpenoids on pesticides in apples quantification by gas chromatography–tandem mass spectrometry. J. Chromatogr. A, 2017, 1483, 8-19.
[http://dx.doi.org/10.1016/j.chroma.2016.12.056] [PMID: 28069166]
[139]
Reich, E. Thin-Layer Chromatography (Instrumentation). In: Reference Module in Chemistry., Molecular Sciences and Chemical Engineer-ing; Elsevier: Amsterdam, 2013; pp. 1-9.
[140]
Matsuo, N. Discovery and development of pyrethroid insecticides. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2019, 95(7), 378-400.
[http://dx.doi.org/10.2183/pjab.95.027] [PMID: 31406060]
[141]
Patel, B.H.; Suhagia, B.N.; Patel, M.M.; Patel, J.R. HPTLC determination of rabeprazole and domperidone in capsules and its validation. J. Chromatogr. Sci., 2008, 46(4), 304-307.
[http://dx.doi.org/10.1093/chromsci/46.4.304] [PMID: 18402720]
[142]
Mgbeahuruike, E.E.; Vuorela, H.; Yrjönen, T.; Holm, Y. Optimization of thin-layer chromatography and high-performance liquid chromatographic method for Piper guineense extracts. Nat. Prod. Commun., 2018, 13(1), 1934578X1801300.
[http://dx.doi.org/10.1177/1934578X1801300109]
[143]
CAMAG®. HPTLC Vario System. Available from: https://www. camag.com/product/camag-hptlc-vario-system
[144]
Skorupa, A.; Gierak, A. Detection and visualization methods used in thin-layer chromatography. JPC-J. Planar Chromat., 2011, 24(4), 274-280.
[145]
Wall, P.E. Sorbents and TLC Layer. In: Thin-layer chromatography: a modern practical approach; Wall, P.E., Ed.; Royal Society of Chemistry: Cambridge, 2005; pp. 6-58.
[146]
Sherma, J. Modern thin-layer chromatography. J. AOAC Int., 2008, 91(5), 1142-1144.
[http://dx.doi.org/10.1093/jaoac/91.5.1142] [PMID: 18980131]
[147]
Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed; Springer-Verlag: Berlin, 1996.
[http://dx.doi.org/10.1007/978-3-642-00574-9]
[148]
Agatonovic-Kustrin, S.; Morton, D.W. HPTLC – Bioautographic methods for selective detection of the antioxidant and a-amylase inhibito-ry activity in plant extracts. MethodsX, 2018, 5, 797-802.
[http://dx.doi.org/10.1016/j.mex.2018.07.013] [PMID: 30101083]
[149]
Dołowy, M.; Pyka, A. Chromatographic methods in the separation of long-chain mono- and polyunsaturated fatty acids. J. Chem., 2015, 2015, 1-20.
[http://dx.doi.org/10.1155/2015/120830]
[150]
Chan, W.J.J.; McLachlan, A.J.; Wheate, N.J.; Harnett, J.E. An evaluation of garlic products available in Australian pharmacies–From the label to the laboratory. J. Herb. Med., 2018, 14, 61-67.
[http://dx.doi.org/10.1016/j.hermed.2018.09.004]
[151]
Adelowo, F.E.; Olu-Arotiowa, O.A.; Amuda, O.S. Biodegradation of glyphosate by fungal species. Adv. Biosci. Bioeng. (N. Y.), 2014, 2, 104-118.
[152]
Kapanadze, A.L.; Beklemishev, M.K.; Dolmanova, I.F. Determination of phosphorus-containing pesticides by the catalytic method on thin-layer chromatography plates. J. Anal. Chem., 1999, 54(11), 1047-1052.
[153]
Elsirafy, A.A.; Ghanem, A.A.; Eid, A.E.; Eldakroory, S.A. Chronological study of diazinon in putrefied viscera of rats using GC/MS, GC/EC and TLC. Forensic Sci. Int., 2000, 109(2), 147-157.
[http://dx.doi.org/10.1016/S0379-0738(00)00143-2] [PMID: 10704817]
[154]
Mavle, R.; Katkar, H.; Daundkar, B.; Malve, M.; Krishnamurthy, R. Thin layer chromatographic technique for detection and identification of endosulfan insecticide with m-dinitrobenzene reagent. J. Planar Chromatogr. Mod. TLC, 2008, 21(3), 197-198.
[http://dx.doi.org/10.1556/JPC.21.2008.3.8]
[155]
Sherma, J. Thin layer chromatography of pesticides-a review of recent techniques and applications. J. Liq. Chromatogr., 1982, 5(6), 1013-1032.
[http://dx.doi.org/10.1080/01483918208067565]
[156]
Móricz, Á.M.; Lapat, V.; Morlock, G.E.; Ott, P.G. High-performance thin-layer chromatography hyphenated to high-performance liquid chromatography-diode array detection-mass spectrometry for characterization of coeluting isomers. Talanta, 2020, 219121306
[http://dx.doi.org/10.1016/j.talanta.2020.121306] [PMID: 32887047]
[157]
Somsen, G.W.; Morden, W.; Wilson, I.D. Planar chromatography coupled with spectroscopic techniques. J. Chromatogr. A, 1995, 703(1-2), 613-665.
[http://dx.doi.org/10.1016/0021-9673(95)00296-Y]
[158]
Khatoon, S.; Irshad, S.; Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. A validated HPTLC densitometric method for determination of lupeol, β-sitosterol and rotenone in Tephrosia purpurea: A seasonal study. J. Chromatogr. Sci., 2019, 57(8), 688-696.
[http://dx.doi.org/10.1093/chromsci/bmz041] [PMID: 31251318]
[159]
Kulkarni, K.; Kulkarni, K.V.; Mane, D.V.; Pardeshi, R.K. New chromogenic spray reagent for detection of acephate from biological mate-rial. Int. J. Invent. Eng. Sci., 2015, 3(4), 1-2.
[160]
Mulani, K.B.; Kamble, B.M.; Chandegaonkar, V.R.; Deshpande, H.A. Chromogenic spray reagent for the detection and identification of amitraz in biological materials. J. Planar Chromatogr. Mod. TLC, 2019, 32(1), 51-53.
[http://dx.doi.org/10.1556/1006.2019.32.1.7]
[161]
Kulkarni, U.K.; Kulkarni, K.V.; Pardeshi, R.K.; Mane, D.V. A new chromogenic reagent for carbamate insecticides. J. Planar Chromatogr. Mod. TLC, 2016, 29(6), 477-479.
[http://dx.doi.org/10.1556/1006.2016.29.6.12]
[162]
Pathan, A.M.; Baseer, M.A.; Junne, S.B. Hydralazine: A novel chromogenic spray reagent for thin-layer chromatographic analysis of α-cyano ester pyrethroids. J. Planar Chromatogr. Mod. TLC, 2017, 30(4), 271-274.
[http://dx.doi.org/10.1556/1006.2017.30.4.6]
[163]
Kulkarni, K.V.; Shinde, D.B.; Mane, D.V.; Toche, R.B.; Garad, M.V. A new chromogenic spray reagent for detection and identification of carbosulfan. J. Planar Chromat., 2010, 23(5), 133-135.
[164]
Chandegaonkar, V.; Mane, D.; Shinde, D. Thin-layer chromatographic detection of selected pyrethroids with p -benzoquinone reagent. J. Planar Chromatogr. Mod. TLC, 2010, 23(5), 332-334.
[http://dx.doi.org/10.1556/JPC.23.2010.5.5]
[165]
Chandegaonkar, R.; Sangshetti, J.N.; Shinde, D.B.; Mane, D.V. A new chromogenic spray reagent for the detection and identification of dichlorvos. Int. J. Chem., 2014, 3(4), 388-390.
[166]
Daundkar, B.; Mavle, R.; Malve, M.; Krishnamurthy, R. Spectrophotometric and TLC detection reagent for the insecticides dichlorvos (DDVP) and diptrex (Trichlorfon), and their metabolites, in biological tissues. J. Planar Chromatogr. Mod. TLC, 2007, 20(3), 217-219.
[http://dx.doi.org/10.1556/JPC.20.2007.3.9]
[167]
Mohammad, A.; Moheman, A. A new spray reagent for selective detection and quantification of dichlorvos in bluish tinged maize grains by TLC-spectrophotometry. J. Planar Chromatogr. Mod. TLC, 2011, 24(2), 113-115.
[http://dx.doi.org/10.1556/JPC.24.2011.2.5]
[168]
Hussain, M.; Aftab, K.; Iqbal, M.; Ali, S.; Rizwan, M.; Alkahtani, S.; Abdel-Daim, M.M. Determination of pesticide residue in brinjal sam-ple using HPTLC and developing a cost-effective method alternative to HPLC. J. Chem., 2020, 20208180320
[http://dx.doi.org/10.1155/2020/8180320]
[169]
Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K.; Farooqui, M.; Shinde, D.B. Use of diphenylamine reagent for high-performance thin-layer chromatographic detection of organochloro insecticide endosulfan in biological samples. J. Planar Chromatogr. Mod. TLC, 2019, 32(1), 65-68.
[http://dx.doi.org/10.1556/1006.2019.32.1.11]
[170]
Pawar, U.D.; Pawar, C.D.; Mavle, R.R.; Pardeshi, R.K. Development of a new chromogenic reagent for the detection of organophosphorus herbicide glyphosate in biological samples. J. J. Planar Chromatogr. Mod. TLC, 2019, 32(5), 435-437.
[http://dx.doi.org/10.1556/1006.2019.32.5.12]
[171]
Chandegaonkar, V.; Shinde, D.; Mane, D. Thin-layer chromatographic detection and identification of the insecticide imidacloprid in bio-logical materials. J. Planar Chromatogr. Mod. TLC, 2009, 22(6), 459-460.
[http://dx.doi.org/10.1556/JPC.22.2009.6.15]
[172]
Pathan, A.M.; Baseer, M.A.; Junne, S.B. Application of an organometallic reagent sodium nitroprusside for the detection of organophos-phate insecticide monocrotophos. J. Planar Chromatogr. Mod. TLC, 2017, 30(3), 216-218.
[http://dx.doi.org/10.1556/1006.2017.30.3.11]
[173]
Chandegaonkar, R.; Shinde, D.B.; Mane, D.V. A new chromogenic spray reagent for detection and identification of monocrotophos. J. Planar Chromatogr., 2008, 21(3), 199-200.
[174]
Pawar, U.D.; Pawar, C.D.; Dhobal, B.S.; Pardeshi, R.K. New chromogenic spray reagent for TLC detection and identification of organo-phosphrous insecticide monocrotophos in biological material. Chem. J., 2020, 6, 5-8.
[175]
Patil, A.S.; Patil, K.P.; Patil, A.B.; Kulkarni, P.M.; Chandegaonkar, V.R.; More, B.P.; Mane, D.V. A new chromogenic spray reagent for the detection and identification of oxyfluorfen herbicide in biological material by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC, 2019, 32(1), 69-71.
[http://dx.doi.org/10.1556/1006.2019.32.1.12]
[176]
Pothier, J.; Galand, N. Automated multiple development thin-layer chromatography for separation of opiate alkaloids and derivatives. J. Chromatogr. A, 2005, 1080(2), 186-191.
[http://dx.doi.org/10.1016/j.chroma.2005.05.023] [PMID: 16008057]
[177]
CAMAG®. AMD 2 System Automated Multiple Development. Available from: https://www.camag.com/product/camag-amd-2-system-automated-multiple-development
[178]
Jarne, C.; Cebolla, V.L.; Membrado, L.; Le Mapihan, K.; Giusti, P. High-performance thin-layer chromatography using automated multiple development for the separation of heavy petroleum products according to their number of aromatic rings. Energy Fuels, 2011, 25(10), 4586-4594.
[http://dx.doi.org/10.1021/ef200940g]
[179]
Cebolla, V.L.; Jarne, C.; Domingo, P.; Domínguez, A.; Delgado-Camón, A.; Garriga, R.; Galbán, J.; Membrado, L.; Gálvez, E.M.; Cossío, F.P. Fluorescence detection by intensity changes for high-performance thin-layer chromatography separation of lipids using automated multiple development. J. Chromatogr. A, 2011, 1218(19), 2668-2675.
[http://dx.doi.org/10.1016/j.chroma.2010.11.033] [PMID: 21145556]
[180]
Wippo, U. Conversion of a gradient from an AMD1 to an AMD2 system. Camag Bibliogr. Serv., 2004, 92, 10-12.
[181]
Sherma, J. Recent advances in thin-layer chromatography of pesticides. J. AOAC Int., 2001, 84(4), 993-1000.
[http://dx.doi.org/10.1093/jaoac/84.4.993] [PMID: 11501938]
[182]
Stan, H-J. Thin Layer Chromatography with Automated Multiple Development (AMD-TLC). In: Analysis of Pesticides in Ground and Sur-face Water Chemistry of Plant Protection; Springer: Berlin, Heidelberg, 1995; pp. 181-195.
[183]
Poole, C.F.; Belay, M.T. Progress in automated multiple development. J. Planar Chromatogr. Mod. TLC, 1991, 4(5), 345-359.
[184]
Galand, N.; Pothier, J.; Viel, C. Plant drug analysis by planar chromatography. J. Chromatogr. Sci., 2002, 40(10), 585-597.
[http://dx.doi.org/10.1093/chromsci/40.10.585] [PMID: 12515363]
[186]
Stan, H.J.; Butz, S. Multimethod applying AMD-TLC analysis to drinking water. Chemistry of Plant Protection, 1995, 12, 197-216.
[http://dx.doi.org/10.1007/978-3-662-01063-1_8]
[187]
Scholl, Y.; Asano, N.; Dräger, B. Automated multiple development thin layer chromatography for calystegines and their biosynthetic pre-cursors. J. Chromatogr. A, 2001, 928(2), 217-224.
[http://dx.doi.org/10.1016/S0021-9673(01)01128-1] [PMID: 11587340]
[188]
Cserhati, T.; Szogyi, M. Chromatographic determination of pesticides in foods and food products. J. Nutr. Food Sci., 2012, 2(2)1000126
[http://dx.doi.org/10.4172/2155-9600.1000126]
[189]
Butz, S.; Stan, H.J. Screening of 265 pesticides in water by thin-layer chromatography with automated multiple development. Anal. Chem., 1995, 67(3), 620-630.
[http://dx.doi.org/10.1021/ac00099a021]
[190]
Morlock, G.E. Analysis of pesticide residues in drinking water by planar chromatography. J. Chromatogr. A, 1996, 754(1-2), 423-430.
[http://dx.doi.org/10.1016/S0021-9673(96)00536-5] [PMID: 8997733]
[191]
Kroslakova, I.; Pedrussio, S.; Wolfram, E. Direct coupling of HPTLC with MALDI-TOF MS for qualitative detection of flavonoids on phytochemical fingerprints. Phytochem. Anal., 2016, 27(3-4), 222-228.
[http://dx.doi.org/10.1002/pca.2621] [PMID: 27313160]
[192]
Agatonovic-Kustrin, S.; Morton, D.W. Hyphenated TLC as a tool in the effect-directed discovery of bioactive natural products. Appl. Sci. (Basel), 2020, 10(3), 1123.
[http://dx.doi.org/10.3390/app10031123]
[193]
Pavia, D.L.; Lampman, G.M.; Kriz, G.S. 2008.
[194]
Lata Verma, K.; Kumar, M.; Pal Singh, A. HPTLC-MS as a neoteric hyphenated technique for separation and forensic identification of drugs. J. Anal. Sci. Methods Instrum., 2018, 8(1), 1-15.
[195]
Logan, B.K.; Stafford, D.T.; Tebbett, I.R.; Moore, C.M. Rapid screening for 100 basic drugs and metabolites in urine using cation ex-change solid-phase extraction and high-performance liquid chromatography with diode array detection. J. Anal. Toxicol., 1990, 14(3), 154-159.
[http://dx.doi.org/10.1093/jat/14.3.154] [PMID: 2374404]
[196]
Bhole, R.P.; Jagtap, S.R.; Chadar, K.B.; Zambare, Y.B. Review on Hyphenation in HPTLC-MS. Res. J. Pharm. Technol., 2020, 13(2), 1028-1034.
[http://dx.doi.org/10.5958/0974-360X.2020.00189.4]
[197]
He, F.; He, Y.; Zheng, X.; Wang, R.; Lu, J.; Dai, Z.; Ma, S. Screening of chemical dyes in traditional chinese medicine by HPTLC-MS. J. AOAC Int., 2018, 101(3), 686-694.
[http://dx.doi.org/10.5740/jaoacint.17-0298] [PMID: 29037280]
[198]
Bhole, R.P.; Tamboli, F.R. Development and validation of stability indicating HPTLC-MS method for estimation of empagliflozin in phar-maceutical dosage form. Anal. Chem. Lett., 2018, 8(2), 244-256.
[http://dx.doi.org/10.1080/22297928.2017.1404929]
[199]
Jug, U.; Glavnik, V.; Kranjc, E.; Vovk, I. High-performance thin-layer chromatography and high-performance thin-layer chromatography–mass spectrometry methods for the analysis of phenolic acids. J. Planar Chromatogr. Mod. TLC, 2018, 31(1), 13-22.
[http://dx.doi.org/10.1556/1006.2018.31.1.2]
[200]
Azadniya, E.; Morlock, G.E. Bioprofiling of Salvia miltiorrhiza via planar chromatography linked to (bio)assays, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. J. Chromatogr. A, 2018, 1533, 180-192.
[http://dx.doi.org/10.1016/j.chroma.2017.12.014] [PMID: 29258686]
[201]
Kranjc, E.; Albreht, A.; Vovk, I.; Glavnik, V. High performance thin-layer chromatography–mass spectrometry enables reliable analysis of physalins in different plant parts of Physalis alkekengi L. J. Chromatogr. A, 2017, 1526, 137-150.
[http://dx.doi.org/10.1016/j.chroma.2017.09.070] [PMID: 29096922]
[202]
Morlock, G.; Schwack, W. Coupling of planar chromatography to mass spectrometry. Trends Analyt. Chem., 2010, 29(10), 1157-1171.
[http://dx.doi.org/10.1016/j.trac.2010.07.010]
[203]
Luftmann, H.; Aranda, M.; Morlock, G.E. Automated interface for hyphenation of planar chromatography with mass spectrometry. Rapid Commun. Mass Spectrom., 2007, 21(23), 3772-3776.
[http://dx.doi.org/10.1002/rcm.3276] [PMID: 17963290]
[204]
Martens, J.; van Outersterp, R.E.; Vreeken, R.J.; Cuyckens, F.; Coene, K.L.M.; Engelke, U.F.; Kluijtmans, L.A.J.; Wevers, R.A.; Buydens, L.M.C.; Redlich, B.; Berden, G.; Oomens, J. Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spec-trometry - A tutorial perspective. Anal. Chim. Acta, 2020, 1093, 1-15.
[http://dx.doi.org/10.1016/j.aca.2019.10.043] [PMID: 31735202]
[205]
Karasek, F.W.; Clement, R.E. Eds.; Basic Gas Chromatography-Mass Spectrometry: Principles and Techniques, 1st ed.; Elsevier: Amsterdam, 1988.
[206]
Park, H.; Zhou, Y.; Costello, C.E. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces. J. Lipid Res., 2014, 55(4), 773-781.
[http://dx.doi.org/10.1194/jlr.D046128] [PMID: 24482490]
[207]
Oellig, C.; Schwack, W. Planar solid phase extraction clean-up for pesticide residue analysis in tea by liquid chromatography–mass spec-trometry. J. Chromatogr. A, 2012, 1260, 42-53.
[http://dx.doi.org/10.1016/j.chroma.2012.08.088] [PMID: 22981507]
[208]
Iqbal, M.F.; Maqbool, U.; Asi, M.R.; Aslam, S. Determination of pesticide residues in brinjal fruit at supervised trial. J. Anim. Plant Sci., 2007, 17(1-2), 21-23.
[209]
Tuzimski, T. Herbicides and Pesticides. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Medical University of Lublin, 2018; pp. 1-9.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.14395-1]
[210]
Tiryaki, O.; Aysal, P. Applicability of TLC in multiresidue methods for the determination of pesticides in wheat grain. Bull. Environ. Con-taminat. Toxicol., 2005, 75(6), 1143-1149.
[211]
Ambrus, Á.; Füzesi, I.; Lantos, J.; Korsos, I.; Szathmáry, M.; Hatfaludi, T. Application of TLC for confirmation and screening of pesticide residues in fruits, vegetables, and cereal grains: Part 2. Repeatability and reproducibility of Rf and MDQ values. J. Environ. Sci. Health B, 2005, 40(4), 485-511.
[http://dx.doi.org/10.1081/PFC-200061500]
[212]
Bhadekar, R.; Pote, S.; Tale, V.; Nirichan, B. Developments in analytical methods for detection of pesticides in environmental samples. Am. J. Anal. Chem., 2011, 2(8), 1-15.
[http://dx.doi.org/10.4236/ajac.2011.228118]
[213]
Kar, A.; Mandal, K.; Kumar, R.; Sahoo, S.K.; Singh, B. Qualitative and quantitative analysis of chlorantraniliprole and flubendiamide in soluble concentrate formulations by high performance thin layer chromatography. J. Liq. Chromatogr. Relat. Technol., 2012, 36(1), 24-34.
[http://dx.doi.org/10.1080/10826076.2011.644049]
[214]
Sherma, J. Thin layer chromatography in environmental analysis. Rev. Anal. Chem., 1995, 14(2), 75-142.
[http://dx.doi.org/10.1515/REVAC.1995.14.2.75]
[215]
Kiguchi, O.; Oka, K.; Tamada, M.; Kobayashi, T.; Onodera, J. Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods. J. Chromatogr. A, 2014, 1370, 246-254.
[http://dx.doi.org/10.1016/j.chroma.2014.10.037] [PMID: 25454149]
[216]
Parihar, S.; Verma, K.M.; Singh, S.P. Qualitative estimation of pesticides in biological matrices using thin layer chromatography method of analysis. J. Med. Toxicol. Clin. Forensic Med., 2020, 6(3), 1-5.
[217]
Mouratidis, S.; Thier, H.P. Solid phase extraction for the confirmation of results in polar pesticides residue analysis by HPTLC. Z. Lebensm. Unters. Forsch., 1995, 201(4), 327-330.
[http://dx.doi.org/10.1007/BF01192726] [PMID: 8525700]
[218]
Pawar, U.D.; Pawar, C.D.; Pansare, D.N.; Humbe, J.G.; Pardeshi, R.K. Development of HPTLC detection of synthetic pesticide carbosulfan in biological material. JPC-J. Planar. Chromat., 2021, 2021(34), 183-186.
[219]
Elgailani, I.E.H.; Alghamdi, A.A.A. Analytical methods for the determination of acephate pesticide residues in some vegetables. Rasayan J. Chem., 2018, 11, 979-983.
[http://dx.doi.org/10.31788/RJC.2018.1132063]
[220]
Rezić, I.; Horvat, A.J.M.; Babić, S.; Kaštelan-Macan, M. Determination of pesticides in honey by ultrasonic solvent extraction and thin-layer chromatography. Ultrason. Sonochem., 2005, 12(6), 477-481.
[http://dx.doi.org/10.1016/j.ultsonch.2004.07.004] [PMID: 15848111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy