Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Mitochondria in Early Life

Author(s): Ling He* and Akhil Maheshwari*

Volume 19, Issue 4, 2023

Published on: 22 December, 2022

Page: [395 - 416] Pages: 22

DOI: 10.2174/1573396319666221221110728

Price: $65

Abstract

Mitochondria are highly-dynamic, membrane-bound organelles that generate most of the chemical energy needed to power the biochemical reactions in eukaryotic cells. These organelles also communicate with the nucleus and other cellular structures to help maintain somatic homeostasis, allow cellular adaptation to stress, and help maintain the developmental trajectory. Mitochondria also perform numerous other functions to support metabolic, energetic, and epigenetic regulation in our cells. There is increasing information on various disorders caused by defects in intrinsic mitochondrial or supporting nuclear genes, on different organ systems. In this review, we have summarized the ultrastructural morphology, structural components, our current understanding of the evolution, biogenesis, dynamics, function, clinical manifestations of mitochondrial dysfunction, and future possibilities. The implications of deficits in mitochondrial dynamics and signaling for embryo viability and offspring health are also explored. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.

Keywords: Neonate, outer membrane, intermembrane space, inner membrane, matrix, mitochondrial DNA, archezoan, mitochondrion- related organelles, biogenesis, epigenetic, mitochondrial function.

[1]
Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505(7483): 335-43.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[2]
Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int 2013; 2013: 183024.
[http://dx.doi.org/10.1155/2013/183024] [PMID: 23766762]
[3]
Koopman WJH, Willems PHGM, Smeitink JAM. Monogenic mitochondrial disorders. N Engl J Med 2012; 366(12): 1132-41.
[http://dx.doi.org/10.1056/NEJMra1012478] [PMID: 22435372]
[4]
Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol 2015; 13(1): 89.
[http://dx.doi.org/10.1186/s12915-015-0201-x] [PMID: 26515107]
[5]
McBride HM, Neuspiel M, Wasiak S. Mitochondria: More than just a powerhouse. Curr Biol 2006; 16(14): R551-60.
[http://dx.doi.org/10.1016/j.cub.2006.06.054] [PMID: 16860735]
[6]
Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283(5407): 1482-8.
[http://dx.doi.org/10.1126/science.283.5407.1482]
[7]
Lopez J, Tait SWG. Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer 2015; 112(6): 957-62.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[8]
Munro D, Treberg JR. A radical shift in perspective: Mitochondria as regulators of reactive oxygen species. J Exp Biol 2017; 220(7): 1170-80.
[http://dx.doi.org/10.1242/jeb.132142] [PMID: 28356365]
[9]
Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016; 4: 109.
[http://dx.doi.org/10.3389/fcell.2016.00109] [PMID: 27790613]
[10]
Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: A new role for mitochondrial function in aging. Redox Biol 2014; 2: 936-44.
[http://dx.doi.org/10.1016/j.redox.2014.07.005] [PMID: 25180170]
[11]
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9(1): 27.
[http://dx.doi.org/10.1186/s13578-019-0289-8] [PMID: 30931098]
[12]
Xie JH, Li YY, Jin J. The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol 2020; 17(7): 712-21.
[http://dx.doi.org/10.1038/s41423-020-0480-1] [PMID: 32523116]
[13]
Hulzebos CV, Sauer PJJ. Energy requirements. Semin Fetal Neonatal Med 2007; 12(1): 2-10.
[http://dx.doi.org/10.1016/j.siny.2006.10.008] [PMID: 17161032]
[14]
Lai L, Leone TC, Zechner C, et al. Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev 2008; 22(14): 1948-61.
[http://dx.doi.org/10.1101/gad.1661708] [PMID: 18628400]
[15]
Natalia El-Merhie, Eveline Baumgart-Vogt, Adrian Pilatz, Susanne Pfreimer, Bianca P, Oleg P, Djuro K, Michael S, Ralph TS, Norbert W, Srikanth K, "Differential Alterations of the Mitochondrial Morphology and Respiratory Chain Complexes during Postnatal Development of the Mouse Lung", Oxidative Medicine and Cellular Longevity, vol. 2017, Article ID 9169146, 22 pages, 2017.
[http://dx.doi.org/10.1155/2017/9169146] [PMID: 29430286]
[16]
Sutton R, Pollak JK. Hormone-initiated maturation of rat liver mitochondria after birth. Biochem J 1980; 186(1): 361-7.
[http://dx.doi.org/10.1042/bj1860361] [PMID: 6245641]
[17]
Bastin J, Delaval E, Freund N, et al. Effects of birth on energy metabolism in the rat kidney. Biochem J 1988; 252(2): 337-41.
[http://dx.doi.org/10.1042/bj2520337] [PMID: 3415656]
[18]
Shultz M. Mapping of medical acronyms and initialisms to Medical Subject Headings (MeSH) across selected systems. J Med Libr Assoc 2006; 94(4): 410-4.
[PMID: 17082832]
[19]
Collins HE, Kane MS, Litovsky SH, et al. Mitochondrial morphology and mitophagy in heart diseases: Qualitative and quantitative analyses using transmission electron microscopy. Frontiers in Aging 2021; 2: 670267.
[http://dx.doi.org/10.3389/fragi.2021.670267] [PMID: 35822027]
[20]
Rube DA, van der Bliek AM. Mitochondrial morphology is dynamic and varied. Mol Cell Biochem 2004; 256(1/2): 331-9.
[http://dx.doi.org/10.1023/B:MCBI.0000009879.01256.f6] [PMID: 14977192]
[21]
Miettinen TP, Björklund M. Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev Cell 2016; 39(3): 370-82.
[http://dx.doi.org/10.1016/j.devcel.2016.09.004] [PMID: 27720611]
[22]
Jensen RE. Control of mitochondrial shape. Curr Opin Cell Biol 2005; 17(4): 384-8.
[http://dx.doi.org/10.1016/j.ceb.2005.06.011] [PMID: 15975781]
[23]
Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337(6098): 1062-5.
[http://dx.doi.org/10.1126/science.1219855] [PMID: 22936770]
[24]
Chaldakov GN, Kokosharov PN. An intracristal structure in rat liver dumbbell-shaped mitochondria. Preliminary communication. Acta Morphol Acad Sci Hung 1973; 21(2): 149-54.
[PMID: 4744686]
[25]
Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013; 155(1): 160-71.
[http://dx.doi.org/10.1016/j.cell.2013.08.032] [PMID: 24055366]
[26]
Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 2011; 108(25): 10190-5.
[http://dx.doi.org/10.1073/pnas.1107402108] [PMID: 21646527]
[27]
Frederick RL, Shaw JM. Moving mitochondria: establishing distribution of an essential organelle. Traffic 2007; 8(12): 1668-75.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00644.x] [PMID: 17944806]
[28]
Zhu J, Wu M, Kalyanasundaram A. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells. Int J Nanomedicine 2013; 8: 4033-42.
[http://dx.doi.org/10.2147/IJN.S52132] [PMID: 24187495]
[29]
Bonora M, Patergnani S, Rimessi A, et al. ATP synthesis and storage. Purinergic Signal 2012; 8(3): 343-57.
[http://dx.doi.org/10.1007/s11302-012-9305-8] [PMID: 22528680]
[30]
Ramachandran R. Mitochondrial dynamics: The dynamin superfamily and execution by collusion. Semin Cell Dev Biol 2018; 76: 201-12.
[http://dx.doi.org/10.1016/j.semcdb.2017.07.039] [PMID: 28754444]
[31]
Englmeier R, Förster F. Cryo-electron tomography for the structural study of mitochondrial translation. Tissue Cell 2019; 57: 129-38.
[http://dx.doi.org/10.1016/j.tice.2018.08.009] [PMID: 30197222]
[32]
Mazur M, Kmita H, Wojtkowska M. The diversity of the mitochondrial outer membrane protein import channels: Emerging targets for modulation. Molecules 2021; 26(13): 4087.
[http://dx.doi.org/10.3390/molecules26134087] [PMID: 34279427]
[33]
Model K, Prinz T, Ruiz T, et al. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J Mol Biol 2002; 316(3): 657-66.
[http://dx.doi.org/10.1006/jmbi.2001.5365] [PMID: 11866524]
[34]
Zeth K. Structure and evolution of mitochondrial outer membrane proteins of β-barrel topology. Biochim Biophys Acta Bioenerg 2010; 1797(6-7): 1292-9.
[http://dx.doi.org/10.1016/j.bbabio.2010.04.019] [PMID: 20450883]
[35]
Meisinger C, Rissler M, Chacinska A, et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell 2004; 7(1): 61-71.
[http://dx.doi.org/10.1016/j.devcel.2004.06.003] [PMID: 15239954]
[36]
Doan KN, Grevel A, Mårtensson CU, et al. The mitochondrial import complex MIM functions as main translocase for α-helical outer membrane proteins. Cell Rep 2020; 31(4): 107567.
[http://dx.doi.org/10.1016/j.celrep.2020.107567] [PMID: 32348752]
[37]
Kornmann B, Walter P. ERMES-mediated ER-mitochondria contacts: Molecular hubs for the regulation of mitochondrial biology. J Cell Sci 2010; 123(9): 1389-93.
[http://dx.doi.org/10.1242/jcs.058636] [PMID: 20410371]
[38]
Weeber EJ, Levy M, Sampson MJ, et al. The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 2002; 277(21): 18891-7.
[http://dx.doi.org/10.1074/jbc.M201649200] [PMID: 11907043]
[39]
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A key gatekeeper as potential therapeutic target. Front Physiol 2017; 8: 460.
[http://dx.doi.org/10.3389/fphys.2017.00460] [PMID: 28713289]
[40]
Westphal D, Kluck RM, Dewson G. Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 2014; 21(2): 196-205.
[http://dx.doi.org/10.1038/cdd.2013.139] [PMID: 24162660]
[41]
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341(2): 233-49.
[http://dx.doi.org/10.1042/bj3410233]
[42]
Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: Mechanisms and driving forces. Front Mol Biosci 2017; 4: 83.
[http://dx.doi.org/10.3389/fmolb.2017.00083] [PMID: 29270408]
[43]
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11(3): 210002.
[http://dx.doi.org/10.1098/rsob.210002] [PMID: 33715390]
[44]
Vander HMG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 2000; 97(9): 4666-71.
[http://dx.doi.org/10.1073/pnas.090082297] [PMID: 10781072]
[45]
Walther DM, Bos MP, Rapaport D, Tommassen J. The mitochondrial porin, VDAC, has retained the ability to be assembled in the bacterial outer membrane. Mol Biol Evol 2010; 27(4): 887-95.
[http://dx.doi.org/10.1093/molbev/msp294] [PMID: 19959601]
[46]
Khalimonchuk O, Winge DR. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. Biochim Biophys Acta Mol Cell Res 2008; 1783(4): 618-28.
[http://dx.doi.org/10.1016/j.bbamcr.2007.10.016] [PMID: 18070608]
[47]
Chacinska A, Pfannschmidt S, Wiedemann N, et al. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 2004; 23(19): 3735-46.
[http://dx.doi.org/10.1038/sj.emboj.7600389] [PMID: 15359280]
[48]
Stojanovski D, Müller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A. The MIA system for protein import into the mitochondrial intermembrane space. Biochim Biophys Acta Mol Cell Res 2008; 1783(4): 610-7.
[http://dx.doi.org/10.1016/j.bbamcr.2007.10.004] [PMID: 17996737]
[49]
Vogel F, Bornhövd C, Neupert W, Reichert AS. Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 2006; 175(2): 237-47.
[http://dx.doi.org/10.1083/jcb.200605138] [PMID: 17043137]
[50]
Joubert F, Puff N. Mitochondrial cristae architecture and functions: Lessons from minimal model systems. Membranes 2021; 11(7): 465.
[http://dx.doi.org/10.3390/membranes11070465] [PMID: 34201754]
[51]
Frazier AE, Chacinska A, Truscott KN, Guiard B, Pfanner N, Rehling P. Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 2003; 23(21): 7818-28.
[http://dx.doi.org/10.1128/MCB.23.21.7818-7828.2003] [PMID: 14560025]
[52]
Kamo N, Muratsugu M, Hongoh R, Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 1979; 49(2): 105-21.
[http://dx.doi.org/10.1007/BF01868720] [PMID: 490631]
[53]
Klecker T, Westermann B. Pathways shaping the mitochondrial inner membrane. Open Biol 2021; 11(12): 210238.
[http://dx.doi.org/10.1098/rsob.210238] [PMID: 34847778]
[54]
Wolf DM, Segawa M, Kondadi AK, et al. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 2019; 38(22): e101056.
[http://dx.doi.org/10.15252/embj.2018101056] [PMID: 31609012]
[55]
Mannella CA. Consequences of folding the mitochondrial inner membrane. Front Physiol 2020; 11: 536.
[http://dx.doi.org/10.3389/fphys.2020.00536] [PMID: 32581834]
[56]
Darshi M, Mendiola VL, Mackey MR, et al. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 2011; 286(4): 2918-32.
[http://dx.doi.org/10.1074/jbc.M110.171975] [PMID: 21081504]
[57]
Xie J, Marusich MF, Souda P, Whitelegge J, Capaldi RA. The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett 2007; 581(18): 3545-9.
[http://dx.doi.org/10.1016/j.febslet.2007.06.052] [PMID: 17624330]
[58]
Madungwe NB, Feng Y, Lie M, et al. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 2018; 315(1): C28-43.
[http://dx.doi.org/10.1152/ajpcell.00230.2017] [PMID: 29489384]
[59]
Enriquez JA, Lenaz G. Coenzyme q and the respiratory chain: coenzyme q pool and mitochondrial supercomplexes. Mol Syndromol 2014; 5(3-4): 119-40.
[http://dx.doi.org/10.1159/000363364] [PMID: 25126045]
[60]
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling. Int J Mol Med 2019; 44(1): 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[61]
Fox TD. Mitochondrial protein synthesis, import, and assembly. Genetics 2012; 192(4): 1203-34.
[http://dx.doi.org/10.1534/genetics.112.141267] [PMID: 23212899]
[62]
Peleh V, Cordat E, Herrmann JM. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. eLife 2016; 5: e16177.
[http://dx.doi.org/10.7554/eLife.16177]
[63]
Fass D. The Erv family of sulfhydryl oxidases. Biochim Biophys Acta Mol Cell Res 2008; 1783(4): 557-66.
[http://dx.doi.org/10.1016/j.bbamcr.2007.11.009] [PMID: 18155671]
[64]
Hell K. The Erv1–Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim Biophys Acta Mol Cell Res 2008; 1783(4): 601-9.
[http://dx.doi.org/10.1016/j.bbamcr.2007.12.005] [PMID: 18179776]
[65]
Halestrap AP. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J 1987; 244(1): 159-64.
[http://dx.doi.org/10.1042/bj2440159] [PMID: 3663110]
[66]
Calamita G, Ferri D, Gena P, et al. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 2005; 280(17): 17149-53.
[http://dx.doi.org/10.1074/jbc.C400595200] [PMID: 15749715]
[67]
Wiederkehr A, Park KS, Dupont O, et al. Matrix alkalinization: A novel mitochondrial signal for sustained pancreatic β-cell activation. EMBO J 2009; 28(4): 417-28.
[http://dx.doi.org/10.1038/emboj.2008.302] [PMID: 19165153]
[68]
Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV. The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 2008; 283(43): 29292-300.
[http://dx.doi.org/10.1074/jbc.M801019200] [PMID: 18687689]
[69]
Smith AC, Robinson AJ. A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol 2011; 5(1): 102.
[http://dx.doi.org/10.1186/1752-0509-5-102] [PMID: 21714867]
[70]
Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase – Assembly, regulation and role in human disease. Mitochondrion 2010; 10(4): 393-401.
[http://dx.doi.org/10.1016/j.mito.2010.03.001] [PMID: 20226277]
[71]
Cavalcanti JHF, Esteves-Ferreira AA, Quinhones CGS, et al. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol Evol 2014; 6(10): 2830-48.
[http://dx.doi.org/10.1093/gbe/evu221] [PMID: 25274566]
[72]
D’Souza AR, Minczuk M. Mitochondrial transcription and translation: Overview. Essays Biochem 2018; 62(3): 309-20.
[http://dx.doi.org/10.1042/EBC20170102] [PMID: 30030363]
[73]
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta Bioenerg 1999; 1410(2): 103-23.
[http://dx.doi.org/10.1016/S0005-2728(98)00161-3] [PMID: 10076021]
[74]
Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 2010; 11(1): 25-44.
[http://dx.doi.org/10.1146/annurev-genom-082509-141720] [PMID: 20690818]
[75]
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial protein translation: Emerging roles and clinical significance in disease. Front Cell Dev Biol 2021; 9: 675465.
[http://dx.doi.org/10.3389/fcell.2021.675465] [PMID: 34277617]
[76]
Koripella RK, Sharma MR, Bhargava K, et al. Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nat Commun 2020; 11(1): 3830.
[http://dx.doi.org/10.1038/s41467-020-17715-2] [PMID: 32737313]
[77]
Gray MW. Mitochondrial Evolution. Cold Spring Harb Perspect Biol 2012; 4(9): a011403.
[http://dx.doi.org/10.1101/cshperspect.a011403] [PMID: 22952398]
[78]
Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci USA 2015; 112(33): 10133-8.
[http://dx.doi.org/10.1073/pnas.1421379112] [PMID: 25848019]
[79]
Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SGE. Computational inference of scenarios for α-proteobacterial genome evolution. Proc Natl Acad Sci USA 2004; 101(26): 9722-7.
[http://dx.doi.org/10.1073/pnas.0400975101] [PMID: 15210995]
[80]
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434: 20-33.
[http://dx.doi.org/10.1016/j.jtbi.2017.02.031] [PMID: 28254477]
[81]
López-García P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evol 2015; 30(11): 697-708.
[http://dx.doi.org/10.1016/j.tree.2015.09.005] [PMID: 26455774]
[82]
Ryan DG, Frezza C, O’Neill LAJ. TCA cycle signalling and the evolution of eukaryotes. Curr Opin Biotechnol 2021; 68: 72-88.
[http://dx.doi.org/10.1016/j.copbio.2020.09.014] [PMID: 33137653]
[83]
Zachar I, Boza G. Endosymbiosis before eukaryotes: Mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77(18): 3503-23.
[http://dx.doi.org/10.1007/s00018-020-03462-6] [PMID: 32008087]
[84]
Degli EM. Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol 2014; 6(12): 3238-51.
[http://dx.doi.org/10.1093/gbe/evu257] [PMID: 25432941]
[85]
Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol 2007; 7(1): 106.
[http://dx.doi.org/10.1186/1471-2180-7-106] [PMID: 18045498]
[86]
Sharma L, Lu J, Bai Y. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Curr Med Chem 2009; 16(10): 1266-77.
[http://dx.doi.org/10.2174/092986709787846578] [PMID: 19355884]
[87]
Moparthi VK, Hägerhäll C. The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 2011; 72(5-6): 484-97.
[http://dx.doi.org/10.1007/s00239-011-9447-2] [PMID: 21597881]
[88]
Martin WF. Physiology, anaerobes, and the origin of mitosing cells 50 years on. J Theor Biol 2017; 434: 2-10.
[http://dx.doi.org/10.1016/j.jtbi.2017.01.004] [PMID: 28087421]
[89]
Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin.Philos Trans R Soc Lond B Biol Sci 1678; 370(1678): 20140330.
[http://dx.doi.org/10.1098/rstb.2014.0330]
[90]
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017; 27(21): R1177-92.
[http://dx.doi.org/10.1016/j.cub.2017.09.015] [PMID: 29112874]
[91]
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2013; 48(4): 373-96.
[http://dx.doi.org/10.3109/10409238.2013.821444] [PMID: 23895660]
[92]
Roger AJ, Susko E, Leger MM. Evolution: Reconstructing the timeline of eukaryogenesis. Curr Biol 2021; 31(4): R193-6.
[http://dx.doi.org/10.1016/j.cub.2020.12.035] [PMID: 33621507]
[93]
Gabaldón T. Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbioses” hypothesis. IUBMB Life 2018; 70(12): 1188-96.
[http://dx.doi.org/10.1002/iub.1950] [PMID: 30358047]
[94]
Koonin EV. Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 2015; 13(1): 84.
[http://dx.doi.org/10.1186/s12915-015-0194-5] [PMID: 26437773]
[95]
Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol 2015; 25(19): R911-21.
[http://dx.doi.org/10.1016/j.cub.2015.07.055] [PMID: 26439354]
[96]
Aanen DK, Eggleton P. Symbiogenesis: Beyond the endosymbiosis theory? J Theor Biol 2017; 434: 99-103.
[http://dx.doi.org/10.1016/j.jtbi.2017.08.001] [PMID: 28826970]
[97]
Shiflett AM, Johnson PJ. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 2010; 64(1): 409-29.
[http://dx.doi.org/10.1146/annurev.micro.62.081307.162826] [PMID: 20528687]
[98]
Gawryluk RMR, Kamikawa R, Stairs CW, Silberman JD, Brown MW, Roger AJ. The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr Biol 2016; 26(20): 2729-38.
[http://dx.doi.org/10.1016/j.cub.2016.08.025] [PMID: 27666965]
[99]
Müller M, Mentel M, van Hellemond JJ, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76(2): 444-95.
[http://dx.doi.org/10.1128/MMBR.05024-11] [PMID: 22688819]
[100]
Hrdy I, Hirt RP, Dolezal P, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 2004; 432(7017): 618-22.
[http://dx.doi.org/10.1038/nature03149] [PMID: 15577909]
[101]
Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 1541; 365(1541): 799-817.
[http://dx.doi.org/10.1098/rstb.2009.0167]
[102]
Embley M, der Giezen M, Horner DS, Dyal PL, Foster P. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 2003; 358(1429): 191-203.
[http://dx.doi.org/10.1098/rstb.2002.1190] [PMID: 12594927]
[103]
Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100: 3-17.
[http://dx.doi.org/10.1016/j.biochi.2013.11.018] [PMID: 24316280]
[104]
Read AD, Bentley RET, Archer SL, Dunham-Snary KJ. Mitochondrial iron–sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 2021; 47: 102164.
[http://dx.doi.org/10.1016/j.redox.2021.102164] [PMID: 34656823]
[105]
van der Giezen M, Slotboom DJ, Horner DS, et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: A common origin for both organelles. EMBO J 2002; 21(4): 572-9.
[http://dx.doi.org/10.1093/emboj/21.4.572] [PMID: 11847105]
[106]
Cole LW. The evolution of per-cell organelle number. Front Cell Dev Biol 2016; 4: 85.
[http://dx.doi.org/10.3389/fcell.2016.00085] [PMID: 27588285]
[107]
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 1541; (365): 713-27.(1541).
[http://dx.doi.org/10.1098/rstb.2009.0224]
[108]
Wang Y, Palmfeldt J, Gregersen N, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem 2019; 294(33): 12380-91.
[http://dx.doi.org/10.1074/jbc.RA119.008680] [PMID: 31235473]
[109]
O’Brien TW. Evolution of a protein-rich mitochondrial ribosome: Implications for human genetic disease. Gene 2002; 286(1): 73-9.
[http://dx.doi.org/10.1016/S0378-1119(01)00808-3] [PMID: 11943462]
[110]
Ferrari A, Del’Olio S, Barrientos A. The diseased mitoribosome. FEBS Lett 2021; 595(8): 1025-61.
[http://dx.doi.org/10.1002/1873-3468.14024] [PMID: 33314036]
[111]
Cavalier-Smith T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci 2006; 273(1596): 1943-52.
[http://dx.doi.org/10.1098/rspb.2006.3531] [PMID: 16822756]
[112]
Falkenberg M. Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem 2018; 62(3): 287-96.
[http://dx.doi.org/10.1042/EBC20170100] [PMID: 29880722]
[113]
Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 2010; 47: 69-84.
[http://dx.doi.org/10.1042/bse0470069] [PMID: 20533901]
[114]
Kunze M, Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 2015; 6: 259.
[http://dx.doi.org/10.3389/fphys.2015.00259] [PMID: 26441678]
[115]
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ′-NAC and Sam37. J Biol Chem 2022; 298(6): 101984.
[http://dx.doi.org/10.1016/j.jbc.2022.101984] [PMID: 35487246]
[116]
Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 2008; 9(1): 42-9.
[http://dx.doi.org/10.1038/sj.embor.7401126] [PMID: 18174896]
[117]
Diekert K, Kispal G, Guiard B, Lill R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci USA 1999; 96(21): 11752-7.
[http://dx.doi.org/10.1073/pnas.96.21.11752] [PMID: 10518522]
[118]
Craig EA. Hsp70 at the membrane: Driving protein translocation. BMC Biol 2018; 16(1): 11.
[http://dx.doi.org/10.1186/s12915-017-0474-3] [PMID: 29343244]
[119]
Ieva R, Heißwolf AK, Gebert M, et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat Commun 2013; 4(1): 2853.
[http://dx.doi.org/10.1038/ncomms3853] [PMID: 24287567]
[120]
Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W. The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J Biol Chem 2004; 279(36): 38047-54.
[http://dx.doi.org/10.1074/jbc.M404319200] [PMID: 15218029]
[121]
Takeda H, Tsutsumi A, Nishizawa T, et al. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 2021; 590(7844): 163-9.
[http://dx.doi.org/10.1038/s41586-020-03113-7] [PMID: 33408415]
[122]
Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 2019; 10: 435.
[http://dx.doi.org/10.3389/fgene.2019.00435] [PMID: 31139208]
[123]
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): Transcriptional coactivator and metabolic regulator. Endocr Rev 2003; 24(1): 78-90.
[http://dx.doi.org/10.1210/er.2002-0012] [PMID: 12588810]
[124]
Liang H, Ward WF. PGC-1α: A key regulator of energy metabolism. Adv Physiol Educ 2006; 30(4): 145-51.
[http://dx.doi.org/10.1152/advan.00052.2006] [PMID: 17108241]
[125]
Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 2005; 25(4): 1354-66.
[http://dx.doi.org/10.1128/MCB.25.4.1354-1366.2005] [PMID: 15684387]
[126]
Virbasius CA, Virbasius JV, Scarpulla RC. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 1993; 7(12a): 2431-45.
[http://dx.doi.org/10.1101/gad.7.12a.2431] [PMID: 8253388]
[127]
Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020; 25(22): 5474.
[http://dx.doi.org/10.3390/molecules25225474] [PMID: 33238435]
[128]
Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20(2): 98-105.
[http://dx.doi.org/10.1097/MOL.0b013e328328d0a4] [PMID: 19276888]
[129]
Fan W, Evans R. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol 2015; 33: 49-54.
[http://dx.doi.org/10.1016/j.ceb.2014.11.002] [PMID: 25486445]
[130]
Audet-walsh É, Giguére V. The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin 2015; 36(1): 51-61.
[http://dx.doi.org/10.1038/aps.2014.121] [PMID: 25500872]
[131]
Giguère V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 2008; 29(6): 677-96.
[http://dx.doi.org/10.1210/er.2008-0017] [PMID: 18664618]
[132]
Deblois G, Giguère V. Functional and physiological genomics of estrogen-related receptors (ERRs) in health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812(8): 1032-40.
[http://dx.doi.org/10.1016/j.bbadis.2010.12.009] [PMID: 21172432]
[133]
Melser S, Lavie J, Bénard G. Mitochondrial degradation and energy metabolism. Biochim Biophys Acta Mol Cell Res 2015; 1853 (10 Pt B): 2812-21.
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.010] [PMID: 25979837]
[134]
Okie Jordan G, Smith Val H, Martin-Cereceda M. Major evolutionary transitions of life, metabolic scaling and the number and size of mitochondria and chloroplastsProc R Soc B 2016; 283: 2016061120160611
[http://dx.doi.org/10.1098/rspb.2016.0611]
[135]
Thommen A, Werner S, Frank O. Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians. eLife 2019; 8: e38187.
[http://dx.doi.org/10.7554/eLife.38187]
[136]
Veltri KL, Espiritu M, Singh G. Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol 1990; 143(1): 160-4.
[http://dx.doi.org/10.1002/jcp.1041430122] [PMID: 2318903]
[137]
Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017; 482(3): 426-31.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.088] [PMID: 28212726]
[138]
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 2018; 28(4): R170-85.
[http://dx.doi.org/10.1016/j.cub.2018.01.004] [PMID: 29462587]
[139]
Byrnes J, Garcia-Diaz M. Mitochondrial transcription. Transcription 2011; 2(1): 32-6.
[http://dx.doi.org/10.4161/trns.2.1.14006] [PMID: 21326908]
[140]
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49: 72-85.
[http://dx.doi.org/10.1016/j.yfrne.2018.01.001] [PMID: 29339091]
[141]
Torralba D, Baixauli F, Sánchez-Madrid F. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 2016; 4: 107.
[http://dx.doi.org/10.3389/fcell.2016.00107] [PMID: 27734015]
[142]
Hayakawa K, Esposito E, Wang X, et al. Correction: Corrigendum: Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016; 539(7627): 123.
[http://dx.doi.org/10.1038/nature19805] [PMID: 27629516]
[143]
Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016; 535(7613): 551-5.
[http://dx.doi.org/10.1038/nature18928] [PMID: 27466127]
[144]
Dong LF, Kovarova J, Bajzikova M, et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 2017; 6: e22187.
[http://dx.doi.org/10.7554/eLife.22187]
[145]
Takenaga K, Koshikawa N, Nagase H. Intercellular transfer of mitochondrial DNA carrying metastasis-enhancing pathogenic mutations from high- to low-metastatic tumor cells and stromal cells via extracellular vesicles. BMC Mol Cell Biol 2021; 22(1): 52.
[http://dx.doi.org/10.1186/s12860-021-00391-5] [PMID: 34615464]
[146]
Burton A, Torres-Padilla ME. Epigenetic reprogramming and development: A unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 2010; 9(5-6): 444-54.
[http://dx.doi.org/10.1093/bfgp/elq027] [PMID: 21186177]
[147]
Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000; 10(8): 475-8.
[http://dx.doi.org/10.1016/S0960-9822(00)00448-6] [PMID: 10801417]
[148]
Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim Nutr 2018; 4(1): 11-6.
[http://dx.doi.org/10.1016/j.aninu.2017.08.009] [PMID: 30167479]
[149]
Lin H. S-Adenosylmethionine-dependent alkylation reactions: When are radical reactions used? Bioorg Chem 2011; 39(5-6): 161-70.
[http://dx.doi.org/10.1016/j.bioorg.2011.06.001] [PMID: 21762947]
[150]
Struck AW, Thompson ML, Wong LS, Micklefield J. S-adenosyl-methionine-dependent methyltransferases: Highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 2012; 13(18): 2642-55.
[http://dx.doi.org/10.1002/cbic.201200556] [PMID: 23180741]
[151]
Tollervey JR, Lunyak VV. Epigenetics. Epigenetics 2012; 7(8): 823-40.
[http://dx.doi.org/10.4161/epi.21141] [PMID: 22805743]
[152]
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020; 11(1): 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[153]
Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 2015; 20(1-2): 35-47.
[http://dx.doi.org/10.1615/CritRevOncog.2015012997] [PMID: 25746103]
[154]
Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 2012; 287(28): 23865-76.
[http://dx.doi.org/10.1074/jbc.M112.380519] [PMID: 22580297]
[155]
North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004; 5(5): 224.
[http://dx.doi.org/10.1186/gb-2004-5-5-224] [PMID: 15128440]
[156]
Maheshwari A, Peng J, Ramatchandirin B, Pearah A, He L. Development and functions of mitochondria in early life. Newborn 2022; 1(1): 131-41.
[http://dx.doi.org/10.5005/jp-journals-11002-0013]
[157]
Lozoya OA, Martinez-Reyes I, Wang T, et al. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation. PLoS Biol 2018; 16(4): e2005707.
[http://dx.doi.org/10.1371/journal.pbio.2005707] [PMID: 29668680]
[158]
Paumard P, Vaillier J, Coulary B, et al. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 2002; 21(3): 221-30.
[http://dx.doi.org/10.1093/emboj/21.3.221] [PMID: 11823415]
[159]
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1066-77.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[160]
Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull 2013; 106(1): 135-59.
[http://dx.doi.org/10.1093/bmb/ldt017] [PMID: 23704099]
[161]
Le NQK, Ou YY. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs. BMC Bioinformatics 2016; 17(1): 298.
[http://dx.doi.org/10.1186/s12859-016-1163-x] [PMID: 27475771]
[162]
Kirillova A, Smitz JEJ, Sukhikh GT, Mazunin I. The role of mitochondria in oocyte maturation. Cells 2021; 10(9): 2484.
[http://dx.doi.org/10.3390/cells10092484] [PMID: 34572133]
[163]
Sathananthan AH, Trounson AO. Mitochondrial morphology during preimplantational human embryogenesis. Hum Reprod 2000; 15 (Suppl. 2): 148-59.
[http://dx.doi.org/10.1093/humrep/15.suppl_2.148] [PMID: 11041521]
[164]
Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 103(2): 303-16.
[http://dx.doi.org/10.1016/j.fertnstert.2014.11.015] [PMID: 25497448]
[165]
Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 1996; 44(4): 476-85.
[http://dx.doi.org/10.1002/(SICI)1098-2795(199608)44:4<476:AID-MRD7>3.0.CO;2-I] [PMID: 8844690]
[166]
Gardner DK, Wale PL. Analysis of metabolism to select viable human embryos for transfer. Fertil Steril 2013; 99(4): 1062-72.
[http://dx.doi.org/10.1016/j.fertnstert.2012.12.004] [PMID: 23312219]
[167]
May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y, Reynier P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod 2005; 20(3): 593-7.
[http://dx.doi.org/10.1093/humrep/deh667] [PMID: 15608038]
[168]
Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril 2006; 85(3): 584-91.
[http://dx.doi.org/10.1016/j.fertnstert.2005.09.017] [PMID: 16500323]
[169]
Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 1980; 77(11): 6715-9.
[http://dx.doi.org/10.1073/pnas.77.11.6715] [PMID: 6256757]
[170]
Reynier P, May-Panloup P, Chrétien M-F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 2001; 7(5): 425-9.
[http://dx.doi.org/10.1093/molehr/7.5.425] [PMID: 11331664]
[171]
Murakoshi Y, Sueoka K, Takahashi K, et al. Embryo developmental capability and pregnancy outcome are related to the mitochondrial DNA copy number and ooplasmic volume. J Assist Reprod Genet 2013; 30(10): 1367-75.
[http://dx.doi.org/10.1007/s10815-013-0062-6] [PMID: 23897005]
[172]
Ge H, Tollner TL, Hu Z, et al. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev 2012; 79(6): 392-401.
[http://dx.doi.org/10.1002/mrd.22042] [PMID: 22467220]
[173]
Van Blerkom J, Davis PW, Lee J. Fertilization and early embryolgoy: ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod 1995; 10(2): 415-24.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a135954] [PMID: 7769073]
[174]
Mandal S, Lindgren AG, Srivastava AS, Clark AT, Banerjee U. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 2011; 29(3): 486-95.
[http://dx.doi.org/10.1002/stem.590] [PMID: 21425411]
[175]
Piquereau J, Ventura-Clapier R. Maturation of cardiac energy metabolism during perinatal development. Front Physiol 2018; 9: 959.
[http://dx.doi.org/10.3389/fphys.2018.00959] [PMID: 30072919]
[176]
Abraham M, Collins CA, Flewelling S, et al. Mitochondrial inefficiency in infants born to overweight African-American mothers. Int J Obes 2018; 42(7): 1306-16.
[http://dx.doi.org/10.1038/s41366-018-0051-z] [PMID: 29568109]
[177]
Delhaes F, Giza SA, Koreman T, et al. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment. Placenta 2018; 69: 118-24.
[http://dx.doi.org/10.1016/j.placenta.2018.05.011] [PMID: 29907450]
[178]
S Ten V, Stepanova AA, Ratner V, et al. Mitochondrial dysfunction and permeability transition in neonatal brain and lung injuries. Cells 2021; 10(3): 569.
[http://dx.doi.org/10.3390/cells10030569] [PMID: 33807810]
[179]
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2014; 71(14): 2577-604.
[http://dx.doi.org/10.1007/s00018-013-1539-2] [PMID: 24363178]
[180]
Sommakia S, Houlihan PR, Deane SS, et al. Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol 2017; 113: 22-32.
[http://dx.doi.org/10.1016/j.yjmcc.2017.09.009] [PMID: 28962857]
[181]
Wang L, Wang D, Zou X, Xu C. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B 2009; 10(7): 483-92.
[http://dx.doi.org/10.1631/jzus.B0820379] [PMID: 19585665]
[182]
Zhang D, Keilty D, Zhang ZF, Chian RC. Mitochondria in oocyte aging: Current understanding. Facts Views Vis ObGyn 2017; 9(1): 29-38.
[PMID: 28721182]
[183]
Haskins N, Bhuvanendran S, Anselmi C, et al. Mitochondrial enzymes of the urea cycle cluster at the inner mitochondrial membrane. Front Physiol 2021; 11: 542950.
[http://dx.doi.org/10.3389/fphys.2020.542950] [PMID: 33551825]
[184]
de Cima S, Polo LM, Díez-Fernández C, et al. Structure of human carbamoyl phosphate synthetase: Deciphering the on/off switch of human ureagenesis. Sci Rep 2015; 5(1): 16950.
[http://dx.doi.org/10.1038/srep16950] [PMID: 26592762]
[185]
Couchet M, Breuillard C, Corne C, et al. Ornithine transcarbamylase – from structure to metabolism: An update. Front Physiol 2021; 12: 748249.
[http://dx.doi.org/10.3389/fphys.2021.748249] [PMID: 34658931]
[186]
Borst P. The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 2020; 72(11): 2241-59.
[http://dx.doi.org/10.1002/iub.2367] [PMID: 32916028]
[187]
Cooper AJL, Kuhara T. α-Ketoglutaramate: An overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 2014; 29(4): 991-1006.
[http://dx.doi.org/10.1007/s11011-013-9444-9] [PMID: 24234505]
[188]
Traaseth N, Elfering S, Solien J, Haynes V, Giulivi C. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochim Biophys Acta Bioenerg 2004; 1658(1-2): 64-71.
[http://dx.doi.org/10.1016/j.bbabio.2004.04.015] [PMID: 15282176]
[189]
Heikal AA. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomarkers Med 2010; 4(2): 241-63.
[http://dx.doi.org/10.2217/bmm.10.1] [PMID: 20406068]
[190]
Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: A target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 2005; 360(1464): 2335-45.
[http://dx.doi.org/10.1098/rstb.2005.1764] [PMID: 16321804]
[191]
Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2015; 78: 35-45.
[http://dx.doi.org/10.1016/j.yjmcc.2014.10.019] [PMID: 25450609]
[192]
Chance B. Reaction of oxygen with the respiratory chain in cells and tissues. J Gen Physiol 1965; 49(1): 163-88.
[http://dx.doi.org/10.1085/jgp.49.1.163]
[193]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[194]
Youle RJ, Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9(1): 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[195]
Wei MC, Zong WX, Cheng EHY, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001; 292(5517): 727-30.
[http://dx.doi.org/10.1126/science.1059108] [PMID: 11326099]
[196]
Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 2009; 122(16): 2801-8.
[http://dx.doi.org/10.1242/jcs.038166] [PMID: 19795525]
[197]
Carrington EM, Zhan Y, Brady JL, et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ 2017; 24(5): 878-88.
[http://dx.doi.org/10.1038/cdd.2017.30] [PMID: 28362427]
[198]
Karch J, Kwong JQ, Burr AR, et al. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. eLife 2013; 2: e00772.
[http://dx.doi.org/10.7554/eLife.00772] [PMID: 23991283]
[199]
Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet 2009; 43(1): 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[200]
Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 2007; 9(5): 550-5.
[http://dx.doi.org/10.1038/ncb1575] [PMID: 17417626]
[201]
Saier MH Jr, Reddy BL. Holins in bacteria, eukaryotes, and archaea: Multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol 2015; 197(1): 7-17.
[http://dx.doi.org/10.1128/JB.02046-14] [PMID: 25157079]
[202]
Pang X, Moussa SH, Targy NM, et al. Active Bax and Bak are functional holins. Genes Dev 2011; 25(21): 2278-90.
[http://dx.doi.org/10.1101/gad.171645.111] [PMID: 22006182]
[203]
Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M. Diversity in bacterial lysis systems: Bacteriophages show the way. FEMS Microbiol Rev 2013; 37(4): 554-71.
[http://dx.doi.org/10.1111/1574-6976.12006] [PMID: 23043507]
[204]
Xu Z, Zhang D, He X, Huang Y, Shao H. Transport of calcium ions into mitochondria. Curr Genomics 2016; 17(3): 215-9.
[http://dx.doi.org/10.2174/1389202917666160202215748] [PMID: 27252588]
[205]
Lettieri-Barbato D. Redox control of non-shivering thermogenesis. Mol Metab 2019; 25: 11-9.
[http://dx.doi.org/10.1016/j.molmet.2019.04.002] [PMID: 31005563]
[206]
Pompei M, Pompei F. Overcoming bioethical, legal, and hereditary barriers to mitochondrial replacement therapy in the USA. J Assist Reprod Genet 2019; 36(3): 383-93.
[http://dx.doi.org/10.1007/s10815-018-1370-7] [PMID: 30554395]
[207]
Ahuja AS. Understanding mitochondrial myopathies: A review. PeerJ 2018; 6: e4790.
[http://dx.doi.org/10.7717/peerj.4790] [PMID: 29844960]
[208]
Ng YS, Turnbull DM. Mitochondrial disease: Genetics and management. J Neurol 2016; 263(1): 179-91.
[http://dx.doi.org/10.1007/s00415-015-7884-3] [PMID: 26315846]
[209]
Orsucci D, Caldarazzo IE, Rossi A, Siciliano G, Mancuso M. Mitochondrial syndromes revisited. J Clin Med 2021; 10(6): 1249.
[http://dx.doi.org/10.3390/jcm10061249] [PMID: 33802970]
[210]
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol 2010; 5(1): 297-348.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092314] [PMID: 20078222]
[211]
Nsiah-Sefaa A, McKenzie M. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 2016; 36(2): e00313.
[http://dx.doi.org/10.1042/BSR20150295] [PMID: 26839416]
[212]
Saneto RP, Sedensky MM. Mitochondrial disease in childhood: mtDNA encoded. Neurotherapeutics 2013; 10(2): 199-211.
[http://dx.doi.org/10.1007/s13311-012-0167-0] [PMID: 23224691]
[213]
Muraresku CC, McCormick EM, Falk MJ. Mitochondrial disease: Advances in clinical diagnosis, management, therapeutic development, and preventative strategies. Curr Genet Med Rep 2018; 6(2): 62-72.
[http://dx.doi.org/10.1007/s40142-018-0138-9] [PMID: 30393588]
[214]
Rodenburg RJ. Mitochondrial complex I-linked disease. Biochim Biophys Acta Bioenerg 2016; 1857(7): 938-45.
[http://dx.doi.org/10.1016/j.bbabio.2016.02.012] [PMID: 26906428]
[215]
Koene S, Rodenburg RJ, van der Knaap MS, et al. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: What we learned from 130 cases. J Inherit Metab Dis 2012; 35(5): 737-47.
[http://dx.doi.org/10.1007/s10545-012-9492-z] [PMID: 22644603]
[216]
Goldstein AC, Bhatia P, Vento JM. Mitochondrial disease in childhood: Nuclear encoded. Neurotherapeutics 2013; 10(2): 212-26.
[http://dx.doi.org/10.1007/s13311-013-0185-6] [PMID: 23516041]
[217]
Mori M, Goldstein J, Young SP, Bossen EH, Shoffner J, Koeberl DD. Complex III deficiency due to an in-frame MT-CYB deletion presenting as ketotic hypoglycemia and lactic acidosis. Mol Genet Metab Rep 2015; 4: 39-41.
[http://dx.doi.org/10.1016/j.ymgmr.2015.06.001] [PMID: 26937408]
[218]
Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. Biochim Biophys Acta Bioenerg 2013; 1827(11-12): 1346-61.
[http://dx.doi.org/10.1016/j.bbabio.2012.11.015] [PMID: 23220121]
[219]
Tucker EJ, Wanschers BFJ, Szklarczyk R, et al. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLoS Genet 2013; 9(12): e1004034.
[http://dx.doi.org/10.1371/journal.pgen.1004034] [PMID: 24385928]
[220]
Hamza I, Gitlin JD. Copper chaperones for cytochrome c oxidase and human disease. J Bioenerg Biomembr 2002; 34(5): 381-8.
[http://dx.doi.org/10.1023/A:1021254104012] [PMID: 12539965]
[221]
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim Biophys Acta Bioenerg 2012; 1817(6): 883-97.
[http://dx.doi.org/10.1016/j.bbabio.2011.09.005] [PMID: 21958598]
[222]
Kose M, Canda E, Kagnici M, et al. SURF1 related Leigh syndrome: Clinical and molecular findings of 16 patients from Turkey. Mol Genet Metab Rep 2020; 25: 100657.
[http://dx.doi.org/10.1016/j.ymgmr.2020.100657] [PMID: 33134083]
[223]
Danis D, Brennerova K, Skopkova M, et al. Mutations in SURF1 are important genetic causes of Leigh syndrome in Slovak patients. Endocr Regul 2018; 52(2): 110-8.
[http://dx.doi.org/10.2478/enr-2018-0013] [PMID: 29715184]
[224]
Abdulhag UN, Soiferman D, Schueler-Furman O, et al. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet 2015; 23(2): 159-64.
[http://dx.doi.org/10.1038/ejhg.2014.85] [PMID: 24781756]
[225]
Emmanuel IA, Olotu FA, Agoni C, Soliman MES. In silico repurposing of J147 for neonatal encephalopathy treatment: Exploring molecular mechanisms of mutant mitochondrial ATP synthase. Curr Pharm Biotechnol 2020; 21(14): 1551-66.
[http://dx.doi.org/10.2174/1389201021666200628152246] [PMID: 32598251]
[226]
Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R. ATP synthase diseases of mitochondrial genetic origin. Front Physiol 2018; 9: 329.
[http://dx.doi.org/10.3389/fphys.2018.00329] [PMID: 29670542]
[227]
Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: Metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res 2005; 79(1-2): 240-7.
[http://dx.doi.org/10.1002/jnr.20293] [PMID: 15562436]
[228]
Patel KP, O’Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 2012; 106(3): 385-94.
[http://dx.doi.org/10.1016/j.ymgme.2012.03.017] [PMID: 22896851]
[229]
Singhi P, De Meirleir L, Lissens W, Singhi S, Saini AG. Pyruvate dehydrogenase-e1α deficiency presenting as recurrent demyelination: An unusual presentation and a novel mutation. JIMD Rep 2012; 10: 107-11.
[http://dx.doi.org/10.1007/8904_2012_211] [PMID: 23430811]
[230]
Gupta N, Rutledge C. Pyruvate dehydrogenase complex deficiency: An unusual cause of recurrent lactic acidosis in a paediatric critical care unit. J Crit Care Med 2019; 5(2): 71-5.
[http://dx.doi.org/10.2478/jccm-2019-0012] [PMID: 31161145]
[231]
Bravo-Alonso I, Navarrete R, Vega AI, et al. Genes and variants underlying human congenital lactic acidosis—from genetics to personalized treatment. J Clin Med 2019; 8(11): 1811.
[http://dx.doi.org/10.3390/jcm8111811] [PMID: 31683770]
[232]
Toyoshima M, Oka A, Egi Y, et al. Thiamine-responsive congenital lactic acidosis: Clinical and biochemical studies. Pediatr Neurol 2005; 33(2): 98-104.
[http://dx.doi.org/10.1016/j.pediatrneurol.2005.02.007] [PMID: 16087053]
[233]
Santoni G, Cardinali C, Morelli M, Santoni M, Nabissi M, Amantini C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 2015; 12(1): 21.
[http://dx.doi.org/10.1186/s12974-015-0239-2] [PMID: 25644504]
[234]
Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: A paradigm for engineering new vaccines. Trends Biotechnol 2011; 29(6): 294-306.
[http://dx.doi.org/10.1016/j.tibtech.2011.02.004] [PMID: 21459467]
[235]
Hruz P, Eckmann L. Caspase recruitment domain-containing sensors and adaptors in intestinal innate immunity. Curr Opin Gastroenterol 2008; 24(2): 108-14.
[http://dx.doi.org/10.1097/MOG.0b013e3282f50fdf] [PMID: 18301258]
[236]
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39(1): 12.
[http://dx.doi.org/10.1186/s41232-019-0101-5] [PMID: 31182982]
[237]
Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1–dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA 2014; 111(43): 15514-9.
[http://dx.doi.org/10.1073/pnas.1414859111] [PMID: 25313054]
[238]
Santoni K, Pericat D, Gorse L, et al. Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa. PLoS Pathog 2022; 18(7): e1010305.
[http://dx.doi.org/10.1371/journal.ppat.1010305] [PMID: 35849616]
[239]
McIlroy DJ, Jarnicki AG, Au GG, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care 2014; 29(6): 1133.
[http://dx.doi.org/10.1016/j.jcrc.2014.07.013]
[240]
Wilson DF. Oxidative phosphorylation: Regulation and role in cellular and tissue metabolism. J Physiol 2017; 595(23): 7023-38.
[http://dx.doi.org/10.1113/JP273839] [PMID: 29023737]
[241]
Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998; 273(25): 15366-72.
[http://dx.doi.org/10.1074/jbc.273.25.15366] [PMID: 9624118]
[242]
Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, Pierpont ME. Biochemical and molecular basis for mitochondrial cardiomyopathy in neonates and children. J Inherit Metab Dis 2000; 23(6): 625-33.
[http://dx.doi.org/10.1023/A:1005638231195] [PMID: 11032337]
[243]
Russell AE. N Doll D, Sarkar SN, Simpkins JW. TNF-α and beyond: Rapid mitochondrial dysfunction mediates TNF-α-induced neurotoxicity. J Clin Cell Immunol 2016; 7(6): 467.
[http://dx.doi.org/10.4172/2155-9899.1000467] [PMID: 28652929]
[244]
Altara R, Zouein FA, Booz GW. Untangling the interplay between mitochondrial fission and NF-κB signaling in endothelial inflammation. Hypertension 2020; 76(1): 23-5.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14854] [PMID: 32520615]
[245]
Kapetanovic R, Afroz SF, Ramnath D, et al. Lipopolysaccharide promotes Drp1‐dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunol Cell Biol 2020; 98(7): 528-39.
[http://dx.doi.org/10.1111/imcb.12363] [PMID: 32686869]
[246]
Geto Z, Molla MD, Challa F, Belay Y, Getahun T. Mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases. J Inflamm Res 2020; 13: 97-107.
[http://dx.doi.org/10.2147/JIR.S232009] [PMID: 32110085]
[247]
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 2020; 8: 467.
[http://dx.doi.org/10.3389/fcell.2020.00467] [PMID: 32671064]
[248]
Tanzer MC. A proteomic perspective on TNF-mediated signalling and cell death. Biochem Soc Trans 2022; 50(1): 13-20.
[http://dx.doi.org/10.1042/BST20211114] [PMID: 35166321]
[249]
Kearney CJ, Cullen SP, Tynan GA, et al. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ 2015; 22(8): 1313-27.
[http://dx.doi.org/10.1038/cdd.2014.222] [PMID: 25613374]
[250]
Lu W, Sun J, Yoon JS, et al. Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLoS One 2016; 11(1): e0147792.
[http://dx.doi.org/10.1371/journal.pone.0147792] [PMID: 26807733]
[251]
Zhang S, Che L, He C, et al. Drp1 and RB interaction to mediate mitochondria-dependent necroptosis induced by cadmium in hepatocytes. Cell Death Dis 2019; 10(7): 523.
[http://dx.doi.org/10.1038/s41419-019-1730-y] [PMID: 31285421]
[252]
Rayamajhi M, Miao EA. The RIP1-RIP3 complex initiates mitochondrial fission to fuel NLRP3. Nat Immunol 2014; 15(12): 1100-2.
[http://dx.doi.org/10.1038/ni.3030] [PMID: 25396345]
[253]
Marshall KD, Baines CP. Necroptosis: Is there a role for mitochondria? Front Physiol 2014; 5: 323.
[http://dx.doi.org/10.3389/fphys.2014.00323] [PMID: 25206339]
[254]
Xue C, Gu X, Li G, Bao Z, Li L. Mitochondrial mechanisms of necroptosis in liver diseases. Int J Mol Sci 2020; 22(1): 66.
[http://dx.doi.org/10.3390/ijms22010066] [PMID: 33374660]
[255]
Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel AE. The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol 2000; 165(4): 1743-54.
[http://dx.doi.org/10.4049/jimmunol.165.4.1743] [PMID: 10925251]
[256]
Davis AF, Ropp PA, Clayton DA, Copeland WC. Mitochondrial DNA polymerase gamma is expressed and translated in the absence of mitochondrial DNA maintenance and replication. Nucleic Acids Res 1996; 24(14): 2753-9.
[http://dx.doi.org/10.1093/nar/24.14.2753] [PMID: 8759007]
[257]
Graziewicz MA, Day BJ, Copeland WC. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res 2002; 30(13): 2817-24.
[http://dx.doi.org/10.1093/nar/gkf392] [PMID: 12087165]
[258]
Sedlic F, Seiwerth F, Sepac A, et al. Mitochondrial ROS induce partial dedifferentiation of human mesothelioma via upregulation of NANOG. Antioxidants 2020; 9(7): 606.
[http://dx.doi.org/10.3390/antiox9070606] [PMID: 32664372]
[259]
Chan SSL, Copeland WC. DNA polymerase gamma and mitochondrial disease: Understanding the consequence of POLG mutations. Biochim Biophys Acta Bioenerg 2009; 1787(5): 312-9.
[http://dx.doi.org/10.1016/j.bbabio.2008.10.007] [PMID: 19010300]
[260]
Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol 2017; 12: 208-15.
[http://dx.doi.org/10.1016/j.redox.2017.02.012] [PMID: 28259101]
[261]
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012; 48(2): 158-67.
[http://dx.doi.org/10.1016/j.molcel.2012.09.025] [PMID: 23102266]
[262]
Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012; 148(1-2): 228-43.
[http://dx.doi.org/10.1016/j.cell.2011.11.030] [PMID: 22265414]
[263]
Morais VA, Haddad D, Craessaerts K, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 2014; 344(6180): 203-7.
[http://dx.doi.org/10.1126/science.1249161] [PMID: 24652937]
[264]
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183(5): 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[265]
Yoo SM, Jung YK. A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells 2018; 41(1): 18-26.
[http://dx.doi.org/10.14348/molcells.2018.2277] [PMID: 29370689]
[266]
Kim YJ, Choo OS, Lee JS, Jang JH, Woo HG, Choung YH. BCL2 interacting protein 3-like/NIX-mediated mitophagy plays an important role in the process of age-related hearing loss. Neuroscience 2021; 455: 39-51.
[http://dx.doi.org/10.1016/j.neuroscience.2020.12.005] [PMID: 33346118]
[267]
Iriondo MN, Etxaniz A, Varela YR, et al. LC3 subfamily in cardiolipin-mediated mitophagy: A comparison of the LC3A, LC3B and LC3C homologs. Autophagy 2022; 18(12): 2985-3003.
[http://dx.doi.org/10.1080/15548627.2022.2062111] [PMID: 35414338]
[268]
Zhang W. The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases. Genes Dis 2021; 8(5): 640-54.
[http://dx.doi.org/10.1016/j.gendis.2020.08.011] [PMID: 34291135]
[269]
Chen M, Chen Z, Wang Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 2016; 12(4): 689-702.
[http://dx.doi.org/10.1080/15548627.2016.1151580] [PMID: 27050458]
[270]
Diaz F, Kotarsky H, Fellman V, Moraes CT. Mitochondrial disorders caused by mutations in respiratory chain assembly factors. Semin Fetal Neonatal Med 2011; 16(4): 197-204.
[http://dx.doi.org/10.1016/j.siny.2011.05.004] [PMID: 21680271]
[271]
Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 2009; 19(7): 802-15.
[http://dx.doi.org/10.1038/cr.2009.69] [PMID: 19532122]
[272]
Szczepanowska J, Malinska D, Wieckowski MR, Duszynski J. Effect of mtDNA point mutations on cellular bioenergetics. Biochim Biophys Acta Bioenerg 2012; 1817(10): 1740-6.
[http://dx.doi.org/10.1016/j.bbabio.2012.02.028] [PMID: 22406627]
[273]
Paltiel HJ, O’Gorman AM, Meagher-Villemure K, Rosenblatt B, Silver K, Watters GV. Subacute necrotizing encephalomyelopathy (Leigh disease): CT study. Radiology 1987; 162(1): 115-8.
[http://dx.doi.org/10.1148/radiology.162.1.3786750] [PMID: 3786750]
[274]
Salama M, El-Desouky S, Alsayed A, et al. FOXRED1 silencing in mice: A possible animal model for Leigh syndrome. Metab Brain Dis 2019; 34(1): 367-72.
[http://dx.doi.org/10.1007/s11011-018-0334-z] [PMID: 30392038]
[275]
Takada R, Tozawa T, Kondo H, et al. Early infantile-onset Leigh syndrome complicated with infantile spasms associated with the m.9185 T > C variant in the MT-ATP6 gene: Expanding the clinical spectrum. Brain Dev 2020; 42(1): 69-72.
[http://dx.doi.org/10.1016/j.braindev.2019.08.006] [PMID: 31500933]
[276]
Baertling F, Rodenburg RJ, Schaper J, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry 2014; 85(3): 257-65.
[http://dx.doi.org/10.1136/jnnp-2012-304426] [PMID: 23772060]
[277]
Walker MA, Miranda M, Allred A, Mootha VK. On the dynamic and even reversible nature of Leigh syndrome: Lessons from human imaging and mouse models. Curr Opin Neurobiol 2022; 72: 80-90.
[http://dx.doi.org/10.1016/j.conb.2021.09.006] [PMID: 34656053]
[278]
Arii J, Tanabe Y. Leigh syndrome: Serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol 2000; 21(8): 1502-9.
[PMID: 11003287]
[279]
Lai LM, Gropman AL, Whitehead MT. MR neuroimaging in pediatric inborn errors of metabolism. Diagnostics 2022; 12(4): 861.
[http://dx.doi.org/10.3390/diagnostics12040861] [PMID: 35453911]
[280]
Saneto R. Alpers–Huttenlocher syndrome: The role of a multidisciplinary health care team. J Multidiscip Healthc 2016; 9: 323-33.
[http://dx.doi.org/10.2147/JMDH.S84900] [PMID: 27555780]
[281]
Saneto RP, Cohen BH, Copeland WC, Naviaux RK. Alpers-huttenlocher syndrome. Pediatr Neurol 2013; 48(3): 167-78.
[http://dx.doi.org/10.1016/j.pediatrneurol.2012.09.014] [PMID: 23419467]
[282]
Sofou K, Kollberg G, Holmström M, et al. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genomic Med 2015; 3(1): 59-68.
[http://dx.doi.org/10.1002/mgg3.115] [PMID: 25629079]
[283]
Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: An emerging group of developmental disorders of myelination. J Neurodev Disord 2019; 11(1): 29.
[http://dx.doi.org/10.1186/s11689-019-9292-y] [PMID: 31839000]
[284]
Wild KT, Goldstein AC, Muraresku C, Ganetzky RD. Broadening the phenotypic spectrum of Pearson syndrome: Five new cases and a review of the literature. Am J Med Genet A 2020; 182(2): 365-73.
[http://dx.doi.org/10.1002/ajmg.a.61433] [PMID: 31825167]
[285]
Yoshimi A, Ishikawa K, Niemeyer C, Grünert SC. Pearson syndrome: A multisystem mitochondrial disease with bone marrow failure. Orphanet J Rare Dis 2022; 17(1): 379.
[http://dx.doi.org/10.1186/s13023-022-02538-9] [PMID: 36253820]
[286]
Wittich C, Khambatta S, Nguyen D, Beckman T. Kearns–Sayre syndrome: A case series of 35 adults and children. Int J Gen Med 2014; 7: 325-32.
[http://dx.doi.org/10.2147/IJGM.S65560] [PMID: 25061332]
[287]
Channer KS, Channer JL, Campbell MJ, Rees JR. Cardiomyopathy in the Kearns-Sayre syndrome. Heart 1988; 59(4): 486-90.
[http://dx.doi.org/10.1136/hrt.59.4.486] [PMID: 3370184]
[288]
Sabella-Jiménez V, Otero-Herrera C, Silvera-Redondo C, Garavito-Galofre P. Mitochondrial DNA deletion and duplication in Kearns–Sayre Syndrome (KSS) with initial presentation as Pearson Marrow‐Pancreas Syndrome (PMPS): Two case reports in Barranquilla, Colombia. Mol Genet Genomic Med 2020; 8(11): e1509.
[http://dx.doi.org/10.1002/mgg3.1509] [PMID: 33030289]
[289]
Zhu Q, Chen C, Yao J. Kearns–Sayre syndrome with a novel large-scale deletion: A case report. BMC Ophthalmol 2022; 22(1): 35.
[http://dx.doi.org/10.1186/s12886-021-02224-7] [PMID: 35073857]
[290]
Liang M, Guan M, Zhao F, et al. Leber’s hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation. Biochem Biophys Res Commun 2009; 383(3): 286-92.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.097] [PMID: 19324017]
[291]
Guo DY, Wang XW, Hong N, Gu YS. A Meta-analysis of the association between different genotypes (G11778A, T14484C and G3460A) of Leber hereditary optic neuropathy and visual prognosis. Int J Ophthalmol 2016; 9(10): 1493-8.
[http://dx.doi.org/10.18240/ijo.2016.10.21] [PMID: 27803870]
[292]
Man PYW, Turnbull DM, Chinnery PF. Leber hereditary optic neuropathy. J Med Genet 2002; 39(3): 162-9.
[http://dx.doi.org/10.1136/jmg.39.3.162] [PMID: 11897814]
[293]
Graham EC, You Y, Yiannikas C, et al. Progressive loss of retinal ganglion cells and axons in nonoptic neuritis eyes in multiple sclerosis: A longitudinal optical coherence tomography study. Invest Ophthalmol Vis Sci 2016; 57(4): 2311-7.
[http://dx.doi.org/10.1167/iovs.15-19047] [PMID: 27127930]
[294]
Henry C, Patel N, Shaffer W, Murphy L, Park J, Spieler B. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes-MELAS syndrome. Ochsner J 2017; 17(3): 296-301.
[PMID: 29026367]
[295]
Schild C, Hahn D, Schaller A, et al. Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation. Amino Acids 2014; 46(7): 1775-83.
[http://dx.doi.org/10.1007/s00726-014-1730-2] [PMID: 24710704]
[296]
Mustafa MF, Fakurazi S, Abdullah MA, Maniam S. Pathogenic mitochondria DNA mutations: Current detection tools and interventions. Genes 2020; 11(2): 192.
[http://dx.doi.org/10.3390/genes11020192] [PMID: 32059522]
[297]
El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 2015; 116(1-2): 4-12.
[http://dx.doi.org/10.1016/j.ymgme.2015.06.004] [PMID: 26095523]
[298]
Pizzorno J. Mitochondria-fundamental to life and health. Integr Med 2014; 13(2): 8-15.
[PMID: 26770084]
[299]
Kanungo S, Morton J, Neelakantan M, Ching K, Saeedian J, Goldstein A. Mitochondrial disorders. Ann Transl Med 2018; 6(24): 475.
[http://dx.doi.org/10.21037/atm.2018.12.13] [PMID: 30740406]
[300]
Angelini C, Bello L, Spinazzi M, Ferrati C. Mitochondrial disorders of the nuclear genome. Acta Myol 2009; 28(1): 16-23.
[PMID: 19772191]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy