Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Carbon Dots Hybrid Nanostructure-based Electrochemical Sensors: Applications in Determining Different Species in a Real Sample

Author(s): Joao A. Ferreira, Luccas L. Name, Laura C. Lieb, Daniel Y. Tiba, Mariana M. da Silva, Aprys C. Oliveira and Thiago C. Canevari*

Volume 20, Issue 1, 2024

Published on: 27 January, 2023

Page: [31 - 46] Pages: 16

DOI: 10.2174/1573413719666221221095901

Price: $65

Open Access Journals Promotions 2
Abstract

This overview describes the synthesis, characterization, and application of different carbon dots hybrid nanostructures obtained by chemical interaction between nanomaterials or nanomaterials bonded to another material, i.e. silicon (SiO2/Carbon dots-N), reduced graphene oxide (rGO/Carbon dots), multiwalled carbon nanotubes (MWCNTs/Carbon dots), nano magnetite (Carbon dots/Fe3O4), reduced graphene oxide and gold nanoparticles (rGO/Carbon dots/AuNPs), copper oxide (CuO/Carbon dots), and Carbon dots/Metallic NPs that were employed in the development of electrochemical (bio)sensors. The formation of different carbon dots hybrid nanostructures has been characterized by X-ray diffraction (XRD), Raman and ultraviolet- visible spectroscopy, atomic force microscopy (AFM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical techniques. These carbon dots hybrid nanostructures have been used to modify the surface of glassy carbon and screen-printed electrodes and to determine various analytes, i.e., dopamine, uric acid, paracetamol, ephynefrin, dihydroxybenzenes, pesticides, endocrine disruptors, NADH, and other substances in real samples.

Keywords: Carbon dots, hybrid nanomaterials, electrochemical sensors, real samples, XRD, AFM.

Graphical Abstract
[1]
Zen, J.M.; Senthil Kumar, A.; Tsai, D.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15(13), 1073.
[http://dx.doi.org/10.1002/elan.200390130]
[2]
Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Analyt. Chem., 2016, 76, 15-29.
[http://dx.doi.org/10.1016/j.trac.2015.09.006]
[3]
Baig, N.; Sajid, M.; Saleh, T.A. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. Trends Analyt. Chem., 2019, 111, 47-61.
[http://dx.doi.org/10.1016/j.trac.2018.11.044]
[4]
Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev., 2014, 114(14), 7150-7188.
[http://dx.doi.org/10.1021/cr500023c] [PMID: 24895834]
[5]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87(1), 230-249.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[6]
Wang, J. Nanomaterial-based electrochemical biosensors. Analyst, 2005, 130(4), 421-426.
[http://dx.doi.org/10.1039/b414248a] [PMID: 15846872]
[7]
Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Analyt. Chem., 2016, 79, 114-126.
[http://dx.doi.org/10.1016/j.trac.2016.01.032]
[8]
Lindsay, S. Introduction to nanoscience; Oxford University Press: Oxford, 2010.
[9]
Lahmani, M.; Bréchignac, C.; Houdy, P. Nanomaterials and nanochemistry; Berlin, Springer, 2007.
[10]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[11]
Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 115(11), 4744-4822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[12]
Cayuela, A.; Soriano, M.L.; Carrillo-Carrión, C.; Valcárcel, M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun., 2016, 52(7), 1311-1326.
[http://dx.doi.org/10.1039/C5CC07754K] [PMID: 26671042]
[13]
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res., 2015, 8(2), 355-381.
[http://dx.doi.org/10.1007/s12274-014-0644-3]
[14]
Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed., 2010, 49(38), 6726-6744.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[15]
Chua, C.K.; Sofer, Z.; Šimek, P.; Jankovský, O.; Klímová, K.; Bakardjieva, S. Hrdličková K.Š.; Pumera, M. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano, 2015, 9(3), 2548-2555.
[http://dx.doi.org/10.1021/nn505639q] [PMID: 25761306]
[16]
Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale, 2013, 5(10), 4015-4039.
[http://dx.doi.org/10.1039/c3nr33849e] [PMID: 23579482]
[17]
Zhang, R.; Wang, L.; Ettoumi, F.; Javed, M.; Li, L.; Lin, X.; Xu, Y.; Lu, Y.; Shao, X.; Luo, Z. Ultrasonic-assisted green extraction of peach gum polysaccharide for blue-emitting carbon dots synthesis. Sustain. Chem. Pharm., 2021, 24, 100555.
[http://dx.doi.org/10.1016/j.scp.2021.100555]
[18]
Zhou, W.; Liu, C.; Fan, J.; Luo, J.; Liu, L.; Huang, J.; Liu, R.; Zhang, X. Red-emitting carbon dots as luminescent agent in wide-range water detection in organic solvents and polarity-selective zebrafish imaging. J. Alloys Compd., 2022, 920, 165963.
[http://dx.doi.org/10.1016/j.jallcom.2022.165963]
[19]
Pho, Q.H.; Lin, L.; Tran, N.N.; Tran, T.T.; Nguyen, A.H.; Losic, D.; Rebrov, E.V.; Hessel, V. Rational design for the microplasma synthesis from vitamin B9 to N-doped carbon quantum dots towards selected applications. Carbon, 2022, 198, 22-33.
[http://dx.doi.org/10.1016/j.carbon.2022.07.004]
[20]
Shen, L.; Zhou, S.; Huang, F.; Zhou, H.; Zhang, H.; Wang, S.; Zhou, S. Nitrogen-doped graphene quantum dots synthesized by femtosecond laser ablation in liquid from laser induced graphene. Nanotechnology, 2022, 33(11), 115602.
[http://dx.doi.org/10.1088/1361-6528/ac4069] [PMID: 34874289]
[21]
Tang, H.; Tang, Y.; Xiao, M.; Zhu, H.; Guo, M. Study on microwave synthesis mechanism of carbon dots based on NMR characterization. Colloids Surf. A Physicochem. Eng. Asp., 2022, 651, 129564.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129564]
[22]
Kurian, M.; Paul, A. Recent trends in the use of green sources for carbon dot synthesis-A short review. Carbon Trends, 2021, 3, 100032.
[http://dx.doi.org/10.1016/j.cartre.2021.100032]
[23]
Zhang, P.; Zhao, S.S.; Wang, J.J.; Liu, X.R. Nitrogen-doped carbon dots from Hutai-8 grape skin and their application in Hg2+ detection. Curr. Nanosci., 2021, 17(2), 338-347.
[http://dx.doi.org/10.2174/1573413716999200819201126]
[24]
Xie, F.; Yang, M.; Jiang, M.; Huang, X.J.; Liu, W.Q.; Xie, P.H. Carbon-based nanomaterials - A promising electrochemical sensor toward persistent toxic substance. Trends Analyt. Chem., 2019, 119, 115624.
[http://dx.doi.org/10.1016/j.trac.2019.115624]
[25]
Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of carbon and graphene quantum dots for sensing. ACS Sens., 2019, 4(7), 1732-1748.
[http://dx.doi.org/10.1021/acssensors.9b00514] [PMID: 31267734]
[26]
Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9(5), 590-603.
[http://dx.doi.org/10.1016/j.nantod.2014.09.004]
[27]
Amiri, M.; Imanzadeh, H.; Sefid-Sefidehkhan, Y. An overview on electrochemical sensors based on nanomaterials for the determination of drugs of abuse. Curr. Drug Deliv., 2021, 18(2), 162-183.
[http://dx.doi.org/10.2174/1567201817666200520084835] [PMID: 32433004]
[28]
Mansuriya, B.; Altintas, Z. Applications of graphene quantum dots in biomedical sensors. Sensors, 2020, 20(4), 1072.
[http://dx.doi.org/10.3390/s20041072] [PMID: 32079119]
[29]
Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Carbon nanomaterial-based drug sensing platforms using state of the art electroanalytical techniques. Curr. Anal. Chem., 2022, 18(1), 79-101.
[http://dx.doi.org/10.2174/1573411016999200802024629]
[30]
Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B, 2021, 272, 115341.
[http://dx.doi.org/10.1016/j.mseb.2021.115341]
[31]
Fu, S.; Zhu, Y.; Zhang, Y.; Zhang, M.; Zhang, Y.; Qiao, L.; Yin, N.; Song, K.; Liu, M.; Wang, D. Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem. J., 2021, 171, 106776.
[http://dx.doi.org/10.1016/j.microc.2021.106776]
[32]
Elugoke, S.E.; Adekunle, A.S.; Fayemi, O.E.; Mamba, B.B.; Sherif, E.S.M.; Ebenso, E.E. Carbon-based quantum dots for electrochemical detection of monoamine neurotransmitters—review. Biosensors (Basel), 2020, 10(11), 162.
[http://dx.doi.org/10.3390/bios10110162] [PMID: 33142771]
[33]
Wang, X.; Feng, Y.; Dong, P.; Huang, J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front Chem., 2019, 7, 671.
[http://dx.doi.org/10.3389/fchem.2019.00671] [PMID: 31637234]
[34]
Nalwa, H.S., Ed.; Nanostructured materials and nanotechnology: concise edition; Amsterdam, Elsevier, 2001.
[35]
Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of organic-inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv. Funct. Mater., 2018, 28(27), 1704158.
[http://dx.doi.org/10.1002/adfm.201704158]
[36]
Ajala, O.J.; Tijani, J.O.; Bankole, M.T.; Abdulkareem, A.S. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag., 2022, 18, 100673.
[http://dx.doi.org/10.1016/j.enmm.2022.100673]
[37]
Walcarius, A. Silica-based electrochemical sensors and biosensors: Recent trends. Curr. Opin. Electrochem., 2018, 10, 88-97.
[http://dx.doi.org/10.1016/j.coelec.2018.03.017]
[38]
Miecznikowski, K.; Cox, J.A. Electroanalysis based on stand-alone matrices and electrode-modifying films with silica sol-gel frameworks: A review. J. Solid State Electrochem., 2020, 24(11-12), 2617-2631.
[http://dx.doi.org/10.1007/s10008-020-04697-w]
[39]
Li, W.; Wu, S.; Xu, X.; Zhuang, J.; Zhang, H.; Zhang, X.; Hu, C.; Lei, B.; Kaminski, C.F.; Liu, Y. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater., 2019, 31(23), 9887-9894.
[http://dx.doi.org/10.1021/acs.chemmater.9b04120]
[40]
Tan, L.; He, C. Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf. B Biointerfaces, 2021, 199, 111508.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111508] [PMID: 33340932]
[41]
Messina, F.; Sciortino, L.; Buscarino, G.; Agnello, S.; Gelardi, F.; Cannas, M. Photoluminescence of carbon dots embedded in a SiO2 matrix. Mater. Today Proc., 2016, 3, S258-S265.
[http://dx.doi.org/10.1016/j.matpr.2016.02.043]
[42]
Zhan, Y.; Shang, B.; Chen, M.; Wu, L. One-;step synthesis of silica-;coated carbon dots with controllable solid-;state fluorescence for white light-;emitting diodes. Small, 2019, 15(24), 1901161.
[http://dx.doi.org/10.1002/smll.201901161] [PMID: 31045324]
[43]
Cesana, R.; Ferreira, J.H.; Gonçalves, J.M.; Gomes, D.; Nakamura, M.; Peres, R.M.; Toma, H.E.; Canevari, T.C. Fluorescent Cdots (N)-Silica composites: Direct synthesis and application as electrochemical sensor of fenitrothion pesticide. J. Mar. Sci. Eng., 2021, 267, 115084.
[http://dx.doi.org/10.1016/j.mseb.2021.115084]
[44]
Canevari, T.C.; Nakamura, M.; Cincotto, F.H.; de Melo, F.M.; Toma, H.E. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim. Acta, 2016, 209(209), 464-470.
[http://dx.doi.org/10.1016/j.electacta.2016.05.108]
[45]
Sengupta, J.; Adhikari, A.; Hussain, C.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends, 2021, 4, 100072.
[http://dx.doi.org/10.1016/j.cartre.2021.100072]
[46]
Eigler, S.; Hirsch, A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew. Chem. Int. Ed., 2014, 53(30), 7720-7738.
[http://dx.doi.org/10.1002/anie.201402780] [PMID: 24962439]
[47]
Zhang, Z.; Schniepp, H.C.; Adamson, D.H. Characterization of graphene oxide: Variations in reported approaches. Carbon, 2019, 154, 510-521.
[http://dx.doi.org/10.1016/j.carbon.2019.07.103]
[48]
Han, S.; Li, W.; Xi, H.; Yuan, R.; Long, J.; Xu, C. Plasma-assisted in-situ preparation of graphene-Ag nanofiltration membranes for efficient removal of heavy metal ions. J. Hazard. Mater., 2022, 423(Pt A), 127012.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127012] [PMID: 34461540]
[49]
Huang, X.; Yu, G.; Zhang, Y.; Zhang, M.; Shao, G. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J., 2021, 426, 131894.
[http://dx.doi.org/10.1016/j.cej.2021.131894]
[50]
Lesiak, B.; Trykowski, G.; Tóth, J.; Biniak, S.; Kövér, L.; Rangam, N.; Stobinski, L.; Malolepszy, A. Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. J. Mater. Sci., 2021, 56(5), 3738-3754.
[http://dx.doi.org/10.1007/s10853-020-05461-1]
[51]
Canevari, T.C.; Rossi, M.V.; Alexiou, A.D.P. Development of an electrochemical sensor of endocrine disruptor bisphenol A by reduced graphene oxide for incorporation of spherical carbon nanoparticles. J. Electroanal. Chem., 2019, 832, 24-30.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.044]
[52]
Hu, S.; Huang, Q.; Lin, Y.; Wei, C.; Zhang, H.; Zhang, W.; Guo, Z.; Bao, X.; Shi, J.; Hao, A. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim. Acta, 2014, 130, 805-809.
[http://dx.doi.org/10.1016/j.electacta.2014.02.150]
[53]
Cesana, R.; Gonçalves, J.M.; Ignácio, R.M.; Nakamura, M.; Zamarion, V.M.; Toma, H.E.; Canevari, T.C. Synthesis and characterization of nanocomposite based on reduced graphene oxide-gold nanoparticles-carbon dots: Electroanalytical determination of dihydroxybenzene isomers simultaneously. J. Nanopart. Res., 2020, 22(10), 336.
[http://dx.doi.org/10.1007/s11051-020-05059-3]
[54]
Iijima, S. Synthesis of carbon nanotubes. Nature, 1991, 354, 56.
[http://dx.doi.org/10.1038/354056a0]
[55]
De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science, 2013, 339(6119), 535-539.
[http://dx.doi.org/10.1126/science.1222453] [PMID: 23372006]
[56]
Guldi, D.M.; Martin, N., Eds.; Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications; Wiley-Vch, 2010.
[http://dx.doi.org/10.1002/9783527629930]
[57]
Viswanathan, S.; Radecka, H.; Radecki, J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens. Bioelectron., 2009, 24(9), 2772-2777.
[http://dx.doi.org/10.1016/j.bios.2009.01.044] [PMID: 19269805]
[58]
Kulakovskaya, S.I.; Kulikov, A.V.; Zyubina, T.S.; Zyubin, A.S.; Konev, D.V.; Sviridova, L.N.; Stenina, E.V.; Ryabenko, A.G; Zolotukhina, E.V. Role of non-covalent interactions at the oxidation of 2, 5-di-Me-pyrazine-di-N-oxide at glassy carbon, single-walled and multi-walled carbon nanotube paper electrodes. Carbon trends, 2021, 4, 100057.
[http://dx.doi.org/10.1016/j.cartre.2021.100057]
[59]
Canevari, T.C.; Cincotto, F.H.; Nakamura, M.; Machado, S.A.S.; Toma, H.E. Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Anal. Methods, 2016, 8(39), 7254-7259.
[http://dx.doi.org/10.1039/C6AY02178F]
[60]
Ganesan, M.; Ramadhass, K.D.; Chuang, H.C.; Gopalakrishnan, G. Synthesis of nitrogen-doped carbon quantum dots@Fe2O3/multiwall carbon nanotubes ternary nanocomposite for the simultaneous electrochemical detection of 5-fluorouracil, uric acid, and xanthine. J. Mol. Liq., 2021, 331, 115768.
[http://dx.doi.org/10.1016/j.molliq.2021.115768]
[61]
Muthusankar, G.; Sethupathi, M.; Chen, S.M.; Devi, R.K.; Vinoth, R.; Gopu, G.; Anandhan, N.; Sengottuvelan, N. N-doped carbon quantum dots @ hexagonal porous copper oxide decorated multiwall carbon nanotubes: A hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Compos., Part B Eng., 2019, 174, 106973.
[http://dx.doi.org/10.1016/j.compositesb.2019.106973]
[62]
Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci., 2019, 54(2), 949-973.
[http://dx.doi.org/10.1007/s10853-018-2961-5]
[63]
Wu, H.; Xiao, K.; Ouyang, T.; Wang, Z.; Chen, Y.; Li, N.; Liu, Z.Q. Co-Cr mixed spinel oxide nanodots anchored on nitrogen-doped carbon nanotubes as catalytic electrode for hydrogen peroxide sensing. J. Colloid Interface Sci., 2021, 585, 605-613.
[http://dx.doi.org/10.1016/j.jcis.2020.10.040] [PMID: 33139019]
[64]
Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors, 2021, 21(7), 2494.
[http://dx.doi.org/10.3390/s21072494] [PMID: 33916680]
[65]
Gushikem, Y.; Rosatto, S.S. Metal oxide thin films grafted on silica gel surfaces: Recent advances on the analytical application of these materials. J. Braz. Chem. Soc., 2001, 12(6), 695.
[http://dx.doi.org/10.1590/S0103-50532001000600002]
[66]
Şerban, I.; Enesca, A. Metal oxides-based semiconductors for biosensors applications. Front Chem., 2020, 8, 354.
[http://dx.doi.org/10.3389/fchem.2020.00354] [PMID: 32509722]
[67]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[68]
Canevari, T.C.; Cincotto, F.H.; Gomes, D.; Landers, R.; Toma, H.E. Magnetite nanoparticles bonded carbon quantum dots magnetically confined onto screen printed carbon electrodes and their performance as electrochemical sensor for NADH. Electroanalysis, 2017, 29(8), 1968-1975.
[http://dx.doi.org/10.1002/elan.201700167]
[69]
Cincotto, F.H.; Carvalho, D.A.S.; Canevari, T.C.; Toma, H.E.; Fatibello-Filho, O.; Moraes, F.C. A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Advances, 2018, 8(25), 14040-14047.
[http://dx.doi.org/10.1039/C8RA01857J] [PMID: 35539351]
[70]
Pangajam, A.; Theyagarajan, K.; Dinakaran, K. Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. Sens. Biosensing Res., 2020, 29, 100317.
[http://dx.doi.org/10.1016/j.sbsr.2019.100317]
[71]
Zhan, T.; Ding, G.; Cao, W.; Li, J.; She, X.; Teng, H. Amperometric sensing of catechol by using a nanocomposite prepared from Ag/Ag2O nanoparticles and N,S-doped carbon quantum dots. Mikrochim. Acta, 2019, 186(11), 743.
[http://dx.doi.org/10.1007/s00604-019-3848-0] [PMID: 31686218]
[72]
El-Shamy, A.G. New nano-composite based on carbon dots (CDots) decorated magnesium oxide (MgO) nano-particles (CDots@MgO) sensor for high H2S gas sensitivity performance. Sens. Actuators B Chem., 2021, 329, 129154.
[http://dx.doi.org/10.1016/j.snb.2020.129154]
[73]
Lu, Z.; Du, X.; Sun, M.; Zhang, Y.; Li, Y.; Wang, X.; Wang, Y.; Du, H.; Yin, H.; Rao, H. Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe2O4/CoFe2O4/NCDs nanospheres: Fabrication, application and DFT theoretical study. Biosens. Bioelectron., 2021, 190, 113408.
[http://dx.doi.org/10.1016/j.bios.2021.113408] [PMID: 34126330]
[74]
Devi, R.K.; Ganesan, M.; Chen, T.W.; Chen, S.M.; Liu, X.; Ali, M.A.; Almutairi, S.M.; Sethupathi, M. Surface engineering of gadolinium oxide nanoseeds with nitrogen-doped carbon quantum dots: an efficient nanocomposite for precise detection of antibiotic drug clioquinol. New J. Chem., 2022, 46(9), 4090-4102.
[http://dx.doi.org/10.1039/D1NJ05243H]
[75]
Feng, X.; Han, G.; Cai, J.; Wang, X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J. Colloid Interface Sci., 2022, 607(Pt 2), 1313-1322.
[http://dx.doi.org/10.1016/j.jcis.2021.09.036] [PMID: 34583036]
[76]
Zhan, X.; Hu, S.; Wang, J.; Chen, H.; Chen, X.; Yang, J.; Yang, H.; Su, Z. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples. Sens. Actuators B Chem., 2021, 346, 130499.
[http://dx.doi.org/10.1016/j.snb.2021.130499]
[77]
Yang, X.; Yan, Z.; Huang, R.; Wang, J.; Cui, Y.; Liu, Y. An enzyme-free glucose electrochemical sensor for detection of the glucose in serum based on nickel nanoparticle/carbon quantum dots. Int. J. Electrochem. Sci., 2021, 16, 210528.
[http://dx.doi.org/10.20964/2021.05.57]
[78]
Louleb, M.; Latrous, L.; Ríos, Á.; Zougagh, M.; Rodríguez-Castellón, E.; Algarra, M.; Soto, J. Detection of dopamine in human fluids using N-doped carbon dots. ACS Appl. Nano Mater., 2020, 3(8), 8004-8011.
[http://dx.doi.org/10.1021/acsanm.0c01461]
[79]
Ali, S.; Ma, Y.; Parajuli, R.; Balogun, Y.; Lai, W. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem., 2007, 79(6), 2583-2587.
[http://dx.doi.org/10.1021/ac062068o]
[80]
Adekunle, A.; Agboola, B.; Pillay, J.; Ozoemena, K. Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sens. Actuators B Chem., 2010, 148(1), 93-102.
[http://dx.doi.org/10.1016/j.snb.2010.03.088]
[81]
Li, W.; Ding, L.; Wang, Q.; Su, B. Differential pulse voltammetry detection of dopamine and ascorbic acid by permselective silica mesochannels vertically attached to the electrode surface. Analyst, 2014, 139(16), 3926-3931.
[http://dx.doi.org/10.1039/C4AN00605D] [PMID: 24949496]
[82]
Wang, K.; Liu, P.; Ye, Y.; Li, J.; Zhao, W.; Huang, X. Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sens. Actuators B Chem., 2014, 197, 292-299.
[http://dx.doi.org/10.1016/j.snb.2014.03.002]
[83]
del Barrio, M.; Rana, M.; Vilatela, J.J.; Lorenzo, E.; De Lacey, A.L.; Pita, M. Photoelectrocatalytic detection of NADH on n-type silicon semiconductors facilitated by carbon nanotube fibers. Electrochim. Acta, 2021, 377, 138071.
[http://dx.doi.org/10.1016/j.electacta.2021.138071]
[84]
Zhang, Y.; Bo, X.; Nsabimana, A.; Luhana, C.; Wang, G.; Wang, H.; Li, M.; Guo, L. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens. Bioelectron., 2014, 53, 250-256.
[http://dx.doi.org/10.1016/j.bios.2013.10.001] [PMID: 24144555]
[85]
Rębiś T.; Kuznowicz, M.; Jędrzak, A.; Milczarek, G.; Jesionowski, T. Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim. Acta, 2021, 386, 138384.
[http://dx.doi.org/10.1016/j.electacta.2021.138384]
[86]
Manusha, P.; Yadav, S.; Satija, J.; Senthilkumar, S. Designing electrochemical NADH sensor using silver nanoparticles/phenothiazine nanohybrid and investigation on the shape dependent sensing behavior. Sens. Actuators B Chem., 2021, 347, 130649.
[http://dx.doi.org/10.1016/j.snb.2021.130649]
[87]
Li, X.; Kan, X. A boronic acid carbon nanodots/poly(thionine) sensing platform for the accurate and reliable detection of NADH. Bioelectrochemistry, 2019, 130, 107344.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107344] [PMID: 31404808]
[88]
Wei, C.; Huang, Q.; Hu, S.; Zhang, H.; Zhang, W.; Wang, Z.; Zhu, M.; Dai, P.; Huang, L. Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim. Acta, 2014, 149, 237-244.
[http://dx.doi.org/10.1016/j.electacta.2014.10.051]
[89]
Xu, G.; Li, B.; Luo, X. Carbon nanotube doped poly(3,4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sens. Actuators B Chem., 2013, 176, 69-74.
[http://dx.doi.org/10.1016/j.snb.2012.09.001]
[90]
Tashkhourian, J.; Daneshi, M.; Nami-Ana, F.; Behbahani, M.; Bagheri, A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J. Hazard. Mater., 2016, 318, 117-124.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.049] [PMID: 27420383]
[91]
Liu, Z.; Liao, D.; Yu, J.; Jiang, X. An electrochemical sensor based on oxygen-vacancy cobalt-aluminum layered double hydroxides and hydroxylated multiwalled carbon nanotubes for catechol and hydroquinone detection. Microchem. J., 2022, 175, 107216.
[http://dx.doi.org/10.1016/j.microc.2022.107216]
[92]
Lou, C.; Jing, T.; Zhou, J.; Tian, J.; Zheng, Y.; Wang, C.; Zhao, Z.; Lin, J.; Liu, H.; Zhao, C.; Guo, Z. Laccase immobilized polyaniline/magnetic graphene composite electrode for detecting hydroquinone. Int. J. Biol. Macromol., 2020, 149, 1130-1138.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.248] [PMID: 32001285]
[93]
Özcan, A. Topçuoğulları D.; Atılır Özcan, A. Fenitrothion sensing with reduced graphene oxide decorated fumed silica nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem., 2019, 284, 179-185.
[http://dx.doi.org/10.1016/j.snb.2018.12.122]
[94]
Kokulnathan, T.; Wang, T.J.; Duraisamy, N.; Kumar, E.A. Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: Robust electrochemical platform for detection of fenitrothion. J. Hazard. Mater., 2021, 412, 125257.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125257] [PMID: 33548779]
[95]
Jangid, K.; Sahu, R.P.; Pandey, R.; Chen, R.; Zhitomirsky, I.; Puri, I.K. Multiwalled carbon nanotubes coated with nitrogen-sulfur co-doped activated carbon for detecting fenitrothion. ACS Appl. Nano Mater., 2021, 4(5), 4781-4789.
[http://dx.doi.org/10.1021/acsanm.1c00376]
[96]
Kumaravel, A.; Murugananthan, M. Electrochemical detection of fenitrothion usingnanosilver/dodecane modified glassy carbon electrode. Sens. Actuators B Chem., 2021, 331, 129467.
[http://dx.doi.org/10.1016/j.snb.2021.129467]
[97]
Kilele, J.C.; Chokkareddy, R.; Redhi, G.G. Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@CoFe2O4NPs@MWCNTs nanocomposite. Microchem. J., 2021, 164, 106012.
[http://dx.doi.org/10.1016/j.microc.2021.106012]
[98]
Chen, W.; Wang, H.; Tang, H.; Yang, C.; Guan, X.; Li, Y. Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots. Mikrochim. Acta, 2019, 186(6), 350.
[http://dx.doi.org/10.1007/s00604-019-3486-6]
[99]
Villa-Manso, A.M.; Revenga-Parra, M.; Vera-Hidalgo, M.; Vázquez Sulleiro, M.; Pérez, E.M.; Lorenzo, E.; Pariente, F. II 2D MoS2 nanosheets and hematein complexes deposited on screen-printed graphene electrodes as an efficient electrocatalytic sensor for detecting hydrazine. Sens. Actuators B Chem., 2021, 345, 130385.
[http://dx.doi.org/10.1016/j.snb.2021.130385]
[100]
Singht, M.; Bhardiya, S.; Asati, A.; Sheshma, H.; Rai, A.; Rai, V. Design of a sensitive electrochemical sensor based on ferrocene-;reduced graphene oxide/Mn-;spinel for hydrazine detection. Electroanalysis, 2021, 33(2), 464-472.
[http://dx.doi.org/10.1002/elan.202060345]
[101]
Chiani, E.; Azizi, S.; Ghasemi, S. Superior electrocatalyst based on mesoporous silica nanoparticles/carbon nanotubes modified by platinum-copper bimetallic nanoparticles for amperometric detection of hydrazine. Int. J. Hydrogen Energy, 2022, 47(46), 20087-20102.
[http://dx.doi.org/10.1016/j.ijhydene.2022.04.118]
[102]
Mohammad, A.; Ehtisham Khan, M.; Alarifi, I.M.; Hwan Cho, M.; Yoon, T. A sensitive electrochemical detection of hydrazine based on SnO2/CeO2 nanostructured oxide. Microchem. J., 2021, 171, 106784.
[http://dx.doi.org/10.1016/j.microc.2021.106784]
[103]
Rajesh, K.; Kumar, D.; Bhargav, P.; Manigandan, R.; Ahmed, N.; Balaji, C.; Shim, J. Carbon dot-V2O5 layered nanoporous architectures for electrochemical detection of Bisphenol A: An analytical approach. J. Environ. Chem. Eng., 2022, 10(5), 108206.
[http://dx.doi.org/10.1016/j.jece.2022.108206]
[104]
Bas, S.Z.; Yuncu, N.; Atacan, K.; Ozmen, M. A comparison study of MFe2O4 (M: Ni, Cu, Zn)-reduced graphene oxide nanocomposite for electrochemical detection of bisphenol A. Electrochim. Acta, 2021, 386, 138519.
[http://dx.doi.org/10.1016/j.electacta.2021.138519]
[105]
Chen, Y.; Li, W.; Li, J.; Zhuo, S.; Jiao, S.; Wang, S.; Sun, J.; Li, Q.; Zheng, T. Stable three-dimensional porous silicon-carbon-gold composite film for enrichment and directly electrochemical detection of bisphenol A. Microchem. J., 2021, 171, 106881.
[http://dx.doi.org/10.1016/j.microc.2021.106881]
[106]
Baghayeri, M.; Amiri, A.; Fayazi, M.; Nodehi, M.; Esmaeelnia, A. Electrochemical detection of bisphenol a on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater. Chem. Phys., 2021, 261, 124247.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124247]
[107]
Ali, M.Y.; Alam, A.U.; Howlader, M.M.R. Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sens. Actuators B Chem., 2020, 320, 128319.
[http://dx.doi.org/10.1016/j.snb.2020.128319]
[108]
Luhana, C.; Moyo, I.; Tshenkeng, K.; Mashazi, P. In-sera selectivity detection of catecholamine neurotransmitters using covalent composite of cobalt phthalocyanine and aminated graphene quantum dots. Microchem. J., 2022, 180, 107605.
[http://dx.doi.org/10.1016/j.microc.2022.107605]
[109]
Boopathy, G.; Keerthi, M.; Chen, S.M.; Umapathy, M.J.; Kumar, B.N. Highly porous nickel molybdate@graphene oxide nanocomposite for the ultrasensitive electrochemical detection of environmental toxic pollutant catechol. Mater. Chem. Phys., 2020, 239, 121982.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121982]
[110]
Kaleeswarran, P.; Sakthi Priya, T.; Chen, T.W.; Chen, S.M.; Kokulnathan, T.; Arumugam, A. Construction of a copper bismuthate/graphene nanocomposite for electrochemical detection of catechol. Langmuir, 2022, 38(33), 10162-10172.
[http://dx.doi.org/10.1021/acs.langmuir.2c01151] [PMID: 35939572]
[111]
Kunpatee, K.; Traipop, S.; Chailapakul, O.; Chuanuwatanakul, S. Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuators B Chem., 2020, 314, 128059.
[http://dx.doi.org/10.1016/j.snb.2020.128059]
[112]
Yan, Q.; Zhi, N.; Yang, L.; Xu, G.; Feng, Q.; Zhang, Q.; Sun, S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep., 2020, 10(1), 10607.
[http://dx.doi.org/10.1038/s41598-020-67394-8] [PMID: 32606291]
[113]
Fukuda, T.; Muguruma, H.; Iwasa, H.; Tanaka, T.; Hiratsuka, A.; Shimizu, T.; Tsuji, K.; Kishimoto, T. Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube/carboxymethylcellulose electrode. Anal. Biochem., 2020, 590, 113533.
[http://dx.doi.org/10.1016/j.ab.2019.113533] [PMID: 31836385]
[114]
Reddy, V.M.Y.; Sravani, B.; Agarwal, S.; Gupta, V.K.; Madhavi, G. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode. J. Electroanal. Chem. (Lausanne), 2018, 820, 168-175.
[http://dx.doi.org/10.1016/j.jelechem.2018.04.059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy