Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

A Mini-review on the Application of Chemically Modified Sensing Platforms for the Detection of Heavy Metal Ions in Water

Author(s): Abdul Shaban*, Larbi Eddaif and Tamás Szabó*

Volume 19, Issue 3, 2023

Published on: 06 January, 2023

Page: [199 - 219] Pages: 21

DOI: 10.2174/1573411019666221213161240

Price: $65

Abstract

High levels of metallic ions, particularly heavy metals, can cause serious damage not only to public health but to the whole ecosystem. Therefore, rapid and precise detection and monitoring of heavy metals have become vital. The detection of heavy metals in water using conventional monitoring approaches based on physicochemical and analytical procedures, e.g., inductively coupled plasma combined with atomic absorption spectroscopy, X-ray fluorescence, instrumental neutron activation analysis, etc., has been immensely utilized. However, the sophisticated sample preparation and evaluation procedures for most of the mentioned methods are time- and labor-intensive, and economically more favorable detection approaches, e.g., sensors and lab-on-a-chip techniques, are being developed. Chemical sensors (electrochemical, optical, and piezogravimetric) with different sensing platforms (nanostructures, biological, polymeric, and macrocyclic) have been considered to be the most promising ones, owing to their strong adsorption of target elements, fast electron transfer kinetics, and biocompatibility, which are very apt for sensing applications. The combination of electrochemical, optical, and piezogravimetric techniques with nanomaterials has enhanced the sensitivity, limit of detection, and robustness of the chemosensors. Following this perspective, this review highlights surface modification platforms of sensors that enhance the detection properties (sensitivity, selectivity, limit of detection, and linear range) of the proposed devices, including nanostructures, biological networks, polymers, and macrocycles with a special emphasis on calixarenes/resorcinarenes oligomers. The capabilities, limitations, and prospect assessments of the covered techniques in detection and monitoring have been highlighted.

Keywords: Nanostructures, biological platforms, macrocycles, heavy metals, sensors, oligomers.

Next »
Graphical Abstract
[1]
Merian, E. Metals and their compounds in the environment: Occurrence, analysis, and biological relevance, 2nd ed; Wiley VCH:: Weinheim, 1991.
[2]
Caroli, S.; Forte, G.; Iamiceli, A.L.; Galoppi, B. Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta, 1999, 50(2), 327-336.
[http://dx.doi.org/10.1016/S0039-9140(99)00025-9] [PMID: 18967723]
[3]
Kenawy, I.M.M.; Hafez, M.A.H.; Akl, M.A.; Lashein, R.R. Aetermination by AAS of some trace heavy metal ions in some natural and biological samples after their preconcentration using newly chemically modified chloromethylated polystyrene-pan ion-exchanger. Anal. Sci., 2000, 16(5), 493-500.
[http://dx.doi.org/10.2116/analsci.16.493]
[4]
Silva, E.L.; Roldan, P.S.; Giné, M.F. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. J. Hazard. Mater., 2009, 171(1-3), 1133-1138.
[http://dx.doi.org/10.1016/j.jhazmat.2009.06.127] [PMID: 19646812]
[5]
Narin, I.; Soylak, M.; Elçi, L.; Doğan, M. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta, 2000, 52(6), 1041-1046.
[http://dx.doi.org/10.1016/S0039-9140(00)00468-9] [PMID: 18968065]
[6]
Prabhakaran, D.; Yuehong, M.; Nanjo, H.; Matsunaga, H. Naked-eye cadmium sensor: Using chromoionophore arrays of Langmuir-Blodgett molecular assemblies. Anal. Chem., 2007, 79(11), 4056-4065.
[http://dx.doi.org/10.1021/ac0623540] [PMID: 17447727]
[7]
Sánchez-Rodas, D.; Corns, W.T.; Chen, B.; Stockwell, P.B. Atomic fluorescence spectrometry: A suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J. Anal. At. Spectrom., 2010, 25(7), 933-946.
[http://dx.doi.org/10.1039/b917755h]
[8]
Murray, R.W.; Ewing, A.G.; Durst, R.A. Chemically modified electrodes. Molecular design for electroanalysis. Anal. Chem., 1987, 59(5), 379A-390A.
[http://dx.doi.org/10.1021/ac00132a001] [PMID: 3565770]
[9]
Gilmartin, M.A.T.; Hart, J.P. Sensing with chemically and biologically modified carbon electrodes. A review. Analyst (Lond.), 1995, 120(4), 1029-1045.
[http://dx.doi.org/10.1039/an9952001029] [PMID: 7771671]
[10]
Cox, J.A.; Tess, M.E.; Cummings, T.E. Electroanalytical methods based on modified electrodes: A review of recent advances. Rev. Anal. Chem., 1996, 15(3), 173-224.
[http://dx.doi.org/10.1515/REVAC.1996.15.3.173]
[11]
Xiang, H.; Cai, Q.; Li, Y.; Zhang, Z.; Cao, L.; Li, K.; Yang, H. Sensors applied for the detection of pesticides and heavy metals in freshwa-ters. J. Sens., 2020, 2020, 1-22.
[http://dx.doi.org/10.1155/2020/8503491]
[12]
Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron., 2015, 63, 276-286.
[http://dx.doi.org/10.1016/j.bios.2014.07.052] [PMID: 25108108]
[13]
Odobašić, A.; Šestan, I.; Begić, S. Biosensors for Determination of Heavy Metals in Waters. Biosensors for Environmental Monitoring; Rinken, T.; Kivirand, K., Eds.; IntechOpen, 2019. Available from: https://ideas.repec.org/h/ito/pchaps/174370.html
[http://dx.doi.org/10.5772/intechopen.84139]
[14]
Bosch, M.; Sánchez, A.; Rojas, F.; Ojeda, C. Recent development in optical fiber biosensors. Sensors (Basel), 2007, 7(6), 797-859.
[http://dx.doi.org/10.3390/s7060797]
[15]
Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.P.; Boukherroub, R.; Szunerits, S. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci., 2011, 15(5), 208-224.
[http://dx.doi.org/10.1016/j.cossms.2011.05.001]
[16]
Pohanka, M. The piezoelectric biosensors: Principles and applications, a review. Int. J. Electrochem. Sci., 2017, 12, 496-506.
[http://dx.doi.org/10.20964/2017.01.44]
[17]
Dixon, M.C. Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. JBT, 2008, 19(3), 151-158.
[PMID: 19137101]
[18]
Johannsmann, D. The quartz crystal microbalance in soft matter research: Fundamentals and modeling in the series: Soft and biological matter, 1st ed; Springer Cham, 2015.
[19]
Cao, Z.; Guo, J.; Fan, X.; Xu, J.; Fan, Z.; Du, B. Detection of heavy metal ions in aqueous solution by P(MBTVBC-co-VIM)-coated QCM sensor. Sens. Actuators B Chem., 2011, 157(1), 34-41.
[http://dx.doi.org/10.1016/j.snb.2011.03.023]
[20]
MicroVacuum Ltd. QCM-I Quartz Crystal Microbalance With Impedance Measurement., Available from: http://www.owls-sensors.com/qcm-i-quartz-crystal-microbalance-with-impedance-measurement
[21]
Hong, J.; Dai, Z. Amperometric biosensor for hydrogen peroxide and nitrite based on hemoglobin immobilized on one-dimensional gold nanoparticle. Sens. Actuators B Chem., 2009, 140(1), 222-226.
[http://dx.doi.org/10.1016/j.snb.2009.04.032]
[22]
Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron., 2017, 94, 443-455.
[http://dx.doi.org/10.1016/j.bios.2017.03.031] [PMID: 28340464]
[23]
Zhao, G.; Liang, R.; Wang, F.; Ding, J.; Qin, W. An all-solid-state potentiometric microelectrode for detection of copper in coastal sediment pore water. Sens. Actuators B Chem., 2019, 279, 369-373.
[http://dx.doi.org/10.1016/j.snb.2018.09.125]
[24]
Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water - An electrochemical approach. Sens. Actuators B Chem., 2015, 213, 515-533.
[http://dx.doi.org/10.1016/j.snb.2015.02.122]
[25]
Pizarro, J.; Flores, E.; Jimenez, V.; Maldonado, T.; Saitz, C.; Vega, A.; Godoy, F.; Segura, R. Synthesis and characterization of the first cyrhetrenyl-appended calix[4]arene macrocycle and its application as an electrochemical sensor for the determination of Cu(II) in bivalve mollusks using square wave anodic stripping voltammetry. Sens. Actuators B Chem., 2019, 281, 115-122.
[http://dx.doi.org/10.1016/j.snb.2018.09.099]
[26]
Eddaif, L.; Shaban, A.; Telegdi, J.; Szendro, I. A piezogravimetric sensor platform for sensitive detection of lead (II) ions in water based on calix[4]resorcinarene macrocycles: Synthesis, characterization and detection. Arab. J. Chem., 2019, 13(2), 4448-4461.
[http://dx.doi.org/10.1016/j.arabjc.2019.09.002]
[27]
Shaban, A.; Eddaif, L. Comparative study of a sensing platform via functionalized calix[4]resorcinarene ionophores on QCM resonator as sensing materials for detection of heavy metal ions in aqueous environments. Electroanalysis, 2020, 33(2), 336-346.
[http://dx.doi.org/10.1002/elan.202060331]
[28]
Lin, Y.W.; Huang, C.C.; Chang, H.T. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst (Lond.), 2011, 136(5), 863-871.
[http://dx.doi.org/10.1039/C0AN00652A] [PMID: 21157604]
[29]
Liu, Y.; Su, G.; Zhang, B.; Jiang, G.; Yan, B. Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst (Lond.), 2011, 136(5), 872-877.
[http://dx.doi.org/10.1039/c0an00905a] [PMID: 21258678]
[30]
Rocha, D.L.; Maringolo, V.; Araújo, A.N.; Amorim, C.M.P.G.; Montenegro, M.C.B.S.M. An overview of structured biosensors for metal ions determination. Chemosensors (Basel), 2021, 9(11), 324.
[http://dx.doi.org/10.3390/chemosensors9110324]
[31]
Pandikumar, A.; Rameshkumar, P. Graphene-based electrochemical sensors for toxic chemicals in book series: Materials research founda-tions. In: Material Research Forum LLC; Millersville, 2020; p. 314.
[http://dx.doi.org/10.21741/9781644900956]
[32]
Saidur, M.R.; Aziz, A.R.A.; Basirun, W.J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens. Bioelectron., 2017, 90, 125-139.
[http://dx.doi.org/10.1016/j.bios.2016.11.039] [PMID: 27886599]
[33]
Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Zhang, Y.; Xie, X. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sens. Actuators B Chem., 2016, 223, 280-294.
[http://dx.doi.org/10.1016/j.snb.2015.09.090]
[34]
Cerminati, S.; Soncini, F.C.; Checa, S.K. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions. Chem. Commun. (Camb.), 2015, 51(27), 5917-5920.
[http://dx.doi.org/10.1039/C5CC00981B] [PMID: 25730473]
[35]
Abu-Ali, H.; Nabok, A.; Smith, T.J. Electrochemical inhibition bacterial sensor array for detection of water pollutants: Artificial neural network (ANN) approach. Anal. Bioanal. Chem., 2019, 411(29), 7659-7668.
[http://dx.doi.org/10.1007/s00216-019-01853-8] [PMID: 31161321]
[36]
Deshmukh, M.A.; Shirsat, M.D.; Ramanaviciene, A.; Ramanavicius, A. Composites based on conducting polymers and carbon nano-materials for heavy metal ion sensing. Crit. Rev. Anal. Chem., 2018, 48(4), 293-304.
[http://dx.doi.org/10.1080/10408347.2017.1422966] [PMID: 29309211]
[37]
Fadillah, G.; Saputra, O.A.; Saleh, T.A. Trends in polymers functionalized nanostructures for analysis of environmental pollutants. Trends Environ. Anal. Chem., 2020, e00084.http://dx.doi.org/10.1016/j.teac.2020.e00084
[38]
Baby, J.N.; Sriram, B.; Wang, S.F.; George, M.; Govindasamy, M.; Benadict Joseph, X. Deep eutectic solvent-based manganese molybdate nanosheets for sensitive and simultaneous detection of human lethal compounds: Comparing the electrochemical performances of M-molybdate (M = Mg, Fe, and Mn) electrocatalysts. Nanoscale, 2020, 12(38), 19719-19731.
[http://dx.doi.org/10.1039/D0NR05533F] [PMID: 32966483]
[39]
Boopathy, G.; Govindasamy, M.; Nazari, M.; Wang, S.F.; Umapathy, M.J. Facile synthesis of tungsten carbide nanosheets for trace level detection of toxic mercury ions in biological and contaminated sewage water samples: An electrocatalytic approach. J. Electrochem. Soc., 2019, 166(10), B761-B770.
[http://dx.doi.org/10.1149/2.0181910jes]
[40]
Govindasamy, M.; Sriram, B.; Wang, S.F.; Chang, Y.J.; Rajabathar, J.R. Highly sensitive determination of cancer toxic mercury ions in biological and human sustenance samples based on green and robust synthesized stannic oxide nanoparticles decorated reduced graphene oxide sheets. Anal. Chim. Acta, 2020, 1137, 181-190.
[http://dx.doi.org/10.1016/j.aca.2020.09.014] [PMID: 33153601]
[41]
Li, W.W.; Kong, F.Y.; Wang, J.Y.; Chen, Z.D.; Fang, H.L.; Wang, W. Facile one-pot and rapid synthesis of surfactant-free Au-reduced graphene oxide nanocomposite for trace arsenic (III) detection. Electrochim. Acta, 2015, 157, 183-190.
[http://dx.doi.org/10.1016/j.electacta.2014.12.150]
[42]
Kumar, S.; Bhanjana, G.; Dilbaghi, N.; Kumar, R.; Umar, A. Fabrication and characterization of highly sensitive and selective arsenic sen-sor based on ultra-thin graphene oxide nanosheets. Sens. Actuators B Chem., 2016, 227, 29-34.
[http://dx.doi.org/10.1016/j.snb.2015.11.101]
[43]
Zhao, G.; Si, Y.; Wang, H.; Liu, G. A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry. Int. J. Electrochem. Sci., 2016, 11, 54-64.
[44]
Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Wang, W.; Zhang, Y.; Yang, T. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J. Electroanal. Chem. (Lausanne), 2016, 760, 52-58.
[http://dx.doi.org/10.1016/j.jelechem.2015.11.043]
[45]
Zhang, Z.; Fu, X.; Li, K.; Liu, R.; Peng, D.; He, L.; Wang, M.; Zhang, H.; Zhou, L. One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II). Sens. Actuators B Chem., 2016, 225, 453-462.
[http://dx.doi.org/10.1016/j.snb.2015.11.091]
[46]
Wang, N.; Lin, M.; Dai, H.; Ma, H. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electro-chemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens. Bioelectron., 2016, 79, 320-326.
[http://dx.doi.org/10.1016/j.bios.2015.12.056] [PMID: 26720921]
[47]
Cheng, Y.; Fa, H.; Yin, W.; Hou, C.; Huo, D.; Liu, F.; Zhang, Y.; Chen, C. A sensitive electrochemical sensor for lead based on gold nano-particles/nitrogen-doped graphene composites functionalized with l-cysteine-modified electrode. J. Solid State Electrochem., 2016, 20(2), 327-335.
[http://dx.doi.org/10.1007/s10008-015-3043-0]
[48]
Hamsawahini, K.; Sathishkumar, P.; Ahamad, R.; Yusoff, A.R.M. PVDF-ErGO-GRC electrode: A single setup electrochemical system for separation, pre-concentration and detection of lead ions in complex aqueous samples. Talanta, 2016, 148, 101-107.
[http://dx.doi.org/10.1016/j.talanta.2015.10.044] [PMID: 26653429]
[49]
Punrat, E.; Maksuk, C.; Chuanuwatanakul, S.; Wonsawat, W.; Chailapakul, O. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta, 2016, 150, 198-205.
[http://dx.doi.org/10.1016/j.talanta.2015.12.016] [PMID: 26838400]
[50]
Chang, J.; Zhou, G.; Christensen, E.R.; Heideman, R.; Chen, J. Graphene-based sensors for detection of heavy metals in water: A review. Anal. Bioanal. Chem., 2014, 406(16), 3957-3975.
[http://dx.doi.org/10.1007/s00216-014-7804-x] [PMID: 24740529]
[51]
Molina, J.; Cases, F.; Moretto, L.M. Graphene-based materials for the electrochemical determination of hazardous ions. Anal. Chim. Acta, 2016, 946, 9-39.
[http://dx.doi.org/10.1016/j.aca.2016.10.019] [PMID: 27823674]
[52]
Lee, S.; Jang, K.; Park, C.; You, J.; Kim, T.; Im, C.; Kang, J.; Shin, H.; Choi, C-H.; Park, J.; Na, S. Ultra-sensitive in situ detection of silver ions using a quartz crystal microbalance. New J. Chem., 2015, 39(10), 8028-8034.
[http://dx.doi.org/10.1039/C5NJ00668F]
[53]
Ebrahimi, M.; Raoof, J.B.; Ojani, R. Novel electrochemical DNA hybridization biosensors for selective determination of silver ions. Talanta, 2015, 144, 619-626.
[http://dx.doi.org/10.1016/j.talanta.2015.07.020] [PMID: 26452869]
[54]
Yang, Y.; Kang, M.; Fang, S.; Wang, M.; He, L.; Feng, X.; Zhao, J.; Zhang, Z.; Zhang, H. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@3D-GO for sensitive and selective detection of Ag+. J. Alloys Compd., 2015, 652, 225-233.
[http://dx.doi.org/10.1016/j.jallcom.2015.08.229]
[55]
Chen, Q.; Wu, X.; Wang, D.; Tang, W.; Li, N.; Liu, F. Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(II) ions with high sensitivity and tunable dynamic range. Analyst (Lond.), 2011, 136(12), 2572-2577.
[http://dx.doi.org/10.1039/c1an00010a] [PMID: 21776617]
[56]
Chen, Z.; Li, L.; Mu, X.; Zhao, H.; Guo, L. Electrochemical aptasensor for detection of copper based on a reagentless signal-on architec-ture and amplification by gold nanoparticles. Talanta, 2011, 85(1), 730-735.
[http://dx.doi.org/10.1016/j.talanta.2011.04.056] [PMID: 21645766]
[57]
Zhang, Y.; Xiao, S.; Li, H.; Liu, H.; Pang, P.; Wang, H.; Wu, Z.; Yang, W.A. Pb2+-ion electrochemical biosensor based on single-stranded DNAzyme catalytic beacon. Sens. Actuators B Chem., 2016, 222, 1083-1089.
[http://dx.doi.org/10.1016/j.snb.2015.08.046]
[58]
Deshmukh, M.A.; Gicevicius, M.; Ramanaviciene, A.; Shirsat, M.D.; Viter, R.; Ramanavicius, A. Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode. Sens. Actuators B Chem., 2017, 248, 527-535.
[http://dx.doi.org/10.1016/j.snb.2017.03.167]
[59]
Deshmukh, M.A.; Patil, H.K.; Bodkhe, G.A.; Yasuzawa, M.; Koinkar, P.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu(II) ions. Sens. Actuators B Chem., 2018, 260, 331-338.
[http://dx.doi.org/10.1016/j.snb.2017.12.160]
[60]
Wei, P.; Zhu, Z.; Song, R.; Li, Z.; Chen, C. An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochim. Acta, 2019, 317, 93-101.
[http://dx.doi.org/10.1016/j.electacta.2019.05.136]
[61]
Di Masi, S.; Garcia Cruz, A.; Canfarotta, F.; Cowen, T.; Marote, P.; Malitesta, C.; Piletsky, S.A. Synthesis and application of ion-imprinted nanoparticles in electrochemical sensors for copper (II) determination. ChemNanoMat, 2019, 5(6), 754-760.
[http://dx.doi.org/10.1002/cnma.201900056]
[62]
Di Masi, S.; Pennetta, A.; Guerreiro, A.; Canfarotta, F.; De Benedetto, G.E.; Malitesta, C. Sensor based on electrosynthesised imprinted polymeric film for rapid and trace detection of copper(II) ions. Sens. Actuators B Chem., 2020, 307127648
[http://dx.doi.org/10.1016/j.snb.2019.127648]
[63]
Yang, Z.; Zhang, C. Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution. Sens. Actuators B Chem., 2009, 142(1), 210-215.
[http://dx.doi.org/10.1016/j.snb.2009.08.029]
[64]
Seenivasan, R.; Chang, W.J.; Gunasekaran, S. Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl. Mater. Interfaces, 2015, 7(29), 15935-15943.
[http://dx.doi.org/10.1021/acsami.5b03904] [PMID: 26146883]
[65]
Sartore, L.; Barbaglio, M.; Borgese, L.; Bontempi, E. Polymer-grafted QCM chemical sensor and application to heavy metal ions real time detection. Sens. Actuators B Chem., 2011, 155(2), 538-544.
[http://dx.doi.org/10.1016/j.snb.2011.01.003] [PMID: 21769166]
[66]
Ghanei-Motlagh, M.; Karami, C.; Taher, M.A.; Hosseini-Nasab, S.J. Stripping voltammetric detection of copper ions using carbon paste electrode modified with aza-crown ether capped gold nanoparticles and reduced graphene oxide. RSC Advances, 2016, 6(92), 89167-89175.
[http://dx.doi.org/10.1039/C6RA10267K]
[67]
Flores, E.; Pizarro, J.; Godoy, F.; Segura, R.; Gómez, A.; Agurto, N.; Sepúlveda, P. An electrochemical sensor for the determination of Cu(II) using a modified electrode with ferrocenyl crown ether compound by square wave anodic stripping voltammetry. Sens. Actuators B Chem., 2017, 251, 433-439.
[http://dx.doi.org/10.1016/j.snb.2017.05.058]
[68]
Dagdevren, M.; Yilmaz, I.; Yucel, B.; Emirik, M. A novel ferrocenyl naphthoquinone fused crown ether as a multisensor for water deter-mination in acetonitrile and selective cation binding. J. Phys. Chem. B, 2015, 119(38), 12464-12479.
[http://dx.doi.org/10.1021/acs.jpcb.5b06590] [PMID: 26352463]
[69]
Dehdashtian, S.; Shamsipur, M. Modification of gold surface by electrosynthesized mono aza crown ether substituted catechol-terminated alkane dithiol and its application as a new electrochemical sensor for trace detection of cadmium ions. Colloids Surf. B Biointerfaces, 2018, 171, 494-500.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.063] [PMID: 30081381]
[70]
Teka, S.; Gaied, A.; Jaballah, N.; Xiaonan, S.; Majdoub, M. Thin sensing layer based on semi-conducting β-cyclodextrin rotaxane for toxic metals detection. Mater. Res. Bull., 2016, 74, 248-257.
[http://dx.doi.org/10.1016/j.materresbull.2015.10.040]
[71]
Çubuk, S.; Yılmaz O; Kök Yetimoğlu,, E.; Kahraman, M.V. Determination of Cd(II) ions by using cyclodextrin based polymeric fluores-cence sensor. J. Turkish Chem. Soc., 2017, 4, 61.
[http://dx.doi.org/10.18596/jotcsa.292001]
[72]
Alam, A.U.; Howlader, M.M.R.; Hu, N.X.; Deen, M.J. Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sens. Actuators B Chem., 2019, 296126632
[http://dx.doi.org/10.1016/j.snb.2019.126632]
[73]
Huang, S.; Lu, S.; Huang, C.; Sheng, J.; Su, W.; Zhang, L.; Xiao, Q. Sensitive and selective stripping voltammetric determination of cop-per(II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Mikrochim. Acta, 2015, 182(15-16), 2529-2539.
[http://dx.doi.org/10.1007/s00604-015-1627-0]
[74]
Lv, M.; Wang, X.; Li, J.; Yang, X.; Zhang, C.; Yang, J.; Hu, H. Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultane-ous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochim. Acta, 2013, 108, 412-420.
[http://dx.doi.org/10.1016/j.electacta.2013.06.099]
[75]
Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc., 1967, 89(26), 7017-7036.
[http://dx.doi.org/10.1021/ja01002a035]
[76]
Luo, H.; Chen, L.X.; Ge, Q.M.; Liu, M.; Tao, Z.; Zhou, Y.H.; Cong, H. Applications of macrocyclic compounds for electrochemical sen-sors to improve selectivity and sensitivity. J. Incl. Phenom. Macrocycl. Chem., 2019, 95(3-4), 171-198.
[http://dx.doi.org/10.1007/s10847-019-00934-6]
[77]
Kadam, Z.M.; Gwenin, C.D. Polymer membranes based on ionophore-impregnated for nutrients detection by electrochemical methods. Der Pharm. Chem., 2017, 9, 29-33.
[78]
Kumbhat, S.; Singh, U. A potassium-selective electrochemical sensor based on crown-ether functionalized self assembled monolayer. J. Electroanal. Chem. (Lausanne), 2018, 809, 31-35.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.051]
[79]
Singh, U.; Kumbhat, S. Functionalized surface for electrochemical sensing of electrochemically inactive alkali metal ion. Indian J. Chem. A, 2017, 56, 934-938.
[http://dx.doi.org/10.56042/ijca.v56i9.18552]
[80]
Karimian, F.; Rounaghi, G.H.; Arbab-Zavar, M.H. Construction of a PVC based 15-crown-5 electrochemical sensor for Ag(I) cation. Chin. Chem. Lett., 2014, 25(5), 809-814.
[http://dx.doi.org/10.1016/j.cclet.2014.03.014]
[81]
Niu, X.; Mo, Z.; Yang, X.; Sun, M.; Zhao, P.; Li, Z.; Ouyang, M.; Liu, Z.; Gao, H.; Guo, R.; Liu, N. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochim. Acta, 2018, 185(7), 328.
[http://dx.doi.org/10.1007/s00604-018-2859-6] [PMID: 29907886]
[82]
Zhu, G.; Yi, Y.; Chen, J. Recent advances for cyclodextrin-based materials in electrochemical sensing. Trends Analyt. Chem., 2016, 80, 232-241.
[http://dx.doi.org/10.1016/j.trac.2016.03.022]
[83]
Rajput, K.N.; Patel, K.C.; Trivedi, U.B. β-cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnol. Res. Int., 2016.2034359
[http://dx.doi.org/10.1155/2016/2034359] [PMID: 27648307]
[84]
Alam, A.U.; Qin, Y.; Howlader, M.M.R.; Hu, N.X.; Deen, M.J. Electrochemical sensing of acetaminophen using multi-walled carbon nano-tube and β-cyclodextrin. Sens. Actuators B Chem., 2018, 254, 896-909.
[http://dx.doi.org/10.1016/j.snb.2017.07.127]
[85]
Alam, A.U.; Qin, Y.; Catalano, M.; Wang, L.; Kim, M.J.; Howlader, M.M.R.; Hu, N.X.; Deen, M.J. Tailoring MWCNTs and β-cyclodextrin for sensitive detection of acetaminophen and estrogen. ACS Appl. Mater. Interfaces, 2018, 10(25), 21411-21427.
[http://dx.doi.org/10.1021/acsami.8b04639] [PMID: 29856206]
[86]
Zinke, A.; Ziegler, E. Zur kenntnis des härtungsprozesses von phenol-formaldehyd-harzen, X. Mitteilung. Berichte Dtsch. Chem. Ges. Ber. Dtsch. Chem. Ges. B, 1944, 77(3-4), 264-272.
[http://dx.doi.org/10.1002/cber.19440770322]
[87]
Hayes, B.T.; Hunter, R.F. Phenol-formaldehyde and allied resins VI: Rational synthesis of a ‘cyclic’ tetranuclear p-cresol novolak. J. Appl. Chem. (Lond.), 1958, 8(11), 743-748.
[http://dx.doi.org/10.1002/jctb.5010081107]
[88]
Gutsche, C.D. Calixarenes: An introduction, 2nd ed; Royal Society of Chemistry: Cambridge, 2008.
[http://dx.doi.org/10.1039/9781847558190]
[89]
Gutsche, C.D.; Muthukrishnan, R. Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of for-maldehyde with para-substituted phenols. J. Org. Chem., 1978, 43(25), 4905-4906.
[http://dx.doi.org/10.1021/jo00419a052]
[90]
Arduini, A.; Pochini, A.; Raverberi, S.; Ungaro, R. p-t-Butyl-calix[4]arene tetracarboxylic acid. A water soluble calixarene in a cone struc-ture. J. Chem. Soc. Chem. Commun., 1984, 981-982(15), 981.
[http://dx.doi.org/10.1039/c39840000981]
[91]
Thoden van Velzen, E.U.; Engbersen, J.F.J.; de Lange, P.J.; Mahy, J.W.G.; Reinhoudt, D.N. Self-assembled monolayers of resor-cin[4]arene tetrasulfides on gold. J. Am. Chem. Soc., 1995, 117(26), 6853-6862.
[http://dx.doi.org/10.1021/ja00131a007]
[92]
Vicens, J.; Böhmer, V. Calixarenes: A versatile class of macrocyclic compounds in book series: Topics in inclusion science; Springer: Netherlands, 1991.
[93]
Kämmerer, H.; Happel, G.; Caesar, F. Die spektroskopische untersuchung einer cyclischen, tetrameren verbindung aus p-kresol und for-maldehyd. Makromol. Chem., 1972, 162(1), 179-197.
[http://dx.doi.org/10.1002/macp.1972.021620116]
[94]
Stewart, D.R.; Gutsche, C.D. Isolation, characterization, and conformational characteristics of p-tert-butylcalix[9−20]arenes1. J. Am. Chem. Soc., 1999, 121(17), 4136-4146.
[http://dx.doi.org/10.1021/ja983964n]
[95]
Vicens, J.; Harrowfield, J. Calixarenes in the Nanoworld, 1st ed; Springer: Dordrecht, 2007.
[http://dx.doi.org/10.1007/978-1-4020-5022-4]
[96]
Uysal Akku¸, G.; Al, E.; Korcan, S.E. Selective extraction of toxic heavy metals and biological activity studies using pyrimidylthioamide functionalised calix[4]arene. Supramol. Chem., 2015, 27(7-8), 522-526.
[http://dx.doi.org/10.1080/10610278.2015.1020944]
[97]
Lu, X.; Zhang, D.; He, S.; Feng, J.; Tesfay Reda, A.; Liu, C.; Yang, Z.; Shi, L.; Li, J. Reactive extraction of europium(III) and neodymi-um(III) by carboxylic acid modified calixarene derivatives: Equilibrium, thermodynamics and kinetics. Separ. Purif. Tech., 2017, 188, 250-259.
[http://dx.doi.org/10.1016/j.seppur.2017.07.040]
[98]
Moradi, M.; Tulli, L.G.; Nowakowski, J.; Baljozovic, M.; Jung, T.A.; Shahgaldian, P. Two-dimensional calix[4]arene-based metal-organic coordination networks of tunable crystallinity. Angew. Chem. Int. Ed., 2017, 56(46), 14395-14399.
[http://dx.doi.org/10.1002/anie.201703825] [PMID: 28846210]
[99]
Sgarlata, C.; Brancatelli, G.; Fortuna, C.G.; Sciotto, D.; Geremia, S.; Bonaccorso, C. Three-dimensional network structures based on pyridyl-calix[4]arene metal complexes. ChemPlusChem, 2017, 82(11), 1341-1350.
[http://dx.doi.org/10.1002/cplu.201700400] [PMID: 31957183]
[100]
Smirnov, I.V.; Stepanova, E.S.; Ivenskaya, N.M.; Karavan, M.D.; Zaripov, S.R.; Kleshnina, S.R.; Solovieva, S.E.; Antipin, I.S. Cesium and americium extraction from carbonate-alkaline media with O-substituted p-alkylcalix[8]arenes. J. Radioanal. Nucl. Chem., 2017, 314(2), 1257-1265.
[http://dx.doi.org/10.1007/s10967-017-5505-6]
[101]
Kumar, A.N.; Ramkuma, J.; Chandramouleeswaran, S.; Nayak, S.K. One-step synthesis of a singly bridged biscalix[6]arene and evaluation of its alkali metal recognition properties. Org. Commun., 2017, 10(4), 304-313.
[http://dx.doi.org/10.25135/acg.oc.28.17.06.029]
[102]
Horvat, G.; Frkanec, L.; Cindro, N.; Tomišić, V. A comprehensive study of the complexation of alkali metal cations by lower rim ca-lix[4]arene amide derivatives. Phys. Chem. Chem. Phys., 2017, 19(35), 24316-24329.
[http://dx.doi.org/10.1039/C7CP03920D] [PMID: 28849809]
[103]
De Leener, G.; Over, D.; Smet, C.; Cornut, D.; Porras-Gutierrez, A.G.; López, I.; Douziech, B.; Le Poul, N.; Topić, F.; Rissanen, k.; Le Mest, Y.; Jabin, I.; Reinaud, O. “Two-story” calix[6]arene-based zinc and copper complexes: Structure, properties, and O2 binding. Inorg. Chem., 2017, 56(18), 10971-10983.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01225] [PMID: 28853565]
[104]
Sayin, S.; Engin, M.S.; Eymur, S.; Çay, S. Synthesis and characterization of 1-(2-furoyl) piperazine calix[4]arene for the preconcentration of metal ions. Anal. Lett., 2018, 51(1-2), 111-118.
[http://dx.doi.org/10.1080/00032719.2016.1265533]
[105]
Diamond, D. Neutral carrier based ion-selective electrodes. Proc. Anal. Chem. Sympos. Ser., 1986, 25, 155.
[106]
Diamond, D.; Svehla, G.; Seward, E.M.; McKervey, M.A. A sodium ion-selective electrodebased on methyl p-t-butylcalix[4]aryl acetate as the ionophore. Anal. Chim. Acta, 1988, 204, 223-231.
[http://dx.doi.org/10.1016/S0003-2670(00)86361-8]
[107]
Cadogan, A.M.; Diamond, D.; Smyth, M.R.; Deasy, M.; McKervey, M.A.; Harris, S.J. Sodium-selective polymeric membrane electrodes based on calix[4]arene ionophores. Analyst (Lond.), 1989, 114(12), 1551-1554.
[http://dx.doi.org/10.1039/an9891401551]
[108]
O’Connor, K.M.; Svehla, G.; Harris, S.J.; McKervey, M.A. Calixarene-based potentiometric ion-selective electrodes for silver. Talanta, 1992, 39(11), 1549-1554.
[http://dx.doi.org/10.1016/0039-9140(92)80140-9] [PMID: 18965568]
[109]
Cadogan, F.; Kane, P.; McKervey, M.A.; Diamond, D. Lead-selective electrodes based on calixarene phosphine oxide derivatives. Anal. Chem., 1999, 71(24), 5544-5550.
[http://dx.doi.org/10.1021/ac990303f]
[110]
Liu, Y.; Zhao, B.T.; Zhang, H.Y.; Ju, H.F.; Chen, L.X.; He, X.W. Molecular design of calixarene, Part 4, Synthesis of novel double-armed p-(tert-butyl)calix[4]arene-derived amides and their lead(II)(Pb2+)-selective-electrode properties. Helv. Chim. Acta, 2001, 84(7), 1969-1975.
[http://dx.doi.org/10.1002/1522-2675(20010711)84:7<1969:AID-HLCA1969>3.0.CO;2-Q]
[111]
Hosseini, M.; Rahimi, M.; Sadeghi, H.B.; Taghvaei-Ganjali, S.; Abkenar, S.D.; Ganjali, M.R. Determination of Hg(II) ions in water samples by a novel Hg(II) sensor, based on calix[4]arene derivative. Int. J. Environ. Anal. Chem., 2009, 89(6), 407-422.
[http://dx.doi.org/10.1080/03067310802713195]
[112]
Nikolelis, D.P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G.P. Development of an electrochemical chemosensor for the rapid detection of zinc based on air stable lipid films with incorporated calix4arene phosphoryl receptor. Int. J. Environ. Anal. Chem., 2009, 89(3), 211-222.
[http://dx.doi.org/10.1080/03067310802578952]
[113]
Ahmadzadeh, S.; Rezayi, M.; Faghih-Mirzaei, E.; Yoosefian, M.; Kassim, A. Highly selective detection of titanium (III) in industrial waste water samples using meso-octamethylcalix[4]pyrrole-doped PVC membrane ion-selective electrode. Electrochim. Acta, 2015, 178, 580-589.
[http://dx.doi.org/10.1016/j.electacta.2015.07.014]
[114]
Gupta, V.K.; Kumar, S.; Singh, R.; Singh, L.P.; Shoora, S.K.; Sethi, B. Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. J. Mol. Liq., 2014, 195, 65-68.
[http://dx.doi.org/10.1016/j.molliq.2014.02.001]
[115]
Chester, R.; Sohail, M.; Ogden, M.I.; Mocerino, M.; Pretsch, E.; Marco, R.D. A calixarene-based ion-selective electrode for thallium(I) detection. Anal. Chim. Acta, 2014, 851, 78-86.
[http://dx.doi.org/10.1016/j.aca.2014.08.046] [PMID: 25440668]
[116]
Dernane, C.; Zazoua, A.; Kazane, I.; Jaffrezic-Renault, N. Cadmium-sensitive electrode based on tetracetone derivatives of p-tert-butylcalix[8]arene. Mater. Sci. Eng. C, 2013, 33(7), 3638-3643.
[http://dx.doi.org/10.1016/j.msec.2013.04.049] [PMID: 23910259]
[117]
Göde, C.; Yola, M.L.; Yılmaz, A.; Atar, N.; Wang, S. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J. Colloid Interface Sci., 2017, 508, 525-531.
[http://dx.doi.org/10.1016/j.jcis.2017.08.086] [PMID: 28866461]
[118]
Shivappa Adarakatti, P.; Foster, C.W.; Banks, C.E.N.S. A.K.; Malingappa, P. Calixarene bulk modified screen-printed electrodes (SPC-CEs) as a one-shot disposable sensor for the simultaneous detection of lead(II), copper(II) and mercury(II) ions: Application to environ-mental samples. Sens. Actuators Phys., 2017, 267, 517-525.
[http://dx.doi.org/10.1016/j.sna.2017.10.059]
[119]
Nur Abdul Aziz, S.F.; Zawawi, R.; Alang Ahmad, S.A. An electrochemical sensing platform for the detection of lead ions based on dicar-boxyl-calix[4]arene. Electroanalysis, 2018, 30(3), 533-542.
[http://dx.doi.org/10.1002/elan.201700736]
[120]
Su, P.G.; Lin, L.G.; Lin, P.H. Detection of Cu(II) ion by an electrochemical sensor made of 5,17-bis(4′-nitrophenylazo)-25,26,27,28-tetrahydroxycalix[4]arene-electromodified electrode. Sens. Actuators B Chem., 2014, 191, 364-370.
[http://dx.doi.org/10.1016/j.snb.2013.09.117]
[121]
Liu, L.; Zhang, K.; Wei, Y. A simple strategy for the detection of Cu( II ), Cd( II ) and Pb( II ) in water by a voltammetric sensor on a TC4A modified electrode. New J. Chem., 2019, 43(3), 1544-1550.
[http://dx.doi.org/10.1039/C8NJ05089A]
[122]
Lotfi, B.; Tarlani, A.; Akbari-Moghaddam, P.; Mirza-Aghayan, M.; Peyghan, A.A.; Muzart, J.; Zadmard, R. Multivalent calix[4]arene-based fluorescent sensor for detecting silver ions in aqueous media and physiological environment. Biosens. Bioelectron., 2017, 90, 290-297.
[http://dx.doi.org/10.1016/j.bios.2016.11.065] [PMID: 27931003]
[123]
Maya, R.J.; Krishna, A.; Sirajunnisa, P.; Suresh, C.H.; Varma, R.L. Lower rim-modified calix[4]arene-bentonite hybrid system as a green, reversible, and selective colorimetric sensor for Hg2+ recognition. ACS Sustain. Chem.& Eng., 2017, 5(8), 6969-6977.
[http://dx.doi.org/10.1021/acssuschemeng.7b01158]
[124]
Dhir, A.; Bhalla, V.; Kumar, M. Ratiometric sensing of Hg2+ based on the calix[4]arene of partial cone conformation possessing a dansyl moiety. Org. Lett., 2008, 10(21), 4891-4894.
[http://dx.doi.org/10.1021/ol801984y] [PMID: 18831557]
[125]
Maity, D.; Chakraborty, A.; Gunupuru, R.; Paul, P. Calix[4]arene based molecular sensors with pyrene as fluoregenic unit: Effect of sol-vent in ion selectivity and colorimetric detection of fluoride. Inorg. Chim. Acta, 2011, 372(1), 126-135.
[http://dx.doi.org/10.1016/j.ica.2011.01.053]
[126]
Kumar, M.; Kumar, R.; Bhalla, V. F−-Induced ‘turn-on’ fluorescent chemosensor based on 1,3-alt thiacalix[4]arene. Tetrahedron, 2009, 65(22), 4340-4344.
[http://dx.doi.org/10.1016/j.tet.2009.03.074]
[127]
Erdemir, S.; Tabakci, B.; Tabakci, M. A highly selective fluorescent sensor based on calix[4]arene appended benzothiazole units for Cu2+, S2- and HSO4- ions in aqueous solution. Sens. Actuators B Chem., 2016, 228, 109-116.
[http://dx.doi.org/10.1016/j.snb.2016.01.017]
[128]
Yang, J.L.; Yang, Y.H.; Xun, Y.P.; Wei, K.K.; Gu, J.; Chen, M.; Yang, L.J. Novel amino-pillar[5]arene as a fluorescent probe for highly selective detection of Au3+ ions. ACS Omega, 2019, 4(18), 17903-17909.
[http://dx.doi.org/10.1021/acsomega.9b02951] [PMID: 31681900]
[129]
Eddaif, L.; Shaban, A.; Szendro, I. Calix[4]resorcinarene macrocycles interactions with Cd2+, Hg2+, Pb2+, and Cu2+ cations: A QCM-I and Langmuir ultra-thin monolayers study. Electroanalysis, 2020, 32(4), 755-766.
[http://dx.doi.org/10.1002/elan.201900651]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy