Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mutual Prodrugs - Codrugs

Author(s): Abraham Nudelman*

Volume 30, Issue 38, 2023

Published on: 07 February, 2023

Page: [4283 - 4339] Pages: 57

DOI: 10.2174/0929867330666221209102650

Price: $65

conference banner
Abstract

This review encapsulates an extensive variety of substances identified as mutual prodrugs or codrugs, wherein two, or sometimes three, biologically active moieties are linked using an assortment of metabolically unstable bridging entities. Following the administration of the mutual prodrugs, these undergo a bridge cleavage releasing the active molecules, which then elicit their respective biological effects. In some cases, the released drugs act synergistically, other times the biological activity of only one of the drugs is elicited, and in such cases, the accompanying drug serves only as a carrier, which may have an affinity to the desired receptor. The most promising results are commonly observed when the two released drugs are efficacious at similar concentrations and particularly when the two drugs are effective against similar diseases. For instance, the best results are observed, when two analgesics, two anticancer agents, two drugs for the treatment of cardiac conditions, etc., are the substances comprising the codrug. Mutual prodrugs/ codrugs described herein have been reported, primarily since the year 2000, as potential drugs for use against a plethora of diseases including pain, inflammation, cancer, bacterial infections, sickle cell anemia, Alzheimer’s disease, and others.

Keywords: Mutual prodrugs, codrugs, drug synergism, biological activity, linking bridges, metabolic activation.

[1]
Nudelman, A. Dimeric drugs. Curr. Med. Chem., 2022, 29(16), 2751-2845.
[http://dx.doi.org/10.2174/0929867328666210810124159] [PMID: 34375175]
[2]
Wikipedia. Codrug Available from: https://en.wikipedia. org/wiki/Codrug
[3]
Müller-Schiffmann, A.; Sticht, H.; Korth, C. Hybrid Compounds. BioDrugs, 2012, 26(1), 21-31.
[http://dx.doi.org/10.2165/11597630-000000000-00000] [PMID: 22239618]
[4]
Parkes, A.L.; Yule, I.A. Hybrid antibiotics – clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680.
[http://dx.doi.org/10.1080/17460441.2016.1187597] [PMID: 27169483]
[5]
Asghar, A.; Iqbal, M.S.; Tahir, M.N. Mutual prodrug of cephazolin and benzydamin: 3-[(1-benzyl-1H-indazol-3-yl)- oxy]-N,N-dimethylpropan-1-aminium 3-{[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl] methyl}-8-oxo-7-[(1H-tetrazol-1-yl)acetamido]-5-thia-1-azabicyclo-[4.2.0] octane-2-carbo-xyl-ate (be. Acta Crystallogr. Sect. E Struct. Rep. Online, 2009, 65(12)
[http://dx.doi.org/10.1107/S1600536809047941] [PMID: 21578855]
[6]
Rosini, M. Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med. Chem., 2014, 6(5), 485-487.
[http://dx.doi.org/10.4155/fmc.14.25] [PMID: 24649950]
[7]
Cheng, A.V.; Wuest, W.M. Signed, sealed, delivered: Conjugate and prodrug strategies as targeted delivery vectors for antibiotics. ACS Infect. Dis., 2019, 5(6), 816-828.
[http://dx.doi.org/10.1021/acsinfecdis.9b00019] [PMID: 30969100]
[8]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[9]
Cacciatore, I.; Baldassarre, L.; Fornasari, E.; Mollica, A.; Pinnen, F. Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxid. Med. Cell. Longev., 2012, 2012, 240146.
[http://dx.doi.org/10.1155/2012/240146] [PMID: 22701755]
[10]
Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev., 2019, 119(2), 1221-1322.
[http://dx.doi.org/10.1021/acs.chemrev.8b00138] [PMID: 30095897]
[11]
Di Stefano, A.; Sozio, P.; Cerasa, L. Antiparkinson prodrugs. Molecules, 2008, 13(1), 46-68.
[http://dx.doi.org/10.3390/molecules13010046] [PMID: 18259129]
[12]
Ghawanmeh, A.A.; Chong, K.F.; Sarkar, S.M.; Bakar, M.A.; Othaman, R.; Khalid, R.M. Colchicine prodrugs and codrugs: Chemistry and bioactivities. Eur. J. Med. Chem., 2018, 144, 229-242.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.029] [PMID: 29274490]
[13]
Szumilak, M.; Wiktorowska-Owczarek, A.; Stanczak, A. Hybrid drugs - a strategy for overcoming anticancer drug resistance? Molecules, 2021, 26(9), 2601.
[http://dx.doi.org/10.3390/molecules26092601] [PMID: 33946916]
[14]
Domalaon, R.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Antibiotic hybrids: the next generation of agents and adjuvants against gram-negative pathogens? Clin. Microbiol. Rev., 2018, 31(2), e00077-e000717.
[http://dx.doi.org/10.1128/CMR.00077-17] [PMID: 29540434]
[15]
Jubeh, B.; Breijyeh, Z.; Karaman, R. Antibacterial prodrugs to overcome bacterial resistance. Molecules, 2020, 25(7), 1543.
[http://dx.doi.org/10.3390/molecules25071543] [PMID: 32231026]
[16]
Dweib, K. Diclofenac codrugs and prodrugs-three decades of design. World J. Pharm. Pharm. Sci., 2015, 4(7), 1960-1982.
[17]
Bai, R.; Jie, X.; Yao, C.; Xie, Y. Discovery of small-molecule candidates against inflammatory bowel disease. Eur. J. Med. Chem., 2020, 185, 111805.
[http://dx.doi.org/10.1016/j.ejmech.2019.111805] [PMID: 31703817]
[18]
Willetts, S.; Foley, D.W. True or false? Challenges and recent highlights in the development of aspirin prodrugs. Eur. J. Med. Chem., 2020, 192, 112200.
[http://dx.doi.org/10.1016/j.ejmech.2020.112200] [PMID: 32163816]
[19]
Mohsin, N.A.; Ahmad, M. Hybrid organic molecules as antiinflammatory agents; a review of structural features and biological activity. Turk. J. Chem., 2018, 42(1), 1-20.
[http://dx.doi.org/10.3906/kim-1706-58]
[20]
Shah, K.; Gupta, J.K.; Chauhan, N.S.; Upmanyu, N.; Shrivastava, S.K.; Mishra, P. Prodrugs of NSAIDs. Open Med. Chem. J., 2017, 11(1), 146-195.
[http://dx.doi.org/10.2174/1874104501711010146] [PMID: 29387273]
[21]
Velingkar, V.S.; Jain, D.R.; Ahire, D.C. Spacer/linker based synthesis and biological evaluation of mutual prodrugs as antiinflammatory agents. Indian J. Pharm. Sci., 2010, 5(72), 632-636.
[22]
Pratyusha, L.; Kavitha, M.; Mounika, M.; Fatima, L. Prodrugs of NSAIDS  An approach to mitigate gastric irritation. Ann. Drug Dis. Biomed. Res., 2014, 1(2), 111-126.
[23]
Matsumoto, H.; Matsuda, T.; Nakata, S.; Mitoguchi, T.; Kimura, T.; Hayashi, Y.; Kiso, Y. Synthesis and biological evaluation of prodrug-type anti-HIV agents: ester conjugates of carboxylic acid-containing dipeptide HIV protease inhibitors and a reverse transcriptase inhibitor. Bioorg. Med. Chem., 2001, 9(2), 417-430.
[http://dx.doi.org/10.1016/S0968-0896(00)00261-3] [PMID: 11249134]
[24]
de Castro, S.; Camarasa, M.J. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur. J. Med. Chem., 2018, 150, 206-227.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.007] [PMID: 29529501]
[25]
Walsh, J.; Bell, A. Hybrid drugs for malaria. Curr. Pharm. Des., 2009, 15(25), 2970-2985.
[http://dx.doi.org/10.2174/138161209789058183] [PMID: 19754373]
[26]
Peter, S.; Aderibigbe, B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 2019, 24(19), 3604.
[http://dx.doi.org/10.3390/molecules24193604] [PMID: 31591298]
[27]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[28]
Hodon, J.; Borkova, L.; Pokorny, J.; Kazakova, A.; Urban, M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur. J. Med. Chem., 2019, 182, 111653.
[http://dx.doi.org/10.1016/j.ejmech.2019.111653] [PMID: 31499360]
[29]
Zhou, M.; Zhang, R.H.; Wang, M.; Xu, G.B.; Liao, S.G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem., 2017, 131, 222-236.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.005] [PMID: 28329729]
[30]
Chung, M.; Ferreira, E.; Santos, J.; Giarolla, J.; Rando, D.; Almeida, A.; Bosquesi, P.; Menegon, R.; Blau, L. Prodrugs for the treatment of neglected diseases. Molecules, 2008, 13(3), 616-677.
[http://dx.doi.org/10.3390/molecules13030616] [PMID: 18463559]
[31]
Aljuffali, I.A.; Lin, C.F.; Chen, C.H.; Fang, J.Y. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin. Drug Deliv., 2016, 13(9), 1311-1325.
[http://dx.doi.org/10.1080/17425247.2016.1187598] [PMID: 27159251]
[32]
Das, N.; Dhanawat, M.; Dash, B.; Nagarwal, R.C.; Shrivastava, S.K. Codrug: An efficient approach for drug optimization. Eur. J. Pharm. Sci., 2010, 41(5), 571-588.
[http://dx.doi.org/10.1016/j.ejps.2010.09.014] [PMID: 20888411]
[33]
Ohlan, M.J.S.; Nanda, S.; Pathak, D.P. Mutual Prodrugs- A Swot Analysis. Int. J. Pharm. Sci. Res., 2011, 2, 719-729.
[34]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[35]
Dubey, S.V.; Valecha, V. Prodrugs: A review. World J. Pharm. Res., 2014, 3(7), 277-297.
[36]
Pawełczyk, A.; Sowa-Kasprzak, K.; Olender, D.; Zaprutko, L. Molecular consortia-various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci., 2018, 19(4), 1104.
[http://dx.doi.org/10.3390/ijms19041104] [PMID: 29642417]
[37]
Sampath Kumar, H.M.; Herrmann, L.; Tsogoeva, S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett., 2020, 30(23), 127514.
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[38]
Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.057] [PMID: 29605809]
[39]
Scotti, L.; Mendonca-Junior, F.; Scotti, M. Hybrid compounds as multitarget agents in medicinal chemistry – Part I. Curr. Top. Med. Chem., 2017, 17(8), 843-844.
[http://dx.doi.org/10.2174/156802661708170126200430] [PMID: 28406078]
[40]
Serafin, A. Stańczak, A. Different concepts of drug delivery in disease entities. Mini Rev. Med. Chem., 2009, 9(4), 481-497.
[http://dx.doi.org/10.2174/138955709787847930] [PMID: 19356126]
[41]
Cambanis, A.; The, I. Potential anticancer agents. II. Urethan-type nitrogen mustards of some natural sex hormones. J. Med. Chem., 1967, 10(2), 172-174.
[42]
Lee, V.E.Y.; Lim, Z.C.; Chew, S.L.; Ang, W.H. Strategy for traceless codrug delivery with platinum (IV) prodrug complexes using self-immolative linkers. Inorg. Chem., 2021, 60(3), 1823-1831.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03299] [PMID: 33464875]
[43]
Askelof, A.E.E. Heterocyclic sulphonamido azo compounds. Patent US2396145A, 1946.
[44]
Doraswamy, K.R.; Guha, P.C. Studies in sulphanilamides. Part VI. N1- and N4-substituted sulphanilamides-azo-dyes derived from sulphathiazole and sulphapyridine. J. Indian Chem. Soc., 1946, 23, 278.
[45]
Malatesta, P. Sulfamethazine-5-aminosalicylic acid. Ann. Chim. (Rome), 1960, 50, 114.
[46]
Williams, F.M.; Moore, U.; Seymour, R.A.; Mutch, E.M.; Nicholson, E.; Wright, P.; Wynne, H.; Blain, P.G.; Rawlins, M.D. Benorylate hydrolysis by human plasma and human liver. Br. J. Clin. Pharmacol., 1989, 28(6), 703-708.
[http://dx.doi.org/10.1111/j.1365-2125.1989.tb03563.x] [PMID: 2575401]
[47]
Niculescu-Duvaz, I.; Cambanis, A.; Tárnáuceanu, E.; Cambanis, A. Potential anticancer agents. II. Urethan-type nitrogen mustards of some natural sex hormones. J. Med. Chem., 1967, 10(2), 172-174.
[http://dx.doi.org/10.1021/jm00314a009]
[48]
Nudelman, A.; Gil-Ad, I.; Shpaisman, N.; Terasenko, I.; Ron, H.; Savitsky, K.; Geffen, Y.; Weizman, A.; Rephaeli, A. A mutual prodrug ester of GABA and perphenazine exhibits antischizophrenic efficacy with diminished extrapyramidal effects. J. Med. Chem., 2008, 51(9), 2858-2862.
[http://dx.doi.org/10.1021/jm7012453] [PMID: 18363346]
[49]
Gras, J. Perphenazine 4-aminobutyrate mesylate. Drugs Future, 2012, 37(9), 645-650.
[http://dx.doi.org/10.1358/dof.2012.037.09.1873628]
[50]
Rephaeli, A. Gil-Ad, I.; Aharoni, A.; Tarasenko, I.; Tarasenko, N.; Geffen, Y.; Halbfinger, E.; Nisemblat, Y.; Weizman, A.; Nudelman, A. Γ-aminobutyric acid amides of nortriptyline and fluoxetine display improved pain suppressing activity. J. Med. Chem., 2009, 52(9), 3010-3017.
[http://dx.doi.org/10.1021/jm900143u] [PMID: 19378992]
[51]
Berkovitch, G.; Doron, D.; Nudelman, A.; Malik, Z.; Rephaeli, A. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity independent and dependent on photoactivation. J. Med. Chem., 2008, 51(23), 7356-7369.
[http://dx.doi.org/10.1021/jm8008794] [PMID: 19007111]
[52]
Oseghale, A.R.; Zhu, X.; Li, B.; Peterson, K.R.; Nudelman, A.; Rephaeli, A.; Xu, H.; Pace, B.S. Conjugate prodrug AN-233 induces fetal hemoglobin expression in sickle erythroid progenitors and β-YAC transgenic mice. Blood Cells Mol. Dis., 2019, 79(July), 102345.
[http://dx.doi.org/10.1016/j.bcmd.2019.102345] [PMID: 31351219]
[53]
Dhaneshwar, S.S.; Bhosle, D.; Bharambe, S.; Gairola, N. Mutual prodrug concept: Fundamentals and applications. Indian J. Pharm. Sci., 2006, 68(3), 286-294.
[http://dx.doi.org/10.4103/0250-474X.26654]
[54]
Xia, Z.; Wiebe, L.I.; Miller, G.G.; Knaus, E.E. Synthesis and biological evaluation of butanoate, retinoate, and bis(2,2,2-trichloroethyl)phosphate derivatives of 5-fluoro-2′-deoxyuridine and 2′5-difluoro-2′-deoxyuridine as potential dual action anticancer prodrugs. Arch. Pharm. (Weinheim), 1999, 332(8), 286-294.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19998)332:8<286:AID-ARDP286>3.0.CO;2-9] [PMID: 10489539]
[55]
Rephaeli, A.; Zhuk, R.; Nudelman, A. Prodrugs of butyric acid from bench to bedside: Synthetic design, mechanisms of action, and clinical applications. Drug Dev. Res., 2000, 50(3-4), 379-391.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<379::AID-DDR20>3.0.CO;2-8]
[56]
Rephaeli, A.; Waks-Yona, S.; Nudelman, A.; Tarasenko, I.; Tarasenko, N.; Phillips, D.R.; Cutts, S.M.; Kessler-Icekson, G. Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin-induced cardiotoxicity. Br. J. Cancer, 2007, 96(11), 1667-1674.
[http://dx.doi.org/10.1038/sj.bjc.6603781] [PMID: 17473824]
[57]
Tarasenko, N.; Cutts, S.M.; Phillips, D.R.; Berkovitch-Luria, G.; Bardugo-Nissim, E.; Weitman, M.; Nudelman, A.; Rephaeli, A. A novel valproic acid prodrug as an anticancer agent that enhances doxorubicin anticancer activity and protects normal cells against its toxicity in vitro and in vivo. Biochem. Pharmacol., 2014, 88(2), 158-168.
[http://dx.doi.org/10.1016/j.bcp.2014.01.023] [PMID: 24463168]
[58]
Tarasenko, N.; Chekroun-Setti, H.; Nudelman, A.; Rephaeli, A. Comparison of the anticancer properties of a novel valproic acid prodrug to leading histone deacetylase inhibitors. J. Cell. Biochem., 2018, 119(4), 3417-3428.
[http://dx.doi.org/10.1002/jcb.26512] [PMID: 29135083]
[59]
Engel, D.; Nudelman, A.; Tarasenko, N.; Levovich, I.; Makarovsky, I.; Sochotnikov, S.; Tarasenko, I.; Rephaeli, A. Novel prodrugs of tegafur that display improved anticancer activity and antiangiogenic properties. J. Med. Chem., 2008, 51(2), 314-323.
[http://dx.doi.org/10.1021/jm7009827] [PMID: 18163551]
[60]
Nudelman, A.; Ben-Ishai, Z.; Ruse, M.; Schamroth, J. Skin-depigmenting prodrugs of hydroquinone. Eur. J. Med. Chem., 1993, 28(2), 159-164.
[http://dx.doi.org/10.1016/0223-5234(93)90008-3]
[61]
Nudelman, A.; Kelner, R. Approaches to mutual prodrugs: calcium-β-blockers. Arch. Pharm. (Weinheim), 1993, 326(11), 907-909.
[http://dx.doi.org/10.1002/ardp.19933261112] [PMID: 7903851]
[62]
Blaikie, L.; Kay, G.; Kong Thoo Lin, P. Current and emerging therapeutic targets of Alzheimer’s disease for the design of multi-target directed ligands. MedChemComm, 2019, 10(12), 2052-2072.
[http://dx.doi.org/10.1039/C9MD00337A] [PMID: 32206241]
[63]
Sozio, P.; D’Aurizio, E.; Iannitelli, A.; Cataldi, A.; Zara, S.; Cantalamessa, F.; Nasuti, C.; Di Stefano, A. Ibuprofen and lipoic acid diamides as potential codrugs with neuroprotective activity. Arch. Pharm. (Weinheim), 2010, 343(3), 133-142.
[http://dx.doi.org/10.1002/ardp.200900152] [PMID: 20186865]
[64]
Zara, S.; Rapino, M.; Sozio, P.; Di Stefano, A.; Nasuti, C.; Cataldi, A. Ibuprofen and lipoic acid codrug 1 control Alzheimer’s disease progression by down-regulating protein kinase C ε-mediated metalloproteinase 2 and 9 levels in β-amyloid infused Alzheimer’s disease rat model. Brain Res., 2011, 1412, 79-87.
[http://dx.doi.org/10.1016/j.brainres.2011.07.022] [PMID: 21820649]
[65]
Minelli, A.; Conte, C.; Prudenzi, E.; Cacciatore, I.; Cornacchia, C.; Taha, E.; Pinnen, F. N-Acetyl-L-Methionyl-L-Dopa-Methyl Ester as a dual acting drug that relieves L-Dopa-induced oxidative toxicity. Free Radic. Biol. Med., 2010, 49(1), 31-39.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.011] [PMID: 20307650]
[66]
Lu, C.; Kim, B.M.; Lee, D.; Lee, M.H.; Kim, J.H.; Pyo, H.B.; Chai, K.Y. Synthesis of lipoic acid–peptide conjugates and their effect on collagen and melanogenesis. Eur. J. Med. Chem., 2013, 69, 449-454.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.011] [PMID: 24090916]
[67]
Cacciatore, I.; Baldassarre, L.; Fornasari, E.; Cornacchia, C.; Di Stefano, A.; Sozio, P.; Cerasa, L.S.; Fontana, A.; Fulle, S.; Di Filippo, E.S.; La Rovere, R.M.L.; Pinnen, F. (R)-α-lipoyl-glycyl-L-prolyl-L-glutamyl dimethyl ester codrug as a multifunctional agent with potential neuroprotective activities. ChemMedChem, 2012, 7(11), 2021-2029.
[http://dx.doi.org/10.1002/cmdc.201200320] [PMID: 22976949]
[68]
Schiefer, I.T.; Abdul-Hay, S.; Wang, H.; Vanni, M.; Qin, Z.; Thatcher, G.R.J. Inhibition of amyloidogenesis by nonsteroidal anti-inflammatory drugs and their hybrid nitrates. J. Med. Chem., 2011, 54(7), 2293-2306.
[http://dx.doi.org/10.1021/jm101450p] [PMID: 21405086]
[69]
López-Iglesias, B.; Pérez, C.; Morales-García, J.A.; Alonso-Gil, S.; Pérez-Castillo, A.; Romero, A.; López, M.G.; Villarroya, M.; Conde, S.; Rodríguez-Franco, M.I. New melatonin-N,N-dibenzyl(N-methyl)amine hybrids: potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. J. Med. Chem., 2014, 57(9), 3773-3785.
[http://dx.doi.org/10.1021/jm5000613] [PMID: 24738476]
[70]
Girek, M.; Szymański, P. Phyto-Tacrine Hybrids as Promising Drugs to Treat Alzheimer’s Disease. ChemistrySelect, 2019, 4(19), 5776-5790.
[http://dx.doi.org/10.1002/slct.201803672]
[71]
Liu, Z.; Zhang, B.; Xia, S.; Fang, L.; Gou, S. ROS-responsive and multifunctional anti-Alzheimer prodrugs: Tacrine-ibuprofen hybrids via a phenyl boronate linker. Eur. J. Med. Chem., 2021, 212, 112997.
[http://dx.doi.org/10.1016/j.ejmech.2020.112997] [PMID: 33189440]
[72]
Bornstein, J.J.; Eckroat, T.J.; Houghton, J.L.; Jones, C.K.; Green, K.D.; Garneau-Tsodikova, S. Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase. MedChemComm, 2011, 2(5), 406-412.
[http://dx.doi.org/10.1039/c0md00256a]
[73]
Chen, X. Tacrine-silibinin codrug shows neuro- and hepatoprotective effects in vitro and pro-cognitive and hepatoprotective effects in vivo. J. Med. Chem., 2012, 55, 5231-5242.
[74]
Zenger, K.; Chen, X.; Decker, M.; Kraus, B. In-vitro stability and metabolism of a tacrine–silibinin codrug. J. Pharm. Pharmacol., 2013, 65(12), 1765-1772.
[http://dx.doi.org/10.1111/jphp.12070] [PMID: 24236987]
[75]
Benchekroun, M.; Romero, A.; Egea, J.; León, R.; Michalska, P.; Buendía, I.; Jimeno, M.L.; Jun, D.; Janockova, J.; Sepsova, V.; Soukup, O.; Bautista-Aguilera, O.M.; Refouvelet, B.; Ouari, O.; Marco-Contelles, J.; Ismaili, L. The antioxidant additive approach for Alzheimer’s disease therapy: New ferulic (Lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants, and nuclear factor (erythroid-derived 2)-like 2 activators. J. Med. Chem., 2016, 59(21), 9967-9973.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01178] [PMID: 27736061]
[76]
Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462.
[http://dx.doi.org/10.1021/jm050746d] [PMID: 16420031]
[77]
Benchekroun, M.; Bartolini, M.; Egea, J.; Romero, A.; Soriano, E.; Pudlo, M.; Luzet, V.; Andrisano, V.; Jimeno, M.L.; López, M.G.; Wehle, S.; Gharbi, T.; Refouvelet, B.; de Andrés, L.; Herrera-Arozamena, C.; Monti, B.; Bolognesi, M.L.; Rodríguez-Franco, M.I.; Decker, M.; Marco-Contelles, J.; Ismaili, L. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids. ChemMedChem, 2015, 10(3), 523-539.
[http://dx.doi.org/10.1002/cmdc.201402409] [PMID: 25537267]
[78]
Spilovska, K.; Korabecny, J.; Kral, J.; Horova, A.; Musilek, K.; Soukup, O.; Drtinova, L.; Gazova, Z.; Siposova, K.; Kuca, K. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment--synthesis, biological evaluation and molecular modeling studies. Molecules, 2013, 18(2), 2397-2418.
[http://dx.doi.org/10.3390/molecules18022397] [PMID: 23429378]
[79]
Lan, J.S.; Xie, S.S.; Li, S.Y.; Pan, L.F.; Wang, X.B.; Kong, L.Y. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2014, 22(21), 6089-6104.
[http://dx.doi.org/10.1016/j.bmc.2014.08.035] [PMID: 25282654]
[80]
Elsinghorst, P.W.; Cieslik, J.S.; Mohr, K.; Tränkle, C.; Gütschow, M. First gallamine-tacrine hybrid: design and characterization at cholinesterases and the M2 muscarinic receptor. J. Med. Chem., 2007, 50(23), 5685-5695.
[http://dx.doi.org/10.1021/jm070859s] [PMID: 17944454]
[81]
Yeh, Y.Y.; Liu, L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J. Nutr., 2001, 131(3), 989S-993S.
[http://dx.doi.org/10.1093/jn/131.3.989S] [PMID: 11238803]
[82]
Keri, R.S.; Quintanova, C.; Chaves, S.; Silva, D.F.; Cardoso, S.M.; Santos, M.A. New tacrine hybrids with natural-based cysteine derivatives as multitargeted drugs for potential treatment of Alzheimer’s Disease. Chem. Biol. Drug Des., 2016, 87(1), 101-111.
[http://dx.doi.org/10.1111/cbdd.12633] [PMID: 26256122]
[83]
Camps, P.; Formosa, X.; Galdeano, C.; Muñoz-Torrero, D.; Ramírez, L.; Gómez, E.; Isambert, N.; Lavilla, R.; Badia, A.; Clos, M.V.; Bartolini, M.; Mancini, F.; Andrisano, V.; Arce, M.P.; Rodríguez-Franco, M.I.; Huertas, Ó.; Dafni, T.; Luque, F.J. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-Alzheimer compounds. J. Med. Chem., 2009, 52(17), 5365-5379.
[http://dx.doi.org/10.1021/jm900859q] [PMID: 19663388]
[84]
Hiremathad, A.; Keri, R.S.; Esteves, A.R.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel Tacrine-Hydroxyphenyl-benzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 148, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.023] [PMID: 29466775]
[85]
Fancellu, G.; Chand, K.; Tomás, D.; Orlandini, E.; Piemontese, L.; Silva, D.F.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s Disease. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 211-226.
[http://dx.doi.org/10.1080/14756366.2019.1689237] [PMID: 31760822]
[86]
Quintanova, C.; Keri, R.S.; Marques, S.M. G-Fernandes, M.; Cardoso, S.M.; Luísa Serralheiro, M.; Amélia Santos, M. Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs. MedChemComm, 2015, 6(11), 1969-1977.
[http://dx.doi.org/10.1039/C5MD00236B]
[87]
Jiang, X.Y.; Chen, T.K.; Zhou, J.T.; He, S.Y.; Yang, H.Y.; Chen, Y.; Qu, W.; Feng, F.; Sun, H.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-Alzheimer’s disease drug discovery. ACS Med. Chem. Lett., 2018, 9(3), 171-176.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00463] [PMID: 29541355]
[88]
Xie, S.S.; Lan, J.S.; Wang, X.B.; Jiang, N.; Dong, G.; Li, Z.R.; Wang, K.D.G.; Guo, P.P.; Kong, L.Y. Multifunctional tacrine–trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur. J. Med. Chem., 2015, 93, 42-50.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.058] [PMID: 25656088]
[89]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Babkova, K.; Ondrejicek, A.; Jun, D.; Sepsova, V.; Horova, A.; Hrabinova, M.; Soukup, O.; Bukum, N.; Jost, P.; Muckova, L.; Kassa, J.; Malinak, D.; Andrs, M.; Kuca, K. Tacrine–Trolox Hybrids: A novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J. Med. Chem., 2015, 58(22), 8985-9003.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01325] [PMID: 26503905]
[90]
Baltzer, B.; Binderup, E.; Daehne, W.V.; Godtfredsen, W.O.; Hansen, K.; Nielsen, B.; Sorensen, H.; Vangedal, S. Mutual pro-drugs of. BETA.-lactam antibiotics and. BETA.-lactamase inhibitors. J. Antibiot. (Tokyo), 1980, 33(10), 1183-1192.
[http://dx.doi.org/10.7164/antibiotics.33.1183]
[91]
Adam, D. Beta-lactam/beta-lactamase inhibitor combinations in empiric management of pediatric infections. J. Int. Med. Res., 2002, 30(Suppl. 1), 10-19.
[http://dx.doi.org/10.1177/14732300020300S103]
[92]
Stone, G.W.; Zhang, Q.; Castillo, R.; Doppalapudi, V.R.; Bueno, A.R.; Lee, J.Y.; Li, Q.; Sergeeva, M.; Khambatta, G.; Georgopapadakou, N.H. Mechanism of action of NB2001 and NB2030, novel antibacterial agents activated by β-lactamases. Antimicrob. Agents Chemother., 2004, 48(2), 477-483.
[http://dx.doi.org/10.1128/AAC.48.2.477-483.2004] [PMID: 14742198]
[93]
Long, D.D.; Aggen, J.B.; Chinn, J.; Choi, S-K.; Christensen, B.G.; Fatheree, P.R.; Green, D.; Hegde, S.S.; Judice, J.K.; Kaniga, K.; Krause, K.M.; Leadbetter, M.; Linsell, M.S.; Marquess, D.G.; Moran, E.J.; Nodwell, M.B.; Pace, J.L.; Trapp, S.G. Turner. S.D. Exploring the positional attachment of glycopeptide/beta-lactam heterodimers. J. Antibiot., 2008, 61(10), 603-614.
[http://dx.doi.org/10.1038/ja.2008.80]
[94]
Tyrrell, K.L.; Citron, D.M.; Warren, Y.A.; Goldstein, E.J.C. In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species. Antimicrob. Agents Chemother., 2012, 56(4), 2194-2197.
[http://dx.doi.org/10.1128/AAC.06274-11] [PMID: 22290981]
[95]
Jones, R.N.; Barry, A.L.; Thornsberry, C. Antimicrobial activity of Ro 23-9424, a novel ester-linked codrug of fleroxacin and desacetylcefotaxime. Antimicrob. Agents Chemother., 1989, 33(6), 944-950.
[http://dx.doi.org/10.1128/AAC.33.6.944] [PMID: 2504106]
[96]
Bryskier, A. Dual β-lactam-fluoroquinolone compounds: a novel approach to antibacterial treatment. Expert Opin. Investig. Drugs, 1997, 6(10), 1479-1499.
[http://dx.doi.org/10.1517/13543784.6.10.1479] [PMID: 15989514]
[97]
Zheng, T.; Nolan, E.M. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J. Am. Chem. Soc., 2014, 136(27), 9677-9691.
[http://dx.doi.org/10.1021/ja503911p] [PMID: 24927110]
[98]
Alven, S.; Aderibigbe, B. Combination therapy strategies for the treatment of malaria. Molecules, 2019, 24(19), 3601.
[http://dx.doi.org/10.3390/molecules24193601] [PMID: 31591293]
[99]
Walsh, J.J.; Coughlan, D.; Heneghan, N.; Gaynor, C.; Bell, A. A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett., 2007, 17(13), 3599-3602.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.054] [PMID: 17482816]
[100]
Chung, M.C.; Güido, R.V.C.; Martinelli, T.F.; Gonçalves, M.F.; Polli, M.C.; Botelho, K.C.A.; Varanda, E.A.; Colli, W.; Miranda, M.T.M.; Ferreira, E.I. Synthesis and in vitro evaluation of potential antichagasic hydroxymethylnitrofurazone (NFOH-121): a new nitrofurazone prodrug. Bioorg. Med. Chem., 2003, 11(22), 4779-4783.
[http://dx.doi.org/10.1016/j.bmc.2003.07.004] [PMID: 14556793]
[101]
Karagöz, A.Ç.; Leidenberger, M.; Hahn, F.; Hampel, F.; Friedrich, O.; Marschall, M.; Kappes, B.; Tsogoeva, S.B. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg. Med. Chem., 2019, 27(1), 110-115.
[http://dx.doi.org/10.1016/j.bmc.2018.11.018] [PMID: 30503412]
[102]
Chavain, N.; Vezin, H.; Dive, D.; Touati, N.; Paul, J.F.; Buisine, E.; Biot, C. Investigation of the redox behavior of ferroquine, a new antimalarial. Mol. Pharm., 2008, 5(5), 710-716.
[http://dx.doi.org/10.1021/mp800007x] [PMID: 18563912]
[103]
Biot, C.; Nosten, F.; Fraisse, L.; Ter-Minassian, D.; Khalife, J.; Dive, D. The antimalarial ferroquine: from bench to clinic. Parasite, 2011, 18(3), 207-214.
[http://dx.doi.org/10.1051/parasite/2011183207] [PMID: 21894260]
[104]
N-Da, D.; Breytenbach, J.; Smith, P.; Lategan, C. Synthesis and in vitro antiplasmodial activityof quinoline-ferrocene esters. Arzneimittelforschung, 2011, 61(6), 358-365.
[http://dx.doi.org/10.1055/s-0031-1296211] [PMID: 21827047]
[105]
Çapcı A.; Lorion, M.M.; Wang, H.; Simon, N.; Leidenberger, M.; Borges Silva, M.C.; Moreira, D.R.M.; Zhu, Y.; Meng, Y.; Chen, J.Y.; Lee, Y.M.; Friedrich, O.; Kappes, B.; Wang, J.; Ackermann, L.; Tsogoeva, S.B. Artemisinin–(Iso)quinoline hybrids by C−H activation and click chemistry: combating multidrug-resistant malaria. Angew. Chem. Int. Ed., 2019, 58(37), 13066-13079.
[http://dx.doi.org/10.1002/anie.201907224] [PMID: 31290221]
[106]
Kumar, E.H.; Subramanyam, S.K.; Thamizhvanan, K. Synthesis, characterization, antimicrobial evaluation and forced degradation studies of mutual amide prodrug of moxifloxacin and isoniazid. Int. J. Pharm. Chem. Sci., 2017.
[107]
Husain, A. Studies on a mutual prodrug of nalidixic acid. Int. J. Green Herb. Chem., 2015, 4, 521-526.
[108]
Husain, A. Design, synthesis, and antibacterial study of new gatifloxacin-antioxidants as mutual prodrugs. J. Biochem. Technol., 2020, 11(1), 32-36.
[109]
Hussein, A.K.; Nasser, N.H.; Abdulsada, A.H.; Hasan, S.A. Design, Synthesis, and characterization of a novel Ciprofloxacin-Antioxidant mutual prodrugs. Der Pharma. Chem., 2016, 1819, 89-92.
[110]
Hasan, S. A Synthesis and antibacterial evaluation of new ofloxacin-chalcone derivatives conjugates as possible mutual prodrugs. J. Pharm. Sci. Res., 2018, 10(12), 3061-3065.
[111]
Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. Design, synthesis, and evaluation of novel fluoroquinolone-aminoglycoside hybrid antibiotics. J. Med. Chem., 2009, 52(8), 2243-2254.
[http://dx.doi.org/10.1021/jm900028n] [PMID: 19301822]
[112]
Jampilek, J.; Reckova, Z.; Imramovsky, A.; Raich, I.; Vinsova, J.; Dohnal, J. Study of stability of new mutual prodrugs with antimycobacterial activity. Curr. Org. Chem., 2008, 12(8), 667-674.
[http://dx.doi.org/10.2174/138527208784577402]
[113]
Gangarde, D.; Karande, R. Synthesis, characterization and evaluation of Schiff’s base mutual prodrugs of naproxen. Int. J. Pharm. Sci. Res., 2014, 6, 12-25.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(11).4709-15]
[114]
Husain, S.A.K.A.; Ahmad, A. Studies on an amide based mutual prodrug: synthesis and evaluation. J. Biomed. Pharm. Res., 2015, 4, 43-46.
[115]
Rawat, J.; Jain, P.K.; Ravichandran, V.; Agrawal, R.K. Synthesis and evaluation of mutual prodrugs of isoniazid, p-amino salicylic acid and ethambutol. ARKIVOC, 2007, 2007(1), 105-118.
[http://dx.doi.org/10.3998/ark.5550190.0008.112]
[116]
Krátký, M.; Vinšová, J.; Novotná, E. Stolaříková, J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci., 2014, 53(1), 1-9.
[http://dx.doi.org/10.1016/j.ejps.2013.12.001] [PMID: 24333643]
[117]
Pastor, A.; Machelart, A.; Li, X.; Willand, N.; Baulard, A.; Brodin, P.; Gref, R.; Desmaële, D. A novel codrug made of the combination of ethionamide and its potentiating booster: synthesis, self-assembly into nanoparticles and antimycobacterial evaluation. Org. Biomol. Chem., 2019, 17(20), 5129-5137.
[http://dx.doi.org/10.1039/C9OB00680J] [PMID: 31073555]
[118]
Sriram, D.; Yogeeswari, P.; Srichakravarthy, N.; Bal, T.R. Synthesis of stavudine amino acid ester prodrugs with broad-spectrum chemotherapeutic properties for the effective treatment of HIV/AIDS. Bioorg. Med. Chem. Lett., 2004, 14(5), 1085-1087.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.007] [PMID: 14980640]
[119]
Cacciatore, I.; Di Giulio, M.; Fornasari, E.; Di Stefano, A.; Cerasa, L.S.; Marinelli, L.; Turkez, H.; Di Campli, E.; Di Bartolomeo, S.; Robuffo, I.; Cellini, L. Carvacrol codrugs: a new approach in the antimicrobial plan. PLoS One, 2015, 10(4), e0120937.
[http://dx.doi.org/10.1371/journal.pone.0120937] [PMID: 25859852]
[120]
Abdulhadi, S.L.; Qasir, A.J.; Razzak, N.A.A. Synthesis of new Conjugates of some NSAIDs with Sulfonamide as possible mutual prodrugs using tyrosine spacer for colon targeted drug delivery. Iraqi J. Pharm Sci., 2013, 22(2), 22-29.
[121]
Hussain, A.; Parashar, P.; Shrivastava, A.A.K. Synthesis, characterization and release studies of mutual prodrugs of norfloxacin and trimethoprim with aspirin for colon release. World J. Pharm. Pharm. Sci., 2014, 3(6), 2067-2074.
[122]
Ansari, M.F.; Inam, A.; Ahmad, K.; Fatima, S.; Agarwal, S.M.; Azam, A. Synthesis of metronidazole based thiazolidinone analogs as promising antiamoebic agents. Bioorg. Med. Chem. Lett., 2020, 30(23), 127549.
[http://dx.doi.org/10.1016/j.bmcl.2020.127549] [PMID: 32927029]
[123]
Liu, R.; Miller, P.A.; Vakulenko, S.B.; Stewart, N.K.; Boggess, W.C.; Miller, M.J. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J. Med. Chem., 2018, 61(9), 3845-3854.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00218] [PMID: 29554424]
[124]
Dhaneshwar, S.S.; Patil, D.; Mengi, S.; Mulay, G.; Lahane, J. Diacerein mutual prodrug for osteoarthritis: synthesis, in vitro kinetic studies and preliminary pharmacological screening. J. Drug Deliv. Sci. Technol., 2009, 19(1), 25-29.
[http://dx.doi.org/10.1016/S1773-2247(09)50003-2]
[125]
Dhaneshwar, S.S.; Patil, D.; Mengi, S.; Mulay, G.; Lahane, J. Evaluation of the chondroprotective effect of mutual prodrug of diacerein in monosodium iodoacetate-induced osteoarthritis in Wistar rats. J. Drug Deliv. Sci. Technol., 2009, 19(6), 425-430.
[http://dx.doi.org/10.1016/S1773-2247(09)50087-1]
[126]
Dhaneshwar, S.; Patel, V.; Patil, D.; Meena, G. Studies on synthesis, stability, release and pharmacodynamic profile of a novel diacerein-thymol prodrug. Bioorg. Med. Chem. Lett., 2013, 23(1), 55-61.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.016] [PMID: 23218603]
[127]
Hasan, M.; Leak, R.K.; Stratford, R.E.; Zlotos, D.P.; Witt-Enderby, P.A. Drug conjugates-an emerging approach to treat breast cancer. Pharmacol. Res. Perspect., 2018, 6(4), e00417.
[http://dx.doi.org/10.1002/prp2.417] [PMID: 29983986]
[128]
Pakdel, M.; Raissi, H.; Hosseini, S.T. Evaluation the synergistic antitumor effect of methotrexate–camptothecin codelivery prodrug from self-assembly process to acid-catalyzed both drugs release: A comprehensive theoretical study. J. Comput. Chem., 2020, 41(16), 1486-1496.
[http://dx.doi.org/10.1002/jcc.26192] [PMID: 32190916]
[129]
Assali, M.; Kittana, N.; Qasem, S.A.; Adas, R.; Saleh, D.; Arar, A.; Zohud, O. Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity. RSC Advances, 2019, 9(2), 1055-1061.
[http://dx.doi.org/10.1039/C8RA08794F] [PMID: 35517625]
[130]
Keely, N.; Carr, M.; Yassin, B.; Ana, G.; Lloyd, D.; Zisterer, D.; Meegan, M. Design, synthesis and biochemical evaluation of novel selective estrogen receptor ligand conjugates incorporating an endoxifen-combretastatin hybrid scaffold. Biomedicines, 2016, 4(3), 15.
[http://dx.doi.org/10.3390/biomedicines4030015] [PMID: 28536383]
[131]
Kelly, P.; Keely, N.; Bright, S.; Yassin, B.; Ana, G.; Fayne, D.; Zisterer, D.; Meegan, M. Novel selective estrogen receptor ligand conjugates incorporating endoxifen-combretastatin and cyclofenil-combretastatin hybrid scaffolds: Synthesis and biochemical evaluation. Molecules, 2017, 22(9), 1440.
[http://dx.doi.org/10.3390/molecules22091440] [PMID: 28858267]
[132]
Bombuwala, K. Colchitaxel, a coupled compound made from microtubule inhibitors colchicine and paclitaxel. Beilstein J. Org. Chem., 2006, 2, 1-10.
[http://dx.doi.org/10.1186/1860-5397-2-13]
[133]
Danieli, B.; Giardini, A.; Lesma, G.; Passarella, D.; Peretto, B.; Sacchetti, A.; Silvani, A.; Pratesi, G.; Zunino, F. Thiocolchicine-podophyllotoxin conjugates: dynamic libraries based on disulfide exchange reaction. J. Org. Chem., 2006, 71(7), 2848-2853.
[http://dx.doi.org/10.1021/jo052677g] [PMID: 16555841]
[134]
Zhang, X.; Zhang, J.; Tong, L.; Luo, Y.; Su, M.; Zang, Y.; Li, J.; Lu, W.; Chen, Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg. Med. Chem., 2013, 21(11), 3240-3244.
[http://dx.doi.org/10.1016/j.bmc.2013.03.049] [PMID: 23602523]
[135]
Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Redondo-Horcajo, M.; Díaz, J.F.; Barasoain, I.; Marco, J.A. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J. Med. Chem., 2014, 57(24), 10391-10403.
[http://dx.doi.org/10.1021/jm501112q] [PMID: 25426924]
[136]
Bagnato, J.D.; Eilers, A.L.; Horton, R.A.; Grissom, C.B. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J. Org. Chem., 2004, 69(26), 8987-8996.
[http://dx.doi.org/10.1021/jo049953w] [PMID: 15609930]
[137]
Baraldi, P.G.; Tabrizi, M.A.; Preti, D.; Fruttarolo, F.; Avitabile, B.; Bovero, A.; Pavani, G.; del Carretero, M.C.N.; Romagnoli, R. DNA minor-groove binders. Design, synthesis and biological evaluation of ligands structurally related to CC-1065, distamycin, and anthramycin. Pure Appl. Chem., 2003, 75(2-3), 187-194.
[http://dx.doi.org/10.1351/pac200375020187]
[138]
Baraldi, P.G.; Romagnoli, R.; Guadix, A.E.; Pineda de las Infantas, M.J.; Gallo, M.A.; Espinosa, A.; Martinez, A.; Bingham, J.P.; Hartley, J.A. Design, synthesis, and biological activity of hybrid compounds between uramustine and DNA minor groove binder distamycin A. J. Med. Chem., 2002, 45(17), 3630-3638.
[http://dx.doi.org/10.1021/jm011113b] [PMID: 12166936]
[139]
Baraldi, P.G.; Zaid, A.N.; Preti, D.; Fruttarolo, F.; Tabrizi, M.A.; Iaconinoto, A.; Pavani, M.G.; Carrion, M.D.; Cara, C.L.; Romagnoli, R. Hybrid molecules based on distamycin A as potential antitumor agents. ARKIVOC, 2005, 2006(7), 20-34.
[http://dx.doi.org/10.3998/ark.5550190.0007.704]
[140]
Baraldi, P.G.; Preti, D.; Fruttarolo, F.; Tabrizi, M.A.; Romagnoli, R. Hybrid molecules between distamycin A and active moieties of antitumor agents. Bioorg. Med. Chem., 2007, 15(1), 17-35.
[http://dx.doi.org/10.1016/j.bmc.2006.07.004] [PMID: 17081759]
[141]
Chegaev, K.; Riganti, C.; Lazzarato, L.; Rolando, B.; Guglielmo, S.; Campia, I.; Fruttero, R.; Bosia, A.; Gasco, A. Nitric oxide donor doxorubicins accumulate into Doxorubicin-resistant human colon cancer cells inducing cytotoxicity. ACS Med. Chem. Lett., 2011, 2(7), 494-497.
[http://dx.doi.org/10.1021/ml100302t] [PMID: 24900337]
[142]
Liu, W.; Liang, L.; Zhao, L.; Tan, H.; Wu, J.; Qin, Q.; Gou, X.; Sun, X. Synthesis and characterization of a photoresponsive doxorubicin/combretastatin A4 hybrid prodrug. Bioorg. Med. Chem. Lett., 2019, 29(3), 487-490.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.017] [PMID: 30553736]
[143]
Burke, P.J.; Koch, T.H. Design, synthesis, and biological evaluation of doxorubicin-formaldehyde conjugates targeted to breast cancer cells. J. Med. Chem., 2004, 47(5), 1193-1206.
[http://dx.doi.org/10.1021/jm030352r] [PMID: 14971899]
[144]
Burke, P.J.; Kalet, B.T.; Koch, T.H. Antiestrogen binding site and estrogen receptor mediate uptake and distribution of 4-hydroxytamoxifen-targeted doxorubicin-formaldehyde conjugate in breast cancer cells. J. Med. Chem., 2004, 47(26), 6509-6518.
[http://dx.doi.org/10.1021/jm049496b] [PMID: 15588086]
[145]
Jiang, Y.; Li, X.; Hou, J.; Huang, Y.; Jia, Y.; Zou, M.; Zhang, J.; Wang, X.; Xu, W.; Zhang, Y. Discovery of BC-01, a novel mutual prodrug (hybrid drug) of ubenimex and fluorouracil as anticancer agent. Eur. J. Med. Chem., 2016, 121, 649-657.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.068] [PMID: 27322756]
[146]
Jiang, Y.; Li, X.; Hou, J.; Huang, Y.; Wang, X.; Jia, Y.; Wang, Q.; Xu, W.; Zhang, J.; Zhang, Y. Synthesis and biological characterization of ubenimex-fluorouracil conjugates for anti-cancer therapy. Eur. J. Med. Chem., 2018, 143, 334-347.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.074] [PMID: 29202398]
[147]
Menger, F.M.; Rourk, M.J. Synthesis and reactivity of 5-fluorouracil/cytarabine mutual prodrugs. J. Org. Chem., 1997, 62(26), 9083-9088.
[http://dx.doi.org/10.1021/jo971076p]
[148]
Zhou, W.M.; He, R.R.; Ye, J.T.; Zhang, N.; Liu, D.Y. Synthesis and biological evaluation of new 5-fluorouracil-substituted ampelopsin derivatives. Molecules, 2010, 15(4), 2114-2123.
[http://dx.doi.org/10.3390/molecules15042114] [PMID: 20428031]
[149]
Mustafa, Y.F.; Al-omari, N.A. Design, synthesis and kinetic study of coumarin-based mutual prodrug of 5-fluorouracil and dichloroacetic acid. Iraqi J. Pharm Sci., 2016, 25(1)
[150]
Mustafa, Y.F.; Oglah, M.K.; Bashir, M.K. Synthesis and Kinetic Study of Novel Coumarin- Based Mutual Prodrug of 5-fluorouracil and 5-ethynyluracil. Revista de Chimie, 2021, 71(12), 97-108.
[http://dx.doi.org/10.37358/RC.20.12.8390]
[151]
Mustafa, Y.F.; Oglah, M.K.; Bashir, M.K. Conjugation of sinapic acid analogues with 5-fluorouracil: Synthesis, preliminary cytotoxicity, and release study. Syst. Rev. Pharm., 2020, 11(3), 482-489.
[http://dx.doi.org/10.5530/srp.2020.3.61]
[152]
Berkovitch-Luria, G.; Yakobovitch, S.; Weitman, M.; Nudelman, A.; Rozic, G.; Rephaeli, A.; Malik, Z. A multifunctional 5-aminolevulinic acid derivative induces erythroid differentiation of K562 human erythroleukemic cells. Eur. J. Pharm. Sci., 2012, 47(1), 206-214.
[http://dx.doi.org/10.1016/j.ejps.2012.05.017] [PMID: 22705251]
[153]
Qin, Q.P.; Wang, S.L.; Tan, M.X.; Wang, Z.F.; Luo, D.M.; Zou, B.Q.; Liu, Y.C.; Yao, P.F.; Liang, H. Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur. J. Med. Chem., 2018, 158(3), 106-122.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.008] [PMID: 30205260]
[154]
Ding, S.; Qiao, X.; Kucera, G.L.; Bierbach, U. Design of a platinum–acridine–endoxifen conjugate targeted at hormone-dependent breast cancer. Chem. Commun. (Camb.), 2013, 49(24), 2415-2417.
[http://dx.doi.org/10.1039/c3cc38957j] [PMID: 23416453]
[155]
Van Themsche, C.; Parent, S.; Leblanc, V.; Descôteaux, C.; Simard, A.M.; Bérubé, G.; Asselin, E. VP-128, a novel oestradiol-platinum(II) hybrid with selective anti-tumour activity towards hormone-dependent breast cancer cells in vivo. Endocr. Relat. Cancer, 2009, 16(4), 1185-1195.
[http://dx.doi.org/10.1677/ERC-09-0113] [PMID: 19661132]
[156]
Perron, V.; Rabouin, D.; Asselin, E.; Parent, S. C-Gaudreault, R.; Bérubé, G. Synthesis of 17β-estradiol-linked platinum(II) complexes and their cytocidal activity on estrogen-dependent and -independent breast tumor cells. Bioorg. Chem., 2005, 33(1), 1-15.
[http://dx.doi.org/10.1016/j.bioorg.2004.06.009] [PMID: 15668178]
[157]
Diainabo, K.J.; Neuse, E.W.; Chen, C.T.; Lynne Van Zyl, R. Design and synthesis of polysapartamide co-drugs of platinum and methotrexate as anticancer agents. Int. J. Polym. Mater., 2019, 68(8), 452-462.
[http://dx.doi.org/10.1080/00914037.2018.1455681]
[158]
Babu, T.; Sarkar, A.; Karmakar, S.; Schmidt, C.; Gibson, D. Multiaction Pt(IV) Carbamate Complexes Can Codeliver Pt(II) Drugs and Amine Containing Bioactive Molecules. Inorg. Chem., 2020, 59(7), 5182-5193.
[http://dx.doi.org/10.1021/acs.inorgchem.0c00445] [PMID: 32207294]
[159]
Barnes, K.R.; Kutikov, A.; Lippard, S.J. Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol., 2004, 11(4), 557-564.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.024] [PMID: 15123250]
[160]
Dhar, S.; Lippard, S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22199-22204.
[http://dx.doi.org/10.1073/pnas.0912276106] [PMID: 20007777]
[161]
Ang, W.H.; Khalaila, I.; Allardyce, C.S.; Juillerat-Jeanneret, L.; Dyson, P.J. Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J. Am. Chem. Soc., 2005, 127(5), 1382-1383.
[http://dx.doi.org/10.1021/ja0432618] [PMID: 15686364]
[162]
Yempala, T.; Babu, T.; Karmakar, S.; Nemirovski, A.; Ishan, M.; Gandin, V.; Gibson, D. Expanding the arsenal of PtIV anticancer agents: Multi-action PtIV anticancer agents with bioactive ligands possessing a hydroxy functional group. Angew. Chem. Int. Ed., 2019, 58(50), 18218-18223.
[http://dx.doi.org/10.1002/anie.201910014] [PMID: 31599054]
[163]
Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Combretastatin A-4 analogue: A dual-targeting and tubulin inhibitor containing antitumor Pt(IV) moiety with a unique mode of action. Bioconjug. Chem., 2016, 27(9), 2132-2148.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00353] [PMID: 27494235]
[164]
Yao, H.; Xu, Z.; Li, C.; Tse, M.K.; Tong, Z.; Zhu, G. Synthesis and cytotoxic study of a platinum(IV) anticancer prodrug with selectivity toward luteinizing hormone-releasing hormone (LHRH) receptor-positive cancer cells. Inorg. Chem., 2019, 58(16), 11076-11084.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01583] [PMID: 31393117]
[165]
Nudelman, A.; Rephaeli, A. Novel mutual prodrug of retinoic and butyric acids with enhanced anticancer activity. J. Med. Chem., 2000, 43(15), 2962-2966.
[http://dx.doi.org/10.1021/jm990540a] [PMID: 10956204]
[166]
Mann, K.K.; Rephaeli, A.; Colosimo, A.L.; Diaz, Z.; Nudelman, A.; Levovich, I.; Jing, Y.; Waxman, S.; Miller, W.H. Jr. A retinoid/butyric acid prodrug overcomes retinoic acid resistance in leukemias by induction of apoptosis. Mol. Cancer Res., 2003, 1(12), 903-912.
[PMID: 14573791]
[167]
Gediya, L.K.; Khandelwal, A.; Patel, J.; Belosay, A.; Sabnis, G.; Mehta, J.; Purushottamachar, P.; Njar, V.C.O. Design, synthesis, and evaluation of novel mutual prodrugs (hybrid drugs) of all-trans-retinoic acid and histone deacetylase inhibitors with enhanced anticancer activities in breast and prostate cancer cells in vitro. J. Med. Chem., 2008, 51(13), 3895-3904.
[http://dx.doi.org/10.1021/jm8001839] [PMID: 18543902]
[168]
Sansom, G.N.; Kirk, N.S.; Guise, C.P.; Anderson, R.F.; Smaill, J.B.; Patterson, A.V.; Kelso, M.J. Prototyping kinase inhibitor-cytotoxin anticancer mutual prodrugs activated by tumour hypoxia: A chemical proof of concept study. Bioorg. Med. Chem. Lett., 2019, 29(10), 1215-1219.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.015] [PMID: 30885680]
[169]
Vrudhula, V.M.; MacMaster, J.F.; Li, Z.; Kerr, D.E.; Senter, P.D. Reductively activated disulfide prodrugs of paclitaxel. Bioorg. Med. Chem. Lett., 2002, 12(24), 3591-3594.
[http://dx.doi.org/10.1016/S0960-894X(02)00784-9] [PMID: 12443783]
[170]
Jiang, Y.; Hou, J.; Li, X.; Huang, Y.; Wang, X.; Wu, J.; Zhang, J.; Xu, W.; Zhang, Y. Discovery of a novel chimeric ubenimex–gemcitabine with potent oral antitumor activity. Bioorg. Med. Chem., 2016, 24(22), 5787-5795.
[http://dx.doi.org/10.1016/j.bmc.2016.09.033] [PMID: 27670098]
[171]
Paidakula, S.; Nerella, S.; Vadde, R.; Kamal, A.; Kankala, S. Design and synthesis of 4β-Acetamidobenzofuranone-podophyllotoxin hybrids and their anti-cancer evaluation. Bioorg. Med. Chem. Lett., 2019, 29(16), 2153-2156.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.060] [PMID: 31281022]
[172]
Garces, A.E.; Al-Hayali, M.; Lee, J.B.; Li, J.; Gershkovich, P.; Bradshaw, T.D.; Stocks, M.J. Codrug approach for the potential treatment of EML4-ALK positive lung cancer. ACS Med. Chem. Lett., 2020, 11(3), 316-321.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00378] [PMID: 32184963]
[173]
Omran, Z.; Alarja, M.; Abdalla, A.N.; Ibrahim, M.M.; Hossain, M.A.; Chen, L.; Liu, Y.; Wang, Q. Design, synthesis, and in vitro biological evaluation of 14-hydroxytylophorine-dichloroacetate co-drugs as antiproliferative agents. Chem. Pharm. Bull. (Tokyo), 2019, 67(11), 1208-1210.
[http://dx.doi.org/10.1248/cpb.c19-00520] [PMID: 31495803]
[174]
Berger, A.S.; Cheng, C.K.; Pearson, P.A.; Ashton, P.; Crooks, P.A.; Cynkowski, T.; Cynkowska, G.; Jaffe, G.J. Intravitreal sustained release corticosteroid-5-fluoruracil conjugate in the treatment of experimental proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci., 1996, 37(11), 2318-2325.
[PMID: 8843916]
[175]
Macky, T.A.; Oelkers, C.; Rix, U.; Heredia, M.L.; Künzel, E.; Wimberly, M.; Rohrer, B.; Crosson, C.E.; Rohr, J. Synthesis, pharmacokinetics, efficacy, and rat retinal toxicity of a novel mitomycin C-triamcinolone acetonide conjugate. J. Med. Chem., 2002, 45(5), 1122-1127.
[http://dx.doi.org/10.1021/jm010511b] [PMID: 11855992]
[176]
Idippily, N.D.; Gan, C.; Orefice, P.; Peterson, J.; Su, B. Synthesis of Vorinostat and cholesterol conjugate to enhance the cancer cell uptake selectivity. Bioorg. Med. Chem. Lett., 2017, 27(4), 816-820.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.025] [PMID: 28108250]
[177]
Brown, G.R.; Clarke, D.S.; Faull, A.W.; Foubister, A.J.; Smithers, M.J. Design of dual-acting thromboxane antagonist-synthase inhibitors by a mutual prodrug approach. Bioorg. Med. Chem. Lett., 1996, 6(3), 273-278.
[178]
Gao, H.; Yang, X.; Gu, X.; Zhu, Y.Z. Synthesis and biological evaluation of the codrug of Leonurine and Aspirin as cardioprotective agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4650-4654.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.058] [PMID: 27575471]
[179]
Yang, X.Z.; Yang, W.H.; Xu, Y.G.; Diao, X.J.; He, G.W.; Gong, G.Q. Synthesis and antithrombotic evaluation of novel dabigatran prodrugs containing a cleavable moiety with anti-platelet activity. Eur. J. Med. Chem., 2012, 57, 21-28.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.016] [PMID: 23043765]
[180]
Zhang, J.; Jiang, M.; Zhao, H.; Han, L.; Jin, Y.; Chen, W.; Wang, J.; Zhang, Z.; Peng, C. Synthesis of paeonol-ozagrel conjugate: Structure characterization and in vivo anti-ischemic stroke potential. Front. Pharmacol., 2021, 11(February), 608221.
[http://dx.doi.org/10.3389/fphar.2020.608221] [PMID: 33597878]
[181]
Asnani, A.J.; Patari, S.; Chaple, D.R.; Pratyush, K. Synthesis and evaluation of mutual prodrugs from clopidogrel analogues and salicylic acid. Eur. J. Biomed. Pharm. Sci., 2018, 5, 1-6.
[182]
Abu Zanat, F.Z.; Qandil, A.M.; Tashtoush, B.M. A promising codrug of nicotinic acid and ibuprofen for managing dyslipidemia. I: Synthesis and in vitro evaluation. Drug Dev. Ind. Pharm., 2011, 37(9), 1090-1099.
[http://dx.doi.org/10.3109/03639045.2011.560155] [PMID: 21401343]
[183]
Qandil, A.M.; Rezigue, M.M.; Tashtoush, B.M. Synthesis, characterization and in vitro hydrolysis of a gemfibrozil-nicotinic acid codrug for improvement of lipid profile. Eur. J. Pharm. Sci., 2011, 43(3), 99-108.
[http://dx.doi.org/10.1016/j.ejps.2011.03.012] [PMID: 21466853]
[184]
Mascarello, A.; Azevedo, H.; Ferreira, Junior, M.A.; Ishikawa, E.E.; Guimarães, C.R.W. Design, synthesis and antihypertensive evaluation of novel codrugs with combined angiotensin type 1 receptor antagonism and neprilysin inhibition. Eur. J. Pharm. Sci., 2021, 159, 105731.
[http://dx.doi.org/10.1016/j.ejps.2021.105731] [PMID: 33493668]
[185]
Baidya, M.; Das, A.K. Synthesis and hydrolysis kinetic study of few co-drugs of propranolol and other antihypertensive drugs. Orient. J. Chem., 2011, 27(1), 173-178.
[186]
Budhalakoti, L.; Suneela, D.; Chopade, S.; Kamble, H. Exploring thioester chemistry in mutual prodrug design for combination antihypertensive therapy. World J. Pharm. Res., 2015, 4, 740-767.
[187]
Kennedy, D.A.; Vembu, N.; Fronczek, F.R.; Devocelle, M. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid. J. Org. Chem., 2011, 76(23), 9641-9647.
[http://dx.doi.org/10.1021/jo201358e] [PMID: 22026631]
[188]
Jilani, J.; Shomaf, M.; Alzoubi, K.H. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis. Drug Des. Devel. Ther., 2013, 7, 691-698.
[http://dx.doi.org/10.2147/DDDT.S48636] [PMID: 23983456]
[189]
Kim, W.; Nam, J.; Lee, S.; Jeong, S.; Jung, Y. 5-Aminosalicylic acid azo-linked to procainamide acts as an anticolitic mutual prodrug via additive inhibition of nuclear factor kappaB. Mol. Pharm., 2016, 13(6), 2126-2135.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00294] [PMID: 27112518]
[190]
Jeong, S.; Lee, H.; Kim, S.; Ju, S.; Kim, W.; Cho, H.; Kim, H.Y.; Heo, G. Im, E.; Yoo, J.W.; Yoon, I.S.; Jung, Y. 5-Aminosalicylic acid azo-coupled with a GPR109A agonist is a colon-targeted anticolitic codrug with a reduced risk of skin toxicity. Mol. Pharm., 2020, 17(1), 167-179.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00872] [PMID: 31743034]
[191]
Lee, H.; Park, S.; Ju, S.; Kim, S.; Yoo, J.W.; Yoon, I.S.; Min, D.S.; Jung, Y. Preparation and evaluation of colon-targeted prodrugs of the microbial metabolite 3-indolepropionic acid as an anticolitic agent. Mol. Pharm., 2021, 18(4), 1730-1741.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c01228] [PMID: 33661643]
[192]
Walsangikar, S.; Bhatia, N. Synthesis and evaluation of mutual prodrug of aspirin and chlorzoxazone. J. Pharmaceut. Sci. Innovat., 2013, 2(2), 35-40.
[http://dx.doi.org/10.7897/2277-4572.02212]
[193]
Andhale, G. Chemical hydrolysis, in silico physicochemical properties and in-vivo pharmacological evaluation of antidiabetic and antihypertensive codrugs. Asian J. Pharm. Res. Devel., 2018, 6, 36-43.
[http://dx.doi.org/10.22270/ajprd.v6i6.452]
[194]
Vyas, B.; Choudhary, S.; Singh, P.K.; Singh, A.; Singh, M.; Verma, H.; Singh, H.; Bahadur, R.; Singh, B.; Silakari, O. Molecular dynamics/quantum mechanics guided designing of natural products based prodrugs of Epalrestat. J. Mol. Struct., 2018, 1171, 556-563.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.030]
[195]
Choudhary, S.; Kumar, M.; Silakari, O. QM/MM analysis, synthesis and biological evaluation of epalrestat based mutual-prodrugs for diabetic neuropathy and nephropathy. Bioorg. Chem., 2021, 108, 104556.
[http://dx.doi.org/10.1016/j.bioorg.2020.104556]
[196]
Strasinger, C.L.; Scheff, N.N.; Stinchcomb, A.L. Prodrugs and codrugs as strategies for improving percutaneous absorption. Expert. Rev. Dermatol., 2008, 3(2), 221-233.
[http://dx.doi.org/10.1586/17469872.3.2.221]
[197]
Lau, W.; White, A.; Gallagher, S.; Donaldson, M.; McNaughton, G.; Heard, C. Scope and limitations of the co-drug approach to topical drug delivery. Curr. Pharm. Des., 2008, 14(8), 794-802.
[http://dx.doi.org/10.2174/138161208784007653] [PMID: 18393881]
[198]
Kiptoo, P.K.; Hamad, M.O.; Crooks, P.A.; Stinchcomb, A.L. Enhancement of transdermal delivery of 6-β-naltrexol via a codrug linked to hydroxybupropion. J. Control. Release, 2006, 113(2), 137-145.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.003] [PMID: 16750868]
[199]
Kiptoo, P.K.; Paudel, K.S.; Hammell, D.C.; Hamad, M.O.; Crooks, P.A.; Stinchcomb, A.L. In vivo evaluation of a transdermal codrug of 6-β-naltrexol linked to hydroxybupropion in hairless guinea pigs. Eur. J. Pharm. Sci., 2008, 33(4-5), 371-379.
[http://dx.doi.org/10.1016/j.ejps.2008.01.006] [PMID: 18321686]
[200]
Abdulmajed, K.; Heard, C.M. Topical delivery of retinyl ascorbate co-drug. Int. J. Pharm., 2004, 280(1-2), 113-124.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.008] [PMID: 15265552]
[201]
Abdulmajed, K.; McGuigan, C.; Heard, C.M. Topical delivery of retinyl ascorbate co-drug. 5. In vitro degradation studies. Skin Pharmacol. Physiol., 2006, 19(5), 248-258.
[http://dx.doi.org/10.1159/000093980] [PMID: 16778457]
[202]
Järvinen, K.; Järvinen, T.; Urtti, A. Ocular absorption following topical delivery. Adv. Drug Deliv. Rev., 1995, 16(1), 3-19.
[http://dx.doi.org/10.1016/0169-409X(95)00010-5]
[203]
Cynkowska, G.; Cynkowski, T.; Al-Ghananeem, A.A.; Guo, H.; Ashton, P.; Crooks, P.A. Novel antiglaucoma prodrugs and codrugs of ethacrynic acid. Bioorg. Med. Chem. Lett., 2005, 15(15), 3524-3527.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.128] [PMID: 15990301]
[204]
Howard-Sparks, M.; Al-Ghananeem, A.M.; Pearson, A.P.; Crooks, P.A. Evaluation of O3α-, O21-Di-(N1-methyloxy-carbonyl-2, 4-dioxo-5-fluoropyrimidinyl)17α-hydroxy-5β-pregnan-20-one as a novel potential antiangiogenic codrug. J. Enzyme Inhib. Med. Chem., 2005, 20(5), 417-428.
[http://dx.doi.org/10.1080/14756360500220319] [PMID: 16335049]
[205]
Howard-Sparks, M.; Al-Ghananeem, A.M.; Crooks, P.A.; Pearson, A.P. A novel chemical delivery system comprising an ocular sustained release formulation of a 3α 17α 21-trihydroxy-5β-pregnan-20-one-BIS- 5-flourouracil codrug. Drug Dev. Ind. Pharm., 2007, 33(6), 677-682.
[http://dx.doi.org/10.1080/03639040601134108] [PMID: 17613031]
[206]
Al-Ghananeem, A.; Crooks, P. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules, 2007, 12(3), 373-388.
[http://dx.doi.org/10.3390/12030373] [PMID: 17851396]
[207]
Cardillo, J.A.; Farah, M.E.; Mitre, J.; Morales, P.H.; Costa, R.A.; Melo, L.A.; Kuppermann, B.; Jorge, R.; Ashton, P. An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy. Br. J. Ophthalmol., 2004, 88(9), 1201-1205.
[http://dx.doi.org/10.1136/bjo.2003.039917] [PMID: 15317716]
[208]
Lavrushkina, E.A.; Shibilev, V.M.; Zefirov, N.A.; Shevtsova, E.F.; Shevtsov, P.N.; Kuznetsov, S.A.; Zefirova, O.N. “Triple” mutual prodrug based on 2-methoxyestradiol: synthesis and biotesting in vitro. Russ. Chem. Bull., 2020, 69(3), 558-562.
[http://dx.doi.org/10.1007/s11172-020-2798-3]
[209]
Jung, Y.; Lee, S.; Lee, Y.; Kim, W.; Nam, J.; Jeong, S.; Yoo, J-W.; Kim, M-S.; Moon, H.R. Evaluation of glycine-bearing celecoxib derivatives as a colon-specific mutual prodrug acting on nuclear factor-κB, an anti-inflammatory target. Drug Des. Devel. Ther., 2015, 9, 4227-4237.
[http://dx.doi.org/10.2147/DDDT.S88543] [PMID: 26300626]
[210]
Ghosh, P.; Pinninti, R.R.; Hammell, D.C.; Paudel, K.S.; Stinchcomb, A.L. Pharmaceutics, drug delivery and pharmaceutical technology development of a codrug approach for sustained drug delivery across microneedle-treated skin. J. Pharm. Sci., 2013, 102(5), 1458-1467.
[http://dx.doi.org/10.1002/jps.23469]
[211]
Ghosh, P.; Lee, D.; Kim, K.B.; Stinchcomb, A.L. Optimization of naltrexone diclofenac codrugs for sustained drug delivery across microneedle-treated skin. Pharm. Res., 2014, 31(1), 148-159.
[http://dx.doi.org/10.1007/s11095-013-1147-8] [PMID: 23943543]
[212]
Laserra, S.; Basit, A.; Sozio, P.; Marinelli, L.; Fornasari, E.; Cacciatore, I.; Ciulla, M.; Türkez, H.; Geyikoglu, F.; Di Stefano, A. Solid lipid nanoparticles loaded with lipoyl–memantine codrug: Preparation and characterization. Int. J. Pharm., 2015, 485(1-2), 183-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.001] [PMID: 25747452]
[213]
Thomas, S.; Vieira, C.S.; Hass, M.A.; Lopes, L.B. Stability, cutaneous delivery, and antioxidant potential of a lipoic acid and α-tocopherol codrug incorporated in microemulsions. J. Pharm. Sci., 2014, 103(8), 2530-2538.
[http://dx.doi.org/10.1002/jps.24053] [PMID: 24961388]
[214]
Hsieh, P.W.; Hung, C.F.; Lin, C.H.; Huang, C.W.; Fang, J.Y. Anti-melasma codrug of retinoic acid assists cutaneous absorption with attenuated skin irritation. Eur. J. Pharm. Biopharm., 2017, 114, 154-163.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.016] [PMID: 28161548]
[215]
Yang, Q.; Zhao, X.; Zang, L.; Fang, X.; Zhao, J.; Yang, X.; Wang, Q.; Zheng, L.; Chang, J. Anti-hepatitis B virus activities of α-DDB–FNC, a novel nucleoside–biphenyldicar-boxylate compound in cells and ducks, and its anti-immunological liver injury effect in mice. Antiviral Res., 2012, 96(3), 333-339.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.003] [PMID: 23098744]
[216]
Yang, Q.; Zhao, X.; Yu, W.; He, W.; Fang, X.; Zang, L.; Wan, N.; Wang, Q.; Zheng, L.; Chang, J. Anti-hepatitis B virus activity of α-DDB-FNCG, a novel nucleoside-biphenyldicarboxylate compound in vitro and in vivo. J. Pharmacol. Sci., 2014, 126(3), 208-215.
[http://dx.doi.org/10.1254/jphs.13230FP] [PMID: 25409748]
[217]
Sriram, D.; Yogeeswari, P.; Gopal, G. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. Eur. J. Med. Chem., 2005, 40(12), 1373-1376.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.006] [PMID: 16129516]
[218]
Sun, X.F.; Wu, Q.; Wang, N.; Cai, Y.; Lin, X.F. Novel mutual pro-drugs of 2-3-dideoxyinosine with 3-octade-cyloxy-propane-1,2-diol by straightforward enzymatic regioselective synthesis in acetone. Biotechnol. Lett., 2005, 27(2), 113-117.
[http://dx.doi.org/10.1007/s10529-004-7335-1] [PMID: 15703874]
[219]
Rossi, M. Petralla, S.; Protti, M.; Baiula, M.; Kobrlova, T.; Soukup, O.; Spampinato, S.M.; Mercolini, L.; Monti, B.; Bolognesi, M.L. α-Linolenic acid–valproic acid conjugates: toward single-molecule polypharmacology for multiple sclerosis. ACS Med. Chem. Lett., 2020, 11(12), 2406-2413.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00375] [PMID: 33329762]
[220]
Burgaud, J.; Riffaud, J.; Soldato, P. Nitric-oxide releasing molecules: a new class of drugs with several major indications. Curr. Pharm. Des., 2002, 8(3), 201-213.
[http://dx.doi.org/10.2174/1381612023396357] [PMID: 11864065]
[221]
Gilmer, J.F.; Moriarty, L.M.; McCafferty, D.F.; Clancy, J.M. Synthesis, hydrolysis kinetics and anti-platelet effects of isosorbide mononitrate derivatives of aspirin. Eur. J. Pharm. Sci., 2001, 14(3), 221-227.
[http://dx.doi.org/10.1016/S0928-0987(01)00183-X] [PMID: 11576827]
[222]
Harmon, S.; Inkielewicz-Stepniak, I.; Jones, M.; Ledwidge, M.; Santos-Martinez, M.J.; Medina, C.; Radomski, M.W.; Gilmer, J.F. Mechanisms of aggregation inhibition by aspirin and nitrate-aspirin prodrugs in human platelets. J. Pharm. Pharmacol., 2011, 64(1), 77-89.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01380.x] [PMID: 22150675]
[223]
Gilmer, J.F.; Moriarty, L.M.; Clancy, J.M. Evaluation of nitrate-substituted pseudocholine esters of aspirin as potential nitro-aspirins. Bioorg. Med. Chem. Lett., 2007, 17(11), 3217-3220.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.009] [PMID: 17376682]
[224]
Lazzarato, L.; Chegaev, K.; Marini, E.; Rolando, B.; Borretto, E.; Guglielmo, S.; Joseph, S.; Di Stilo, A.; Fruttero, R.; Gasco, A. New nitric oxide or hydrogen sulfide releasing aspirins. J. Med. Chem., 2011, 54(15), 5478-5484.
[http://dx.doi.org/10.1021/jm2004514] [PMID: 21688846]
[225]
Chiazza, F.; Chegaev, K.; Rogazzo, M.; Cutrin, J.C.; Benetti, E.; Lazzarato, L.; Fruttero, R.; Collino, M. A nitric oxide-donor furoxan moiety improves the efficacy of edaravone against early renal dysfunction and injury evoked by ischemia/reperfusion. Oxid. Med. Cell. Longev., 2015, 2015, 804659.
[http://dx.doi.org/10.1155/2015/804659] [PMID: 25834700]
[226]
Rolando, B.; Filieri, A.; Chegaev, K.; Lazzarato, L.; Giorgis, M.; De Nardi, C.; Fruttero, R.; Martel, S.; Carrupt, P.A.; Gasco, A. Synthesis physicochemical profile and PAMPA study of new NO-donor edaravone co-drugs. Bioorg. Med. Chem., 2012, 20(2), 841-850.
[http://dx.doi.org/10.1016/j.bmc.2011.11.065] [PMID: 22222158]
[227]
Barraud, N.; Kardak, B.G.; Yepuri, N.R.; Howlin, R.P.; Webb, J.S.; Faust, S.N.; Kjelleberg, S.; Rice, S.A.; Kelso, M.J. Cephalosporin-3′-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew. Chem. Int. Ed., 2012, 51(36), 9057-9060.
[http://dx.doi.org/10.1002/anie.201202414] [PMID: 22890975]
[228]
Hulsman, N.; Medema, J.P.; Bos, C.; Jongejan, A.; Leurs, R.; Smit, M.J.; de Esch, I.J.P.; Richel, D.; Wijtmans, M. Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. J. Med. Chem., 2007, 50(10), 2424-2431.
[http://dx.doi.org/10.1021/jm061371e] [PMID: 17441704]
[229]
Breschi, M.C.; Calderone, V.; Digiacomo, M.; Martelli, A.; Martinotti, E.; Minutolo, F.; Rapposelli, S.; Balsamo, A. NO-sartans: a new class of pharmacodynamic hybrids as cardiovascular drugs. J. Med. Chem., 2004, 47(23), 5597-5600.
[http://dx.doi.org/10.1021/jm049681p] [PMID: 15509155]
[230]
Spadaro, A.; Ronsisvalle, G.; Pappalardo, M. Design, synthesis and antiinflammatory activity of novel γ-tocopherol acetylsalicylic acid ester codrug. J. Pharm. Sci. Res., 2010, 2(12), 853-860.
[231]
Carvalho, E.; Francisco, A.P.; Iley, J.; Rosa, E. Triazene drug metabolites. Part 17: synthesis and plasma hydrolysis of acyloxymethyl carbamate derivatives of antitumour triazenes. Bioorg. Med. Chem., 2000, 8(7), 1719-1725.
[http://dx.doi.org/10.1016/S0968-0896(00)00100-0] [PMID: 10976519]
[232]
Zhu, Y.; Fu, J.; Shurlknight, K.L.; Soroka, D.N.; Hu, Y.; Chen, X.; Sang, S. Novel resveratrol-based aspirin prodrugs: synthesis, metabolism, and anticancer activity. J. Med. Chem., 2015, 58(16), 6494-6506.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00536] [PMID: 26204233]
[233]
Kankanala, K.; Billur, R.; Reddy, V.R.; Mukkanti, K.; Pal, S. TFAA-H3 PO4 mediated rapid and single-step synthesis of mutual prodrugs of paracetamol and NSAIDs. Green Chem. Lett. Rev., 2012, 5(3), 421-432.
[http://dx.doi.org/10.1080/17518253.2012.657251]
[234]
Visagaperumal, D.; Mayuren, C.; Anbalagan, N.; Varma, R.P.; Srinivas, B.; Shanker Bontha, V.B.; Ravikumar, G. A facile synthesis of mutual prodrug of diclofenac sodium and paracetamol and its preformulation studies. Indian Drugs, 2012, 49(10), 29.
[http://dx.doi.org/10.53879/id.49.10.p0025]
[235]
Assali, M.; Abualhasan, M.; Zohud, N.; Ghazal, N. RP-HPLC Method development and validation of synthesized codrug in combination with indomethacin, paracetamol, and famotidine. Int. J. Anal. Chem., 2020, 2020, 1894907.
[http://dx.doi.org/10.1155/2020/1894907] [PMID: 32695171]
[236]
Sawraj, S.; Bhardawaj, T.R.; Sharma, P.D. Design, synthesis, and evaluation of novel indomethacin–antioxidant codrugs as gastrosparing NSAIDs. Med. Chem. Res., 2012, 21(6), 834-843.
[http://dx.doi.org/10.1007/s00044-011-9589-1]
[237]
Avhad, D.M.; Chaple, D.R.; Asnani, A.J.; Mohurle, S.; Pratyush, K.; Tale, R.R. Synthesis and evaluation of mutual prodrugs of ibuprofen as non steroidal anti-inflammatory drugs with antioxidants. World J. Pharm. Pharm. Sci., 2020, 9(5), 1426-1438.
[238]
Zara, S.; De Colli, M.; Rapino, M.; Pacella, S.; Nasuti, C.; Sozio, P.; Di Stefano, A.; Cataldi, A. Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt intracellular signaling pathway in Alzheimer’s disease rat model. Gerontology, 2013, 59(3), 250-260.
[http://dx.doi.org/10.1159/000346445] [PMID: 23428737]
[239]
de Oliveira Pedrosa Rolim, M.; de Almeida, A.R.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B.; Quintans-Júnior, L.J.; de Souza Siqueira Quintans, J.; Heimfarth, L.; Scotti, L.; Scotti, M.T.; da Cruz, R.M.D.; de Almeida, R.N.; da Silva, T.G.; de Oliveira, J.A.; de Campos, M.L.; Marchand, P.; Mendonça-Junior, F.J.B. Design, synthesis and pharmacological evaluation of CVIB, a codrug of carvacrol and ibuprofen as a novel anti-inflammatory agent. Int. Immunopharmacol., 2019, 76, 105856.
[http://dx.doi.org/10.1016/j.intimp.2019.105856] [PMID: 31480005]
[240]
Bhosale, A.V.; Agarwal, G.P.; Mishra, P. Preparation and characterization of mutual prodrugs of ibuprofen. Indian J. Pharm. Sci., 2004, 66, 158-163.
[241]
Shah, K.; Shrivastava, S.K.; Mishra, P. Synthesis, kinetics and pharmacological comparison of a mutual prodrug of mefenamic acid to related physical mixture. Pharm. Chem. J., 2014, 48(4), 253-259.
[http://dx.doi.org/10.1007/s11094-014-1089-4]
[242]
McLean, H.M.; Lee, H.J. Synthesis and pharmacological evaluation of conjugates of prednisolone and non-steroidal anti-inflammatory agents. Steroids, 1989, 54(4), 421-439.
[http://dx.doi.org/10.1016/0039-128X(89)90054-8] [PMID: 2603171]
[243]
Al-Khafaji, T.; Al-Obaidi, Z.M.J.; Alkhafaji, S.L. Molecular docking studies and evaluation of the anti-inflammatory activity of ibuprofen-tranexamic acid codrug. Lat. Am. J. Pharm., 2021, 40, 128-134.
[244]
Al-Obaidi, Z.M.J.; Ali, A.A.; Mousa, T.H. Synthesis of novel ibuprofen-tranexamic acid codrug: estimation of the clinical activity against HCT116 colorectal carcinoma cell line and the determination of toxicity profile against MDCK normal kidney cell line. Int. J. Drug Deliv. Technol., 2019, 9, 226-235.
[http://dx.doi.org/10.25258/ijddt.9.2.18]
[245]
Abdel-Azeem, A.Z.; Abdel-Hafez, A.A.; El-Karamany, G.S.; Farag, H.H. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: Design, synthesis, pharmacological investigations and docking studies. Bioorg. Med. Chem., 2009, 17(10), 3665-3670.
[http://dx.doi.org/10.1016/j.bmc.2009.03.065] [PMID: 19398345]
[246]
Shaheed, D.Q.; Hussein, A.K.; Mubarak, H.; Jassim, A.A.K.; Abbas, K.; Alrekabi, M.D.; Hussein, A.H.; Alkhefaji, D.Q.S. Design and synthesis of diclofenac and indomethacin conjugates with gemcitabine as a possible mutual prodrugs. World J. Pharm. Res., 2015, 4, 8-17.
[247]
Alibeg, A.A.A.; Abdulsada, A.H.; Nasser, N.H.; Ali Beg, K.A.A. Design and synthesis of possible mutual prodrugs of (nsaid) etodolac and tolmetin with (cytotoxic) gemcitabine. Syst. Rev. Pharm., 2020, 11(11), 315-318.
[http://dx.doi.org/10.31838/srp.2020.11.46]
[248]
Mahdi, M.F.; Razzak, N.A.A.; Omer, T.N.A.; Hadi, M.K. Design and synthesis of possible mutual prodrugs by coupling of nsaids with sulfa drugs by using glycolic acid as spacer. Int. J. Compr. Pharm., 2012, 03(02), 1-4.
[249]
Qasir, A.J. Synthesis of NSAID with sulfonamide conjugates as possible mutual prodrugs using amino acid spacer. Der Pharma Chem., 2013, 2(1), 241-248.
[250]
Nazeruddin, G.M.; Suryawanshi, S.B. Synthesis of Novel Mutual Pro-drugs by coupling of Ibuprofen (NSAID) with Sulfa drugs. J. Chem. Pharm. Res., 2010, 2(4), 508-512.
[251]
Asghar, A.; Yousuf, M.; Mubeen, H.; Nazir, R.; Haruna, K.; Onawole, A.T.; Rasheed, L. Synthesis, spectroscopic characterization, molecular docking and theoretical studies (DFT) of N-(4-aminophenylsulfonyl)-2-(4-isobutylphenyl) propanamide having potential enzyme inhibition applications. Bioorg. Med. Chem., 2019, 27(12), 2397-2404.
[http://dx.doi.org/10.1016/j.bmc.2019.01.012] [PMID: 30683553]
[252]
Naser, N.H. Design, synthesis and hydrolysis study of gatifloxacin-NSAIDs as mutual prodrugs. Asian J. Chem., 2018, 30(1), 195-200.
[http://dx.doi.org/10.14233/ajchem.2018.20981]
[253]
Bua, S.; Di Cesare Mannelli, L.; Vullo, D.; Ghelardini, C.; Bartolucci, G.; Scozzafava, A.; Supuran, C.T.; Carta, F. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the treatment of rheumatoid arthritis. J. Med. Chem., 2017, 60(3), 1159-1170.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01607] [PMID: 28075587]
[254]
Mahdi, M.; Alsaad, H. Design, synthesis and hydrolytic behavior of mutual prodrugs of NSAIDs with gabapentin using glycol spacers. Pharmaceuticals (Basel), 2012, 5(10), 1080-1091.
[http://dx.doi.org/10.3390/ph5101080] [PMID: 24281258]
[255]
Sheha, M.; Khedr, A.; Elsherief, H. Biological and metabolic study of naproxen–propyphenazone mutual prodrug. Eur. J. Pharm. Sci., 2002, 17(3), 121-130.
[http://dx.doi.org/10.1016/S0928-0987(02)00159-8] [PMID: 12393139]
[256]
Paliwal, M.; Sucheta, R.; Jain, S.; Monika, H. Synthesis and biological evaluation of mutual prodrugs of carboxylic group containing some non-steroidal anti-inflammatory drugs and propyphenazone. Curr. Drug Deliv., 2017, 14(8), 1213-1224.
[http://dx.doi.org/10.2174/1567201814666170213153509] [PMID: 28201966]
[257]
Radwan, M.F.; Dalby, K.N.; Kaoud, T.S. Propyphenazone-based analogues as prodrugs and selective cyclooxygenase-2 inhibitors. ACS Med. Chem. Lett., 2014, 5(9), 983-988.
[http://dx.doi.org/10.1021/ml500156v] [PMID: 25221653]
[258]
Sawraj, S.; Bhardawaj, T.R.; Sharma, P.D. Design, synthesis and evaluation of novel indomethacin–flavonoid mutual prodrugs as safer NSAIDs. Med. Chem. Res., 2011, 20(6), 687-694.
[http://dx.doi.org/10.1007/s00044-010-9363-9]
[259]
Poorvashree, J.; Suneela, D. Novel drug delivery of dual acting prodrugs of hydroxychloroquine with aryl acetic acid NSAIDs: Design, kinetics and pharmacological study. Drug Deliv. Transl. Res., 2017, 7(5), 709-730.
[http://dx.doi.org/10.1007/s13346-017-0420-5] [PMID: 28828678]
[260]
Kashmira, P.; Dhaneshwar, S.; Shakuntala, C.; Poorvashree, J. Design, synthesis and in vitro release studies of co-drugs for rheumatoid arthritis. Inflamm. Allergy Drug Targets, 2015, 14(1), 47-52.
[http://dx.doi.org/10.2174/1871528114666151201200157] [PMID: 26631094]
[261]
Husain, A.; Ahmad, A.; Khan, S.A. Synthesis and biological evaluation of a mutual prodrug of norfloxacin and fenbufen. J. Taibah Univ. Med. Sci., 2016, 11(3), 277-281.
[http://dx.doi.org/10.1016/j.jtumed.2016.03.003]
[262]
Lau, W.M.; White, A.W.; Heard, C.M. Topical delivery of a naproxen-dithranol co-drug: in vitro skin penetration, permeation, and staining. Pharm. Res., 2010, 27(12), 2734-2742.
[http://dx.doi.org/10.1007/s11095-010-0274-8] [PMID: 20872052]
[263]
Bhatia, N.; Katkar, K.; Ashtekar, S. Formulation and evaluation of co-prodrug of flurbiprofen and methocarbamol. Asian J. Pharmaceut. Sci., 2016, 11(3), 449-458.
[http://dx.doi.org/10.1016/j.ajps.2015.10.031]
[264]
Chhajed, S.; Puranik, M.; Padwal, M.; Deshmukh, Z.; Agarwal, S.; Yeole, P. Hydrolysis kinetic studies of mutual prodrugs of diclofenac sodium. Int. J. Chem. Sci., 2008, 6(4), 1882-1890.
[265]
Husain, A.; Ahuja, P.; Shaharyar, M.; Ahmad, A.; Mkhalid, I.A.I.; Alam, M.M.; Akhter, M.; Zaman, M.S. Synthesis, biological activities, and pharmacokinetics studies of a mutual prodrug of aceclofenac and paracetamol. Med. Chem. Res., 2014, 23(3), 1077-1083.
[http://dx.doi.org/10.1007/s00044-013-0696-z]
[266]
Shah, K.; Shrivastava, S.K.; Mishra, P. Synthesis, kinetics and pharmacological evaluation of mefenamic acid mutual prodrug. Acta Pol. Pharm., 2013, 70(5), 905-911.
[PMID: 24147370]
[267]
Manon, B.; Sharma, P.D. Design, synthesis and evaluation of diclofenac-antioxidant mutual prodrugs as safer NSAIDs. Indian J. Chem. - Sect. B Org. Med. Chem., 2009, 48(9), 1279-1287.
[268]
Akgul, O.; Di Cesare Mannelli, L.; Vullo, D.; Angeli, A.; Ghelardini, C.; Bartolucci, G.; Alfawaz Altamimi, A.S.; Scozzafava, A.; Supuran, C.T.; Carta, F. Discovery of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the management of rheumatoid arthritis. J. Med. Chem., 2018, 61(11), 4961-4977.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00420] [PMID: 29746127]
[269]
Redasani, V.K.; Bhalerao, O.C.; Kalaskar, M.G.; Surana, S.J. Synthesis and evaluation of novel mutual prodrugs of Piroxicam. J. Pharmaceut. Chem., 2017, 4(1), 1-4.
[http://dx.doi.org/10.14805/jphchem.2017.art69]
[270]
Imran, M.; Asif, M. Mutual prodrugs of piroxicam. Acta Sci. Pharmaceut. Sci., 2019, 3(7), 27-28.
[http://dx.doi.org/10.31080/ASPS.2019.03.0305]
[271]
Aziz Alibeg, A.A. Synthesis of mutual pro-drugs through coupling of etodolac and tolmetin by sulfa drugs. Am. J. Pharm. Tech. Res., 2018, 8(1), 336-342.
[http://dx.doi.org/10.46624/ajptr.2018.v8.i1.024]
[272]
Hassib, S.T.; Hassan, G.S.; El-Zaher, A.A.; Fouad, M.A.; Abd El-Ghafar, O.A.; Taha, E.A. Synthesis and biological evaluation of new prodrugs of etodolac and tolfenamic acid with reduced ulcerogenic potential. Eur. J. Pharm. Sci., 2019, 140, 105101.
[http://dx.doi.org/10.1016/j.ejps.2019.105101] [PMID: 31639436]
[273]
Kamal, A.; Srinivas, O.; Ramulu, P.; Ramesh, G.; Kumar, P.P. Synthesis of novel C2 and C2–C8 linked pyrrolo[2,1- c][1,4]benzodiazepine-naphthalimide hybrids as DNA-binding agents. Bioorg. Med. Chem. Lett., 2003, 13(20), 3577-3581.
[http://dx.doi.org/10.1016/S0960-894X(03)00718-2] [PMID: 14505674]
[274]
Hong-Ju, Y.; He, L.; Wei-Guo, S.; Nan, Z.; Wei-Xiu, Y.; Zhong-Wei, J.; Jun-Wei, W.; Zheng-Hua, G.; Bo-Hua, Z.; Zhi-Pu, L.; Zhe-Hui, G. Effect of gabapentin derivates on mechanical allodynia-like behaviour in a rat model of chronic sciatic constriction injury. Bioorg. Med. Chem. Lett., 2004, 14(10), 2537-2541.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.094] [PMID: 15109646]
[275]
Mohammed, Z.B.; Omar, T.N. Chemical design, synthesis and biological evaluation of mutual prodrug of gabapentin with different types of phenolic and alcoholic antioxidants. Syst. Rev. Pharm., 2021, 12(1), 858-868.
[276]
Dhooper, H. K. Opioid-cannabinoid codrugs with enhanced analgesic and pharmacokinetic profile, University of Kentucky Doctoral Dissertations. 2010, 98. https://uknowledge.uky.edu/gradschool_diss/98
[277]
Huuskonen, J.; Nevalainen, T.; Gynther, J.; Taipale, H.; Ja, T. Design and synthesis of a novel L-dopa-entacapone codrug. J. Med. Chem., 2002, 45(6), 1379-1382.
[http://dx.doi.org/10.1021/jm010980d]
[278]
Denora, N.; Cassano, T.; Laquintana, V.; Lopalco, A.; Trapani, A.; Cimmino, C.S.; Laconca, L.; Giuffrida, A.; Trapani, G. Novel codrugs with GABAergic activity for dopamine delivery in the brain. Int. J. Pharm., 2012, 437(1-2), 221-231.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.023] [PMID: 22940209]
[279]
Pinnen, F.; Cacciatore, I.; Cornacchia, C.; Sozio, P.; Iannitelli, A.; Costa, M.; Pecci, L.; Nasuti, C.; Cantalamessa, F.; Di Stefano, A. Synthesis and study of L-dopa-glutathione codrugs as new anti-Parkinson agents with free radical scavenging properties. J. Med. Chem., 2007, 50(10), 2506-2515.
[http://dx.doi.org/10.1021/jm070037v] [PMID: 17451233]
[280]
Franceschelli, S.; Lanuti, P.; Ferrone, A.; Gatta, D.M.P.; Speranza, L.; Pesce, M.; Grilli, A.; Cacciatore, I.; Ricciotti, E.; Di Stefano, A.; Miscia, S.; Felaco, M.; Patruno, A. Modulation of apoptotic cell death and neuroprotective effects of glutathione—L-Dopa codrug against H2O2-induced cellular toxicity. Antioxidants, 2019, 8(8), 319.
[http://dx.doi.org/10.3390/antiox8080319] [PMID: 31430883]
[281]
More, S.S.; Vince, R. Design, synthesis and biological evaluation of glutathione peptidomimetics as components of anti-Parkinson prodrugs. J. Med. Chem., 2008, 51(15), 4581-4588.
[http://dx.doi.org/10.1021/jm800239v] [PMID: 18651729]
[282]
Pinnen, F.; Cacciatore, I.; Cornacchia, C.; Sozio, P.; Cerasa, L.S.; Iannitelli, A.; Nasuti, C.; Cantalamessa, F.; Sekar, D.; Gabbianelli, R.; Falcioni, M.L.; Stefano, A.D. Codrugs linking L-dopa and sulfur-containing antioxidants: new pharmacological tools against Parkinson’s disease. J. Med. Chem., 2009, 52(2), 559-563.
[http://dx.doi.org/10.1021/jm801266x] [PMID: 19093882]
[283]
Sozio, P.; Iannitelli, A.; Cerasa, L.S.; Cacciatore, I.; Cornacchia, C.; Giorgioni, G.; Ricciutelli, M.; Nasuti, C.; Cantalamessa, F.; Di Stefano, A. New L-dopa codrugs as potential antiparkinson agents. Arch. Pharm. (Weinheim), 2008, 341(7), 412-417.
[http://dx.doi.org/10.1002/ardp.200700228] [PMID: 18581391]
[284]
Bodor, N.; Sloan, K.B.; Higuchi, T.; Sasahara, K. Improved delivery through biological membranes. 4. Prodrugs of L-DOPA. J. Med. Chem., 1977, 20(11), 1435-1445.
[http://dx.doi.org/10.1021/jm00221a014] [PMID: 915903]
[285]
Bharath, S.; Cochran, B.C.; Hsu, M.; Liu, J.; Ames, B.N.; Andersen, J.K. Pre-treatment with R-lipoic acid alleviates the effects of GSH depletion in PC12 cells: implications for Parkinson’s disease therapy. Neurotoxicology, 2002, 23(4-5), 479-486.
[http://dx.doi.org/10.1016/S0161-813X(02)00035-9] [PMID: 12428720]
[286]
Di Stefano, A.; Sozio, P.; Iannitelli, A.; Cocco, A.; Orlando, G.; Ricciutelli, M. Synthesis and preliminary evaluation of L-dopa/benserazide conjugates as dual acting codrugs. Lett. Drug Des. Discov., 2006, 3(10), 747-752.
[http://dx.doi.org/10.2174/157018006778631947]
[287]
Pinnen, F.; Cacciatore, I.; Cornacchia, C.; Mollica, A.; Sozio, P.; Cerasa, L.S.; Iannitelli, A.; Fontana, A.; Nasuti, C.; Di Stefano, A. CNS delivery of l-dopa by a new hybrid glutathione–methionine peptidomimetic prodrug. Amino Acids, 2012, 42(1), 261-269.
[http://dx.doi.org/10.1007/s00726-010-0804-z] [PMID: 21080012]
[288]
Cassano, T.; Lopalco, A.; de Candia, M.; Laquintana, V.; Lopedota, A.; Cutrignelli, A.; Perrone, M.; Iacobazzi, R.M.; Bedse, G.; Franco, M.; Denora, N.; Altomare, C.D. Oxazepam–dopamine conjugates increase dopamine delivery into striatum of intact rats. Mol. Pharm., 2017, 14(9), 3178-3187.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00405] [PMID: 28780872]
[289]
Lau, W.M.; Ng, K.W.; White, A.W.; Heard, C.M. Therapeutic and cytotoxic effects of the novel antipsoriasis codrug, naproxyl-dithranol, on HaCaT cells. Mol. Pharm., 2011, 8(6), 2398-2407.
[http://dx.doi.org/10.1021/mp200327k] [PMID: 21882816]
[290]
Ben-Shabat, S.; Benisty, R.; Wormser, U.; Sintov, A.C. Vitamin D3-based conjugates for topical treatment of psoriasis: synthesis, antiproliferative activity, and cutaneous penetration studies. Pharm. Res., 2005, 22(1), 50-57.
[http://dx.doi.org/10.1007/s11095-004-9008-0] [PMID: 15771229]
[291]
Dao, K.L.; Sawant, R.R.; Hendricks, J.A.; Ronga, V.; Torchilin, V.P.; Hanson, R.N. Design, synthesis, and initial biological evaluation of a steroidal anti-estrogen-doxorubicin bioconjugate for targeting estrogen receptor-positive breast cancer cells. Bioconjug. Chem., 2012, 23(4), 785-795.
[http://dx.doi.org/10.1021/bc200645n] [PMID: 22404783]
[292]
Mitra, K.; Marquis, J.C.; Hillier, S.M.; Rye, P.T.; Zayas, B.; Lee, A.S.; Essigmann, J.M.; Croy, R.G. A rationally designed genotoxin that selectively destroys estrogen receptor-positive breast cancer cells. J. Am. Chem. Soc., 2002, 124(9), 1862-1863.
[http://dx.doi.org/10.1021/ja017344p] [PMID: 11866593]
[293]
Sharma, U.; Marquis, J.C.; Nicole Dinaut, A.; Hillier, S.M.; Fedeles, B.; Rye, P.T.; Essigmann, J.M.; Croy, R.G. Design, synthesis, and evaluation of estradiol-linked genotoxicants as anti-cancer agents. Bioorg. Med. Chem. Lett., 2004, 14(14), 3829-3833.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.064] [PMID: 15203171]
[294]
Jones, G.B.; Hynd, G.; Wright, J.M.; Purohit, A.; Plourde, G.W., II; Huber, R.S.; Mathews, J.E.; Li, A.; Kilgore, M.W.; Bubley, G.J.; Yancisin, M.; Brown, M.A. Target-directed enediynes: designed estramycins. J. Org. Chem., 2001, 66(11), 3688-3695.
[http://dx.doi.org/10.1021/jo0055842] [PMID: 11374986]
[295]
Devraj, R.; Barrett, J.F.; Fernandez, J.A.; Katzenellenbogen, J.A.; Cushman, M. Design, synthesis, and biological evaluation of ellipticine - estradiol conjugates. J. Med. Chem., 1996, 39, 3367-3374.
[http://dx.doi.org/10.1021/jm9602930]
[296]
Dang Thi, T.A.; Kim Tuyet, N.T. Pham The, C.; Thanh Nguyen, H.; Ba Thi, C.; Doan Duy, T.; D’hooghe, M.; Van Nguyen, T. Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid–AZT conjugates. Bioorg. Med. Chem. Lett., 2014, 24(22), 5190-5194.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.079] [PMID: 25442310]
[297]
Santos, R.C.; Salvador, J.A.R.; Marín, S.; Cascante, M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg. Med. Chem., 2009, 17(17), 6241-6250.
[http://dx.doi.org/10.1016/j.bmc.2009.07.050] [PMID: 19674909]
[298]
Saha, S.; Ghosh, M.; Dutta, S.K. A potent tumoricidal co-drug ‘Bet-CA’ - an ester derivative of betulinic acid and dichloroacetate selectively and synergistically kills cancer cells. Sci. Rep., 2015, 5(1), 7762.
[http://dx.doi.org/10.1038/srep07762] [PMID: 25585916]
[299]
Horwedel, C.; Tsogoeva, S.B.; Wei, S.; Efferth, T. Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J. Med. Chem., 2010, 53(13), 4842-4848.
[http://dx.doi.org/10.1021/jm100404t] [PMID: 20527917]
[300]
Emmerich, D.; Vanchanagiri, K.; Baratto, L.C.; Schmidt, H.; Paschke, R. Synthesis and studies of anticancer properties of lupane-type triterpenoid derivatives containing a cisplatin fragment. Eur. J. Med. Chem., 2014, 75, 460-466.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.031] [PMID: 24561674]
[301]
Suneela, D.; Dipmala, P. Synthesis and pharmacokinetic profile of rhein- boswellic acid conjugate. Bioorg. Med. Chem. Lett., 2012, 22(24), 7582-7587.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.017] [PMID: 23107483]
[302]
Zheng, G.; Shen, Z.; Xu, A.; Jiang, K.; Wu, P.; Yang, X.; Chen, X.; Shao, J. Synergistic chemopreventive and therapeutic effects of co-drug ua-met: Implication in tumor metastasis. J. Agric. Food Chem., 2017, 65(50), 10973-10983.
[http://dx.doi.org/10.1021/acs.jafc.7b04378] [PMID: 29227654]
[303]
Zhong, Y.; Dai, Z.; Xu, Y.; Teng, Y.; Wu, B. Synthesis, stability and pharmacological evaluation of a novel codrug consisting of lamivudine and ursolic acid. Eur. J. Pharm. Sci., 2012, 45(1-2), 110-115.
[http://dx.doi.org/10.1016/j.ejps.2011.10.028] [PMID: 22085635]
[304]
Li, S.; Meng, F.; Liao, X.; Wang, Y.; Sun, Z.; Guo, F.; Li, X.; Meng, M.; Li, Y.; Sun, C. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One, 2014, 9(1), e86724.
[http://dx.doi.org/10.1371/journal.pone.0086724] [PMID: 24489777]
[305]
Motaleb, M.A.; Abo-kul, M.; Ibrahim, S.M.; Saad, S.M.; Arafat, M. Synthesis of 125I-lamivudine and 125I-lamivudine-ursodeoxycholic acid codrug. J. Labelled Comp. Radiopharm., 2016, 59(11), 451-453.
[http://dx.doi.org/10.1002/jlcr.3434] [PMID: 27561199]
[306]
Jain, A.K.; Gund, M.G.; Desai, D.C.; Borhade, N.; Senthilkumar, S.P.; Dhiman, M.; Mangu, N.K.; Mali, S.V.; Dubash, N.P.; Halder, S.; Satyam, A. Mutual prodrugs containing bio-cleavable and drug releasable disulfide linkers. Bioorg. Chem., 2013, 49, 40-48.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.007] [PMID: 23886697]
[307]
Lovrić J.; Berend, S.; Lucić Vrdoljak, A.; Radić B.; Katalinić M.; Kovarik, Z.; Želježić D.; Kopjar, N.; Rast, S.; Mesić M. A conjugate of pyridine-4-aldoxime and atropine as a potential antidote against organophosphorus compounds poisoning. Acta Biochim. Pol., 2011, 58(2), 193-198.
[http://dx.doi.org/10.18388/abp.2011_2264] [PMID: 21666889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy