Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Phage Therapy as a Protective Tool Against Pathogenic Bacteria: How Far We Are?

Author(s): Kushagri Singh, Asim Biswas, Alok Kumar Chakrabarti* and Shanta Dutta

Volume 24, Issue 10, 2023

Published on: 03 January, 2023

Page: [1277 - 1290] Pages: 14

DOI: 10.2174/1389201024666221207114047

Price: $65

conference banner
Abstract

Bacterial infections continue to jeopardize human and animal health, impacting millions of lives by causing significant deaths every year. The use of antibiotics remains the primary choice of therapy and has only been partly successful in reducing the disease burden due to the evolving nature of resistant microbes. Widespread and inappropriate use of antibiotics resulted in the development of antibiotic-resistant microbial species provoking substantial economic burdens. The most promising way to resolve the issue of antibiotic resistance is the use of bacterial viruses called bacteriophages to treat microbial infections. Earlier reports on experimental bacteriophage therapy showed successful patient outcomes, and many clinical trials of such clinical bacteriophages have already been investigated in many western countries. In this review, we are focusing on the advantages as well as drawbacks of bacteriophage therapy to use it as an alternative to antibiotics for microbial infections, together with its current success status. There is also a need to extensively study the past, present, and future outlook of phage therapy in comparison to presently available antimicrobial agents and especially immunological response by the host after phage administration. Our aim is to highlight the fast-promoting field of bacteriophage therapy and provocations that lie ahead as the world is gradually moving aside from complete dependence on antimicrobial agents.

Keywords: Antimicrobial agents, lytic bacteriophages, clinical trials, pathogenic microorganisms, microbial resistance, immunology.

Graphical Abstract
[1]
D’Herelle, F.; Malone, R.H. A preliminary report of work carried out by the cholera bacteriophage enquiry. Ind. Med. Gaz., 1927, 62(11), 614-616.
[PMID: 29010807]
[2]
Aminov, R.; Caplin, J.; Chanishvili, N.; Coffey, A.; Cooper, I.; De Vos, D.; Doškař, J.; Friman, V.P.; Kurtböke, İ.; Pantucek, R.; Pirnay, J.P.; Resch, G.; Rohde, C.; Sybesma, W.; Wittmann, J. Application of bacteriophages. Microbiol. Aust., 2017, 38(2), 63-66.
[http://dx.doi.org/10.1071/MA17029]
[3]
Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol., 1929, 10(3), 226.
[4]
Summers, W.C. The strange history of phage therapy. Bacteriophage, 2012, 2(2), 130-133.
[http://dx.doi.org/10.4161/bact.20757] [PMID: 23050223]
[5]
Tang, S.S.; Biswas, S.K.; Tan, W.S.; Saha, A.K.; Leo, B.F. Efficacy and potential of phage therapy against multidrug resistant Shigella spp. PeerJ, 2019, 7, e6225.
[http://dx.doi.org/10.7717/peerj.6225] [PMID: 30984476]
[6]
Clarke, A.; Stein, C.R.; Townsend, M.L. Drug-drug interactions with HIV antiretroviral therapy. US Pharm., 2008, 33(4), HS-3-HS-21.
[7]
Bräuer, S.L.; Cadillo-Quiroz, H.; Ward, R.J.; Yavitt, J.B.; Zinder, S.H. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methano-gen isolated from an acidic peat bog. Int. J. Syst. Evol. Microbiol., 2011, 61(1), 45-52.
[http://dx.doi.org/10.1099/ijs.0.021782-0] [PMID: 20154331]
[8]
Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; Ouakrim, D.A.; Oliveira, T.C.; Struelens, M.J.; Suetens, C.; Monnet, D.L.; Strauss, R.; Mertens, K.; Struyf, T.; Catry, B.; Latour, K.; Ivanov, I.N.; Dobreva, E.G.; Tambic Andraševic, A.; Soprek, S.; Budimir, A.; Paphitou, N.; Žemlicková, H.; Schytte Olsen, S.; Wolff Sönksen, U.; Märtin, P.; Ivanova, M.; Lyytikäinen, O.; Jalava, J.; Coignard, B.; Eckmanns, T.; Abu Sin, M.; Haller, S.; Daikos, G.L.; Gikas, A.; Tsiodras, S.; Kontopidou, F.; Tóth, Á.; Hajdu, Á.; Guólaugsson, Ó.; Kristinsson, K.G.; Murchan, S.; Burns, K.; Pezzotti, P.; Gagliotti, C.; Dumpis, U.; Liuimiene, A.; Perrin, M.; Borg, M.A.; de Greeff, S.C.; Monen, J.C.M.; Koek, M.B.G.; El-strøm, P.; Zabicka, D.; Deptula, A.; Hryniewicz, W.; Caniça, M.; Nogueira, P.J.; Fernandes, P.A.; Manageiro, V.; Popescu, G.A.; Serban, R.I.; Schréterová, E.; Litvová, S.; Štefkovicová, M.; Kolman, J.; Klavs, I.; Korošec, A.; Aracil, B.; Asensio, A.; Pérez-Vázquez, M.; Bill-ström, H.; Larsson, S.; Reilly, J.S.; Johnson, A.; Hopkins, S. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis., 2019, 19(1), 56-66.
[http://dx.doi.org/10.1016/S1473-3099(18)30605-4] [PMID: 30409683]
[9]
World Health Organization. Antimicrobial resistance global report on surveillance: 2014 summary; World Health Organization, 2014.
[10]
Kadri, S.S. Key takeaways from the US CDC’s 2019 antibiotic resistance threats report for frontline providers. Crit. Care Med., 2020, 48(7), 939-945.
[http://dx.doi.org/10.1097/CCM.0000000000004371]
[11]
Kvachadze, L.; Balarjishvili, N.; Meskhi, T.; Tevdoradze, E.; Skhirtladze, N.; Pataridze, T.; Adamia, R.; Topuria, T.; Kutter, E.; Rohde, C.; Kutateladze, M. Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb. Biotechnol., 2011, 4(5), 643-650.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00259.x] [PMID: 21481199]
[12]
Wei, S.; Chelliah, R.; Rubab, M.; Oh, D.H.; Uddin, M.J.; Ahn, J. Bacteriophages as potential tools for detection and control of Salmonella spp. in food systems. Microorganisms, 2019, 7(11), 570.
[http://dx.doi.org/10.3390/microorganisms7110570] [PMID: 31744260]
[13]
Salonen, A.; de Vos, W.M. Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol., 2014, 5(1), 239-262.
[http://dx.doi.org/10.1146/annurev-food-030212-182554] [PMID: 24387608]
[14]
Slopek, S.; Weber-Dabrowska, B.; Dabrowski, M.; Kucharewicz-Krukowska, A. Results of bacteriophage treatment of suppurative bacteri-al infections in the years 1981-1986. Arch. Immunol. Ther. Exp., 1987, 35(5), 569-583.
[PMID: 3455647]
[15]
Taati Moghadam, M.; Amirmozafari, N.; Shariati, A.; Hallajzadeh, M.; Mirkalantari, S.; Khoshbayan, A.; Masjedian Jazi, F. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect. Drug Resist., 2020, 13, 45-61.
[http://dx.doi.org/10.2147/IDR.S234353] [PMID: 32021319]
[16]
Gordillo Altamirano, F.L.; Barr, J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev., 2019, 32(2), e00066-e18.
[http://dx.doi.org/10.1128/CMR.00066-18] [PMID: 30651225]
[17]
Sulakvelidze, A.; Alavidze, Z.; Morris, J.G. Bacteriophage therapy. Antimicrob. Agents Chemother., 2001, 45(3), 649-659.
[http://dx.doi.org/10.1128/AAC.45.3.649-659.2001] [PMID: 11181338]
[18]
Sybesma, W.; Rohde, C.; Bardy, P.; Pirnay, J.P.; Cooper, I.; Caplin, J.; Chanishvili, N.; Coffey, A.; De Vos, D.; Scholz, A.; McCallin, S.; Püschner, H.; Pantucek, R.; Aminov, R.; Doškař, J.; Kurtbӧke, D. Silk route to the acceptance and re-implementation of bacteriophage therapy-part II. Antibiotics, 2018, 7(2), 35.
[http://dx.doi.org/10.3390/antibiotics7020035] [PMID: 29690620]
[19]
McCallin, S.; Oechslin, F. In: Bacterial resistance to phage and its impact on clinical therapy. InPhage Therapy: A Practical Approach; Springer: Cham, 2019, pp. 59-88.
[http://dx.doi.org/10.1007/978-3-030-26736-0_3]
[20]
Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol., 2018, 8, 376.
[http://dx.doi.org/10.3389/fcimb.2018.00376] [PMID: 30406049]
[21]
Rohde, C.; Wittmann, J.; Kutter, E. Bacteriophages: A therapy concept against multi-drug-resistant bacteria. Surg. Infect., 2018, 19(8), 737-744.
[http://dx.doi.org/10.1089/sur.2018.184] [PMID: 30256176]
[22]
Fish, R; Kutter, E; Wheat, G; Blasdel, B; Kutateladze, M; Kuhl, S Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. J. Wound Care, 2016, 25(Sup7), S27-S33.
[23]
Ramamurthy, T.; Nandy, R.K.; Mukhopadhyay, A.K.; Dutta, S.; Mutreja, A.; Okamoto, K.; Miyoshi, S.I.; Nair, G.B.; Ghosh, A. Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Front. Cell. Infect. Microbiol., 2020, 10, 572096.
[http://dx.doi.org/10.3389/fcimb.2020.572096] [PMID: 33102256]
[24]
Henry, B.A. A case series of emergency investigational new drug applications for bacteriophages treating recalcitrant multi-drug resistant bacterial infections: confirmed safety and a signal of efficacy. J. Intensive. Critical Care, 2019, 5(2), 11.
[25]
Nikolich, M.P.; Filippov, A.A. Bacteriophage therapy: Developments and directions. Antibiotics, 2020, 9(3), 135.
[http://dx.doi.org/10.3390/antibiotics9030135] [PMID: 32213955]
[26]
Raza, A. jamil, M.; Tahir Aleem, M.; Aamir Aslam, M.; Muhammad Ali, H.; khan, S.; Kareem, N.; Asghar, T.; Gul, K.; Nadeem, H.; Ab-bass, J.; Khan, S. Bacteriophage therapy: Recent development and applications. Scholars Bulletin, 2021, 7(3), 27-37.
[http://dx.doi.org/10.36348/sb.2021.v07i03.003]
[27]
Krut, O.; Bekeredjian-Ding, I. Contribution of the immune response to phage therapy. J. Immunol., 2018, 200(9), 3037-3044.
[http://dx.doi.org/10.4049/jimmunol.1701745] [PMID: 29685950]
[28]
Hodyra-Stefaniak, K.; Miernikiewicz, P.; Drapała, J.; Drab, M.; Jończyk-Matysiak, E.; Lecion, D.; Kaźmierczak, Z.; Beta, W.; Majewska, J.; Harhala, M.; Bubak, B.; Kłopot, A.; Górski, A.; Dąbrowska, K. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep., 2015, 5(1), 14802.
[http://dx.doi.org/10.1038/srep14802] [PMID: 26440922]
[29]
Mapes, A.C.; Trautner, B.W.; Liao, K.S.; Ramig, R.F. Development of expanded host range phage active on biofilms of multi-drug re-sistant Pseudomonas aeruginosa. Bacteriophage, 2016, 6(1), e1096995.
[http://dx.doi.org/10.1080/21597081.2015.1096995] [PMID: 27144083]
[30]
Ramesh, V.; Fralick, J.A.; Rolfe, R.D. Prevention of Clostridium difficile -induced ileocecitis with bacteriophage. Anaerobe, 1999, 5(2), 69-78.
[http://dx.doi.org/10.1006/anae.1999.0192]
[31]
Soothill, J.S.; Morton, D.B.; Ahmad, A. The HID50 (hypothermia-inducing dose 50): An alternative to the LD50 for measurement of bac-terial virulence. Int. J. Exp. Pathol., 1992, 73(1), 95-98.
[PMID: 1576081]
[32]
Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep., 2016, 6(1), 26717.
[http://dx.doi.org/10.1038/srep26717] [PMID: 27225966]
[33]
Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 2017, 8(3), 162-173.
[http://dx.doi.org/10.4292/wjgpt.v8.i3.162] [PMID: 28828194]
[34]
Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environ-ment. Environ. Microbiol., 2006, 8(7), 1137-1144.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01054.x] [PMID: 16817922]
[35]
Suthienkul, O. Bacteriophage typing of Vibrio fluvialis. Southeast Asian J. Trop. Med. Public Health, 1993, 24(3), 449-454.
[PMID: 8160051]
[36]
Payne, M.; Oakey, J.; Owens, L. The ability of two different Vibrio spp. bacteriophages to infect Vibrio harveyi, Vibrio cholerae and Vibrio mimicus. J. Appl. Microbiol., 2004, 97(4), 663-672.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02362.x] [PMID: 15357715]
[37]
Scarano, C.; Spanu, C.; Ziino, G.; Pedonese, F.; Dalmasso, A.; Spanu, V.; Virdis, S.; De Santis, E.P. Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. New Microbiol., 2014, 37(3), 329-337.
[PMID: 25180847]
[38]
Kellogg, C.A.; Rose, J.B.; Jiang, S.C.; Thurmond, J.M.; Paul, J.H. Genetic diversity of related vibriophages isolated from marine environ-ments around Florida and Hawaii, USA. Mar. Ecol. Prog. Ser., 1995, 120, 89-98.
[http://dx.doi.org/10.3354/meps120089]
[39]
Nogueira, C.L.; Pires, D.P.; Monteiro, R.; Santos, S.B.; Carvalho, C.M. Exploitation of a Klebsiella bacteriophage receptor-binding protein as a superior biorecognition molecule. ACS Infect. Dis., 2021, 7(11), 3077-3087.
[http://dx.doi.org/10.1021/acsinfecdis.1c00366] [PMID: 34618422]
[40]
Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; Hatfull, G.F.; Spencer, H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Myco-bacterium abscessus. Nat. Med., 2019, 25(5), 730-733.
[http://dx.doi.org/10.1038/s41591-019-0437-z] [PMID: 31068712]
[41]
Edgar, R.; Friedman, N.; Molshanski-Mor, S.; Qimron, U. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dom-inant sensitive genes. Appl. Environ. Microbiol., 2012, 78(3), 744-751.
[http://dx.doi.org/10.1128/AEM.05741-11] [PMID: 22113912]
[42]
Knezevic, P.; Curcin, S.; Aleksic, V.; Petrusic, M.; Vlaski, L. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res. Microbiol., 2013, 164(1), 55-60.
[http://dx.doi.org/10.1016/j.resmic.2012.08.008] [PMID: 23000091]
[43]
Davis, C.M.; McCutcheon, J.G.; Dennis, J.J. Aztreonam lysine increases the activity of phages E79 and phiKZ against Pseudomonas aeru-ginosa PA01. Microorganisms, 2021, 9(1), 152.
[http://dx.doi.org/10.3390/microorganisms9010152] [PMID: 33445453]
[44]
Chan, W.; Zhang, Y.; Le, Q.; Jaitly, N. Latent sequence decompositions., 2016.
[45]
Parracho, H.M.R.T.; Burrowes, B.H.; Enright, M.C.; McConville, M.L.; Harper, D.R. The role of regulated clinical trials in the development of bacteriophage therapeutics. J. Mol. Genet. Med., 2012, 6(1), 279-286.
[http://dx.doi.org/10.4172/1747-0862.1000050] [PMID: 22872803]
[46]
Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol., 2013, 8(6), 769-783.
[http://dx.doi.org/10.2217/fmb.13.47] [PMID: 23701332]
[47]
Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; Górski, A. Clinical aspects of phage therapy. Adv. Virus Res., 2012, 83, 73-121.
[http://dx.doi.org/10.1016/B978-0-12-394438-2.00003-7] [PMID: 22748809]
[48]
Grafton, R.Q.; Arnason, R.; Bjørndal, T.; Campbell, D.; Campbell, H.F.; Clark, C.W.; Connor, R.; Dupont, D.P.; Hannesson, R.; Hilborn, R.; Kirkley, J.E.; Kompas, T.; Lane, D.E.; Munro, G.R.; Pascoe, S.; Squires, D.; Steinshamn, S.I.; Turris, B.R.; Weninger, Q. Incentive-based approaches to sustainable fisheries. Can. J. Fish. Aquat. Sci., 2006, 63(3), 699-710.
[http://dx.doi.org/10.1139/f05-247]
[49]
Harper, D.; Parracho, H.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and Biofilms. Antibiotics, 2014, 3(3), 270-284.
[http://dx.doi.org/10.3390/antibiotics3030270]
[50]
Brüssow, H. Phage therapy: the Escherichia coli experience. Microbiology, 2005, 151(7), 2133-2140.
[http://dx.doi.org/10.1099/mic.0.27849-0] [PMID: 16000704]
[51]
Górski, A.; Dąbrowska, K.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Łusiak-Szelachowska, M.; Jończyk-Matysiak, E.; Borysowski, J. Phages and immunomodulation. Future Microbiol., 2017, 12(10), 905-914.
[http://dx.doi.org/10.2217/fmb-2017-0049] [PMID: 28434234]
[52]
Wall, S.K.; Zhang, J.; Rostagno, M.H.; Ebner, P.D. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl. Environ. Microbiol., 2010, 76(1), 48-53.
[http://dx.doi.org/10.1128/AEM.00785-09] [PMID: 19854929]
[53]
Morison, J. Bacteriophage in the treatment and prevention of cholera. JAMA, 1933, 100(19), 1560-1561.
[54]
Sayamov, R.M. Treatment and prophylaxis of cholera with bacteriophage. Bull. World Health Organ., 1963, 28(3), 361-367.
[PMID: 13986980]
[55]
Yen, M.; Cairns, L.S.; Camilli, A. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat. Commun., 2017, 8(1), 14187.
[http://dx.doi.org/10.1038/ncomms14187] [PMID: 28146150]
[56]
Comeau, A.M.; Chan, A.M.; Suttle, C.A. Genetic richness of vibriophages isolated in a coastal environment. Environ. Microbiol., 2006, 8(7), 1164-1176.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01006.x] [PMID: 16817925]
[57]
Jun, J.W.; Shin, T.H.; Kim, J.H.; Shin, S.P.; Han, J.E.; Heo, G.J.; De Zoysa, M.; Shin, G.W.; Chai, J.Y.; Park, S.C. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J. Infect. Dis., 2014, 210(1), 72-78.
[http://dx.doi.org/10.1093/infdis/jiu059] [PMID: 24558119]
[58]
Plaza, N.; Castillo, D.; Pérez-Reytor, D.; Higuera, G.; García, K.; Bastías, R. Bacteriophages in the control of pathogenic vibrios. Electron. J. Biotechnol., 2018, 31, 24-33.
[http://dx.doi.org/10.1016/j.ejbt.2017.10.012]
[59]
Castro-Mejía, J.L.; Muhammed, M.K.; Kot, W.; Neve, H.; Franz, C.M.A.P.; Hansen, L.H.; Vogensen, F.K.; Nielsen, D.S. Optimizing proto-cols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome, 2015, 3(1), 64.
[http://dx.doi.org/10.1186/s40168-015-0131-4] [PMID: 26577924]
[60]
Ebner, P.; Rinker, J.; Nguyen, M.T.; Popella, P.; Nega, M.; Luqman, A.; Schittek, B.; Di Marco, M.; Stevanovic, S.; Götz, F. Excreted cyto-plasmic proteins contribute to pathogenicity in Staphylococcus aureus. Infect. Immun., 2016, 84(6), 1672-1681.
[http://dx.doi.org/10.1128/IAI.00138-16] [PMID: 27001537]
[61]
Górski, A.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Jończyk-Matysiak, E.; Dąbrowska, K.; Majewska, J.; Borysowski, J. Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front. Microbiol., 2016, 7, 1515.
[http://dx.doi.org/10.3389/fmicb.2016.01515] [PMID: 27725811]
[62]
Hanlon, G.W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents, 2007, 30(2), 118-128.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.04.006] [PMID: 17566713]
[63]
Abbaszadeh, F.; Leylabadlo, H.E.; Alinezhad, F.; Feizi, H.; Mobed, A.; Baghbanijavid, S.; Baghi, H.B. Bacteriophages: cancer diagnosis, treatment, and future prospects. J. Pharm. Investig., 2021, 51(1), 23-34.
[http://dx.doi.org/10.1007/s40005-020-00503-x]
[64]
Wang, D. 5 challenges in understanding the role of the virome in health and disease. PLoS Pathog., 2020, 16(3), e1008318.
[http://dx.doi.org/10.1371/journal.ppat.1008318] [PMID: 32214384]
[65]
Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci., 2017, 249, 100-133.
[http://dx.doi.org/10.1016/j.cis.2017.05.014] [PMID: 28688779]
[66]
Merabishvili, M.; Pirnay, J.P.; Vos, D.D. Guidelines to compose an ideal bacteriophage cocktail. In: Bacteriophage Therapy; Humana Press: New York, NY, 2018; pp. 99-110.
[http://dx.doi.org/10.1007/978-1-4939-7395-8_9]
[67]
Orelle, C.; Mathieu, K.; Jault, J.M. Multidrug ABC transporters in bacteria. Res. Microbiol., 2019, 170(8), 381-391.
[http://dx.doi.org/10.1016/j.resmic.2019.06.001] [PMID: 31251973]
[68]
Roach, D.R.; Leung, C.Y.; Henry, M.; Morello, E.; Singh, D.; Di Santo, J.P.; Weitz, J.S.; Debarbieux, L. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe, 2017, 22(1), 38-47.e4.
[http://dx.doi.org/10.1016/j.chom.2017.06.018] [PMID: 28704651]
[69]
González-Menéndez, E.; Fernández, L.; Gutiérrez, D.; Rodríguez, A.; Martínez, B.; García, P. Comparative analysis of different preserva-tion techniques for the storage of staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS One, 2018, 13(10), e0205728.
[http://dx.doi.org/10.1371/journal.pone.0205728] [PMID: 30308048]
[70]
Malik, D.J. Bacteriophage encapsulation using spray drying for phage therapy. Curr. Issues Mol. Biol., 2021, 40(1), 303-316.
[http://dx.doi.org/10.21775/cimb.040.303] [PMID: 32678066]
[71]
Merabishvili, M.; Monserez, R.; van Belleghem, J.; Rose, T.; Jennes, S.; De Vos, D.; Verbeken, G.; Vaneechoutte, M.; Pirnay, J.P. Stability of bacteriophages in burn wound care products. PLoS One, 2017, 12(7), e0182121.
[http://dx.doi.org/10.1371/journal.pone.0182121] [PMID: 28750102]
[72]
Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; Schaal, J.V.; Soler, C.; Fevre, C.; Arnaud, I.; Bretaudeau, L.; Gabard, J. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis., 2019, 19(1), 35-45.
[http://dx.doi.org/10.1016/S1473-3099(18)30482-1] [PMID: 30292481]
[73]
Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carter, E.A.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; Chan, H.K. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int. J. Pharm., 2017, 521(1-2), 141-149.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.060] [PMID: 28163231]
[74]
González-Menéndez, A.; Fernández, P.; Rodríguez, F.; Villagrá, P. Long-term outcomes of acceptance and commitment therapy in drug-dependent female inmates: A randomized controlled trial. Int. J. Clin. Health Psychol., 2014, 14(1), 18-27.
[http://dx.doi.org/10.1016/S1697-2600(14)70033-X] [PMID: 29399019]
[75]
Uyttebroek, S.; Chen, B.; Onsea, J.; Ruythooren, F.; Debaveye, Y.; Devolder, D.; Spriet, I.; Depypere, M.; Wagemans, J.; Lavigne, R.; Pirnay, J.P.; Merabishvili, M.; De Munter, P.; Peetermans, W.E.; Dupont, L.; Van Gerven, L.; Metsemakers, W.J. Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review. Lancet Infect. Dis., 2022, 22(8), e208-e220.
[http://dx.doi.org/10.1016/S1473-3099(21)00612-5] [PMID: 35248167]
[76]
Cortés, P.; Cano-Sarabia, M.; Colom, J.; Otero, J.; Maspoch, D.; Llagostera, M. Nano/Micro formulations for bacteriophage delivery. In: Bacteriophage Therapy; Humana Press: New York, NY, 2018; pp. 271-283.
[http://dx.doi.org/10.1007/978-1-4939-7395-8_20]
[77]
Cornax, R.; Moriñigo, M.A.; Paez, I.G.; Muñoz, M.A.; Borrego, J.J. Application of direct plaque assay for detection and enumeration of bacteriophages of Bacteroides fragilis from contaminated-water samples. Appl. Environ. Microbiol., 1990, 56(10), 3170-3173.
[http://dx.doi.org/10.1128/aem.56.10.3170-3173.1990] [PMID: 2285319]
[78]
Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of bacteriophages by double agar overlay plaque assay. In: Bacteriophages; Humana Press, 2009; pp. 69-76.
[79]
del Rio, B.; Martín, M.C.; Martínez, N.; Magadán, A.H.; Alvarez, M.A. Multiplex fast real-time PCR for quantitative detection and identifi-cation of cos-and pac-type Streptococcus thermophilus bacteriophages. Appl. Environ. Microbiol., 2008, 74(15), 4779-4781.
[http://dx.doi.org/10.1128/AEM.00295-08]
[80]
Guo, Y.; Lin, J.; Wang, X. Rapid detection of temperate bacteriophage using a simple motility assay. Environ. Microbiol. Rep., 2021, 13(5), 728-734.
[http://dx.doi.org/10.1111/1758-2229.12991] [PMID: 34245219]
[81]
Buchholz, H.H.; Bolaños, L.M.; Bell, A.G.; Michelsen, M.L.; Allen, M.; Temperton, B. Genomic evidence for inter-class host transition between abundant streamlined heterotrophs by a novel and ubiquitous marine methylophage. bioRxiv, , 24.457595.2021
[http://dx.doi.org/10.1101/2021.08.24.457595]
[82]
Manohar, P.; Tamhankar, A.J.; Leptihn, S.; Ramesh, N. Pharmacological and immunological aspects of phage therapy. Infect. Microb. Dis., 2019, 1(2), 34-42.
[http://dx.doi.org/10.1097/IM9.0000000000000013]
[83]
Lu, T.K.; Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci., 2007, 104(27), 11197-11202.
[http://dx.doi.org/10.1073/pnas.0704624104] [PMID: 17592147]
[84]
Pei, R.; Lamas-Samanamud, G.R. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl. Environ. Microbiol., 2014, 80(17), 5340-5348.
[http://dx.doi.org/10.1128/AEM.01434-14] [PMID: 24951790]
[85]
Monteiro, R.; Pires, D.P.; Costa, A.R.; Azeredo, J. Phage therapy: Going temperate? Trends Microbiol., 2019, 27(4), 368-378.
[http://dx.doi.org/10.1016/j.tim.2018.10.008] [PMID: 30466900]
[86]
Jacobs-Sera, D.; Marinelli, L.J.; Bowman, C.; Broussard, G.W.; Guerrero Bustamante, C.; Boyle, M.M.; Petrova, Z.O.; Dedrick, R.M.; Pope, W.H.; Modlin, R.L.; Hendrix, R.W.; Hatfull, G.F. On the nature of mycobacteriophage diversity and host preference. Virology, 2012, 434(2), 187-201.
[http://dx.doi.org/10.1016/j.virol.2012.09.026] [PMID: 23084079]
[87]
Knezevic, P.; Petrovic, O. A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J. Microbiol. Methods, 2008, 74(2-3), 114-118.
[http://dx.doi.org/10.1016/j.mimet.2008.03.005] [PMID: 18433900]
[88]
Kamal, F.; Dennis, J.J. Burkholderia cepacia complex phage-antibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Appl. Environ. Microbiol., 2015, 81(3), 1132-1138.
[http://dx.doi.org/10.1128/AEM.02850-14] [PMID: 25452284]
[89]
Brüssow, H. Phage therapy for the treatment of human intestinal bacterial infections: Soon to be a reality? Expert Rev. Gastroenterol. Hepatol., 2017, 11(9), 785-788.
[http://dx.doi.org/10.1080/17474124.2017.1342534] [PMID: 28612636]
[90]
Harper, D.R.; Morales, S. Bacteriophage therapy: Practicability and clinical need meet in the multidrug-resistance era. Future Microbiol., 2012, 7(7), 797-799.
[http://dx.doi.org/10.2217/fmb.12.58] [PMID: 22827299]
[91]
Górski, A.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Borysowski, J. The potential of phage therapy in sepsis. Front. Immunol., 2017, 8, 1783.
[http://dx.doi.org/10.3389/fimmu.2017.01783] [PMID: 29312312]
[92]
De Vos, D.; Pirnay, J.P.; Bilocq, F.; Jennes, S.; Verbeken, G.; Rose, T.; Keersebilck, E.; Bosmans, P.; Pieters, T.; Hing, M.; Heuninckx, W.; De Pauw, F.; Soentjens, P.; Merabishvili, M.; Deschaght, P.; Vaneechoutte, M.; Bogaerts, P.; Glupczynski, Y.; Pot, B.; van der Reijden, T.J.; Dijkshoorn, L. Molecular epidemiology and clinical impact of Acinetobacter calcoaceticus-baumannii complex in a Belgian burn wound center. PLoS One, 2016, 11(5), e0156237.
[http://dx.doi.org/10.1371/journal.pone.0156237] [PMID: 27223476]
[93]
Duplessis, C.A.; Biswas, B. A review of topical phage therapy for chronically infected wounds and preparations for a randomized adaptive clinical trial evaluating topical phage therapy in chronically infected diabetic foot ulcers. Antibiotics, 2020, 9(7), 377.
[http://dx.doi.org/10.3390/antibiotics9070377] [PMID: 32635429]
[94]
Wagenlehner, F.; Tandogdu, Z.; Bartoletti, R.; Cai, T.; Cek, M.; Kulchavenya, E.; Köves, B.; Naber, K.; Perepanova, T.; Tenke, P.; Wullt, B.; Bogenhard, F.; Johansen, T. The global prevalence of infections in urology study: A long-term, worldwide surveillance study on uro-logical infections. Pathogens, 2016, 5(1), 10.
[http://dx.doi.org/10.3390/pathogens5010010] [PMID: 26797640]
[95]
Sakandelidze, V.M. The combined use of specific phages and antibiotics in different infectious allergoses. Vrach. Delo, 1991, (3), 60-63.
[PMID: 2042352]
[96]
Anpilov, L.I.; Prokudin, A.A. Preventive effectiveness of dried polyvalent Shigella bacteriophage in organized collective farms. Voen. Med. Zh., 1984, (5), 39-40.
[PMID: 6235671]
[97]
Augustine, J.; Gopalakrishnan, M.V.; Bhat, S.G. Application of ΦSP-1 and ΦSP-3 as a therapeutic strategy against Salmonella Enteritidis infection using Caenorhabditis elegans as model organism. FEMS Microbiol. Lett., 2014, 356(1), 113-117.
[http://dx.doi.org/10.1111/1574-6968.12493] [PMID: 24893888]
[98]
Forti, F.; Roach, D.R.; Cafora, M.; Pasini, M.E.; Horner, D.S.; Fiscarelli, E.V.; Rossitto, M.; Cariani, L.; Briani, F.; Debarbieux, L.; Ghisot-ti, D. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two an-imal models. Antimicrob. Agents Chemother., 2018, 62(6), e02573-e17.
[http://dx.doi.org/10.1128/AAC.02573-17] [PMID: 29555626]
[99]
Leshkasheli, L.; Kutateladze, M.; Balarjishvili, N.; Bolkvadze, D.; Save, J.; Oechslin, F.; Que, Y.A.; Resch, G. Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia. J. Glob. Antimicrob. Resist., 2019, 19, 255-261.
[http://dx.doi.org/10.1016/j.jgar.2019.05.005] [PMID: 31100499]
[100]
Al-Zubidi, M.; Widziolek, M.; Court, E.K.; Gains, A.F.; Smith, R.E.; Ansbro, K.; Alrafaie, A.; Evans, C.; Murdoch, C.; Mesnage, S.; Doug-las, C.W.I.; Rawlinson, A.; Stafford, G.P. Identification of novel bacteriophages with therapeutic potential that target Enterococcus faecalis. Infect. Immun., 2019, 87(11), e00512-e00519.
[http://dx.doi.org/10.1128/IAI.00512-19] [PMID: 31451618]
[101]
Nale, J.Y.; Spencer, J.; Hargreaves, K.R.; Buckley, A.M.; Trzepiński, P.; Douce, G.R.; Clokie, M.R.J. Bacteriophage combinations signifi-cantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob. Agents Chemother., 2016, 60(2), 968-981.
[http://dx.doi.org/10.1128/AAC.01774-15] [PMID: 26643348]
[102]
Markoishvili, K.; Tsitlanadze, G.; Katsarava, R.; Glenn, J.; Sulakvelidze, A.; Sulakvelidze, A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected ve-nous stasis ulcers and other poorly healing wounds. Int. J. Dermatol., 2002, 41(7), 453-458.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01451.x] [PMID: 12121566]
[103]
Senhaji-Kacha, A.; Esteban, J.; Garcia-Quintanilla, M. Corrigendum: considerations for phage therapy against Mycobacterium abscessus. Front. Microbiol., 2021, 12, 722831.
[http://dx.doi.org/10.3389/fmicb.2021.722831] [PMID: 34335555]
[104]
Jończyk-Matysiak, E.; Kłak, M.; Weber-Dąbrowska, B.; Borysows-ki, J.; Górski, A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. BioMed Res. Int., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/735413] [PMID: 25247187]
[105]
Kilcher, S.; Studer, P.; Muessner, C.; Klumpp, J.; Loessner, M.J. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc. Natl. Acad. Sci., 2018, 115(3), 567-572.
[http://dx.doi.org/10.1073/pnas.1714658115] [PMID: 29298913]
[106]
Lemire, S.; Yehl, K.M.; Lu, T.K. Phage-based applications in synthetic biology. Annu. Rev. Virol., 2018, 5(1), 453-476.
[http://dx.doi.org/10.1146/annurev-virology-092917-043544] [PMID: 30001182]
[107]
Górski, A.; Międzybrodzki, R.; Łobocka, M.; Głowacka-Rutkowska, A.; Bednarek, A.; Borysowski, J.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Bagińska, N.; Letkiewicz, S.; Dąbrowska, K.; Scheres, J. Phage therapy: What have we learned? Viruses, 2018, 10(6), 288.
[http://dx.doi.org/10.3390/v10060288] [PMID: 29843391]
[108]
Pirnay, J.P.; Verbeken, G.; Ceyssens, P.J.; Huys, I.; De Vos, D.; Ameloot, C.; Fauconnier, A. The magistral phage. Viruses, 2018, 10(2), 64.
[http://dx.doi.org/10.3390/v10020064] [PMID: 29415431]
[109]
Cairns-Smith, A.G. The origin of life and the nature of the primitive gene. J. Theor. Biol., 1966, 10(1), 53-88.
[http://dx.doi.org/10.1016/0022-5193(66)90178-0] [PMID: 5964688]
[110]
Bass, L.; Liebert, C.A.; Lee, M.D.; Summers, A.O.; White, D.G.; Thayer, S.G.; Maurer, J.J. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother., 1999, 43(12), 2925-2929.
[http://dx.doi.org/10.1128/AAC.43.12.2925] [PMID: 10582884]
[111]
Rhoads, D.D.; Wolcott, R.D.; Kuskowski, M.A.; Wolcott, B.M.; Ward, L.S.; Sulakvelidze, A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J. Wound Care, 2009, 18(6), 237-243. 240-243
[http://dx.doi.org/10.12968/jowc.2009.18.6.42801] [PMID: 19661847]
[112]
Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 2009, 34(4), 349-357.
[http://dx.doi.org/10.1111/j.1749-4486.2009.01973.x] [PMID: 19673983]
[113]
Górski, A.; Międzybrodzki, R.; Żaczek, M.; Borysowski, J. Phages in the fight against COVID-19? Future Microbiol., 2020, 15(12), 1095-1100.
[http://dx.doi.org/10.2217/fmb-2020-0082] [PMID: 32845164]
[114]
Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; Akter, M.; Huq, S.; Qadri, F.; Talukdar, K.; Kassam, M.; Delley, M.; Loiseau, C.; Deng, Y.; El Aidy, S.; Berger, B.; Brüssow, H. Oral phage ther-apy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine, 2016, 4, 124-137.
[http://dx.doi.org/10.1016/j.ebiom.2015.12.023] [PMID: 26981577]
[115]
Rose, T.; Verbeken, G.; Vos, D.D.; Merabishvili, M.; Vaneechoutte, M.; Lavigne, R.; Jennes, S.; Zizi, M.; Pirnay, J.P. Experimental phage therapy of burn wound infection: Difficult first steps. Int. J. Burns Trauma, 2014, 4(2), 66-73.
[PMID: 25356373]
[116]
Speck, P.; Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett., 2016, 363(3), fnv242.
[http://dx.doi.org/10.1093/femsle/fnv242] [PMID: 26691737]
[117]
Sybesma, W.; Zbinden, R.; Chanishvili, N.; Kutateladze, M.; Chkhotua, A.; Ujmajuridze, A.; Mehnert, U.; Kessler, T.M. Bacteriophages as potential treatment for urinary tract infections. Front. Microbiol., 2016, 7, 465.
[http://dx.doi.org/10.3389/fmicb.2016.00465] [PMID: 27148173]
[118]
Nguyen, M.T.; Kraft, B.; Yu, W.; Demicrioglu, D.D.; Hertlein, T.; Burian, M.; Schmaler, M.; Boller, K.; Bekeredjian-Ding, I.; Ohlsen, K.; Schittek, B.; Götz, F. The νSaα specific lipoprotein like cluster (lpl) of S. aureus USA300 contributes to immune stimulation and invasion in human cells. PLoS Pathog., 2015, 11(6), e1004984.
[http://dx.doi.org/10.1371/journal.ppat.1004984] [PMID: 26083414]
[119]
Dutta, D.; Chowdhury, G.; Pazhani, G.P.; Guin, S.; Dutta, S.; Ghosh, S.; Rajendran, K.; Nandy, R.K.; Mukhopadhyay, A.K.; Bhattacharya, M.K.; Mitra, U.; Takeda, Y.; Nair, G.B.; Ramamurthy, T. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolka-ta, India. Emerg. Infect. Dis., 2013, 19(3), 464-467.
[http://dx.doi.org/10.3201/eid1903.121156] [PMID: 23622872]
[120]
Ali, M.; Debes, A.K.; Luquero, F.J.; Kim, D.R.; Park, J.Y.; Digilio, L.; Manna, B.; Kanungo, S.; Dutta, S.; Sur, D.; Bhattacharya, S.K.; Sack, D.A. Potential for controlling cholera using a ring vaccination strategy: Re-analysis of data from a cluster-randomized clinical trial. PLoS Med., 2016, 13(9), e1002120.
[http://dx.doi.org/10.1371/journal.pmed.1002120] [PMID: 27622507]
[121]
Chakrabarti, A.; Biswas, A.; Tewari, D.; Mondal, P.; Dutta, S. Phage types of Vibrio cholerae 01 biotype ELtor strains isolated from India during 2012-2017. J. Glob. Infect. Dis., 2020, 12(2), 94-100.
[http://dx.doi.org/10.4103/jgid.jgid_42_19] [PMID: 32773997]
[122]
Bekeredjian-Ding, I. Challenges for clinical development of vaccines for prevention of hospital-acquired bacterial infections. Front. Immunol., 2020, 11, 1755.
[http://dx.doi.org/10.3389/fimmu.2020.01755] [PMID: 32849627]
[123]
Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Xie, H.; Moore, P.A., Jr; Donoghue, A.M. Prevention of Escherichia coli respiratory infec-tion in broiler chickens with bacteriophage (SPR02). Poult. Sci., 2002, 81(4), 437-441.
[http://dx.doi.org/10.1093/ps/81.4.437] [PMID: 11998827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy