Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Repurposing of Chemotherapeutics to Combat COVID-19

Author(s): Sisir Nandi*, Bhabani Shankar Nayak*, Mayank Kumar Khede and Anil Kumar Saxena*

Volume 22, Issue 32, 2022

Published on: 15 December, 2022

Page: [2660 - 2694] Pages: 35

DOI: 10.2174/1568026623666221130142517

Price: $65

conference banner
Abstract

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a novel strain of SARS coronavirus. The COVID-19 disease caused by this virus was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 mainly spreads through droplets sprayed by coughs or sneezes of the infected to a healthy person within the vicinity of 6 feet. It also spreads through asymptomatic carriers and has negative impact on the global economy, security and lives of people since 2019. Numerous lives have been lost to this viral infection; hence there is an emergency to build up a potent measure to combat SARS-CoV-2. In view of the non-availability of any drugs or vaccines at the time of its eruption, the existing antivirals, antibacterials, antimalarials, mucolytic agents and antipyretic paracetamol were used to treat the COVID-19 patients. Still there are no specific small molecule chemotherapeutics available to combat COVID-19 except for a few vaccines approved for emergency use only. Thus, the repurposing of chemotherapeutics with the potential to treat COVID-19 infected people is being used. The antiviral activity for COVID-19 and biochemical mechanisms of the repurposed drugs are being explored by the biological assay screening and structure-based in silico docking simulations. The present study describes the various US-FDA approved chemotherapeutics repositioned to combat COVID-19 along with their screening for biological activity, pharmacokinetic and pharmacodynamic evaluation.

Keywords: SARS-CoV-2, COVID-19, US-FDA approved chemotherapeutics, In vitro screening, Structure-based in silico screening, Biochemical mechanisms of repurposed drugs.

Graphical Abstract
[1]
World Health Organization. World antimicrobial awareness week., 2020. Available from: https://www.who.int
[2]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[3]
Jaimes, J.A.; Millet, J.K.; Stout, A.E.; André, N.M.; Whittaker, G.R. A tale of two viruses: the distinct spike glycoproteins of feline coronaviruses. Viruses, 2020, 12(1), 83-85.
[http://dx.doi.org/10.3390/v12010083] [PMID: 31936749]
[4]
Wehbe, Z.; Hammoud, S.; Soudani, N.; Zaraket, H.; El-Yazbi, A.; Eid, A.H. Molecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling. Front. Pharmacol., 2020, 11, 836.
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[5]
Zareef, R.O.; Younis, N.K.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19 in pediatric patients: a focus on CHD patients. Front. Cardiovasc. Med., 2020, 7, 612460.
[http://dx.doi.org/10.3389/fcvm.2020.612460] [PMID: 33330675]
[6]
Moayed, M.S.; Rahimi-Bashar, F.; Vahedian-Azimi, A.; Sathyapalan, T.; Guest, P.C.; Jamialahmadi, T.; Sahebkar, A. Cardiac injury in COVID-19: a systematic review. Adv. Exp. Med. Biol., 2021, 1321, 325-333.
[http://dx.doi.org/10.1007/978-3-030-59261-5_29] [PMID: 33656737]
[7]
Viveiros, A.; Rasmuson, J.; Vu, J.; Mulvagh, S.L.; Yip, C.Y.Y.; Norris, C.M.; Oudit, G.Y. Sex differences in COVID-19: candidate pathways, genetics of ACE2, and sex hormones. Am. J. Physiol. Heart Circ. Physiol., 2021, 320(1), H296-H304.
[http://dx.doi.org/10.1152/ajpheart.00755.2020] [PMID: 33275517]
[8]
Vahedian-Azimi, A.; Pourhoseingholi, M.A.; Saberi, M.; Behnam, B.; Sahebkar, A. Gender susceptibility to COVID-19 mortality: Androgens as the usual suspects? Adv. Exp. Med. Biol., 2021, 1321, 261-264.
[http://dx.doi.org/10.1007/978-3-030-59261-5_23] [PMID: 33656731]
[9]
Jafarabadi, M.A.; Vahedian-Azimi, A.; Rahimibashar, F.; Guest, P.C.; Karimi, L.; Sahebkar, A. Psychometric evaluation of stress in 17,414 critical care unit nurses: effects of age, gender, and working conditions. Adv. Exp. Med. Biol., 2021, 1286, 199-212.
[http://dx.doi.org/10.1007/978-3-030-55035-6_14] [PMID: 33725355]
[10]
Shin, J.; Toyoda, S.; Fukuhara, A.; Shimomura, I. GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines, 2022, 10(8), 1995.
[http://dx.doi.org/10.3390/biomedicines10081995] [PMID: 36009544]
[11]
Yu, P.; Tan, Z.; Li, Z.; Xu, Y.; Zhang, J.; Xia, P.; Tang, X.; Ma, J.; Xu, M.; Liu, X.; Shen, Y. Obesity and clinical outcomes in COVID-19 patients without comorbidities, a post-hoc analysis from ORCHID trial. Front. Endocrinol. (Lausanne), 2022, 13, 936976.
[http://dx.doi.org/10.3389/fendo.2022.936976] [PMID: 35966085]
[12]
Ahmadian, R.; Biganeh, H.; Panahi, Y.; Guest, P.C.; Jamialahmadi, T.; Sahebkar, A. resveratrol as a probable multiheaded treatment approach for COVID-19. Adv. Exp. Med. Biol., 2021, 1328, 441-446.
[http://dx.doi.org/10.1007/978-3-030-73234-9_29] [PMID: 34981495]
[13]
Giordo, R.; Zinellu, A.; Eid, A.H.; Pintus, G. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders. Molecules, 2021, 26(4), 856.
[http://dx.doi.org/10.3390/molecules26040856] [PMID: 33562030]
[14]
Kouhpeikar, H.; Khosaravizade Tabasi, H.; Khazir, Z.; Naghipour, A.; Mohammadi Moghadam, H.; Forouzanfar, H.; Abbasifard, M.; Kirichenko, T.V.; Reiner, Ž.; Banach, M.; Sahebkar, A. Statin use in COVID-19 hospitalized patients and outcomes: a retrospective study. Front. Cardiovasc. Med., 2022, 9, 820260.
[http://dx.doi.org/10.3389/fcvm.2022.820260] [PMID: 35282379]
[15]
Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother., 2021, 65(5), e02428-e20.
[http://dx.doi.org/10.1128/AAC.02428-20] [PMID: 33649113]
[16]
Chen, P.L.; Lee, N.Y.; Cia, C.T.; Ko, W.C.; Hsueh, P.R. A review of treatment of coronavirus disease 2019 (COVID-19): therapeutic repurposing and unmet clinical needs. Front. Pharmacol., 2020, 2020, 584956.
[http://dx.doi.org/10.3389/fphar.2020.584956] [PMID: 33364959]
[17]
Wattanakul, T.; Chotsiri, P.; Scandale, I.; Hoglund, R.M.; Tarning, J. A pharmacometric approach to evaluate drugs for potential repurposing as COVID-19 therapeutics. Expert Rev. Clin. Pharmacogn., 2022.
[http://dx.doi.org/10.1080/17512433.2022.2113388]
[18]
Food & Drug Administration. FDA Approved Drug Products, Hydroxychloroquine Oral Tablets., 2019. Available from: https://www.accessdata.fda.gov
[19]
Plowe, C.V. Antimalarial drug resistance in Africa: strategies for monitoring and deterrence. Curr. Top. Microbiol. Immunol., 2005, 295, 55-79.
[http://dx.doi.org/10.1007/3-540-29088-5_3] [PMID: 16265887]
[20]
Yan, Y.; Zou, Z.; Sun, Y.; Li, X.; Xu, K.F.; Wei, Y.; Jin, N.; Jiang, C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res., 2013, 23(2), 300-302.
[http://dx.doi.org/10.1038/cr.2012.165] [PMID: 23208422]
[21]
Li, G.; Sun, J.; Huang, Y.; Li, Y.; Shi, Y.; Li, Z.; Li, X.; Yang, F.H.; Zhao, J.; Luo, H.; Zhang, T.Y.; Zhang, X. Enantiomers of chloroquine and hydroxychloroquine exhibit different activities against SARS-CoV-2 in vitro, evidencing s-hydroxychloroquine as a potentially superior drug for COVID-19. bioRxiv, 2020, 2020, 114033.
[http://dx.doi.org/10.1101/2020.05.26.114033]
[22]
Braz, H.L.B.; Silveira, J.A.M.; Marinho, A.D.; de Moraes, M.E.A.; Moraes Filho, M.O.; Monteiro, H.S.A.; Jorge, R.J.B. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020, 56(3), 106119.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106119] [PMID: 32738306]
[23]
Nandi, S.; Kumar, M.; Saxena, A.K. Repurposing of drugs and HTS to combat SARS-CoV-2 main protease utilizing structure-based molecular docking. Lett. Drug Des. Discov., 2022, 19(5), 413-427.
[http://dx.doi.org/10.2174/1570180818666211007111105]
[24]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[25]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[26]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[27]
Chen, Z.; Hu, J.; Zhang, Z.; Jiang, S.; Han, S.; Yan, D.; Zhuang, R.; Hu, B.; Zhang, Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Medrxiv, 2020, 2020, 20040758.
[http://dx.doi.org/10.1101/2020.03.22.20040758]
[28]
Chen, J.; Liu, D.; Liu, L.; Liu, P.; Xu, Q.; Xia, L.; Ling, Y.; Huang, D.; Song, S.; Zhang, D.; Qian, Z.; Li, T.; Shen, Y.; Lu, H. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 215-219.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.03.03] [PMID: 32391667]
[30]
Hoang, T.; Anh, T.T.T. Treatment options for severe acute respiratory syndrome, middle east respiratory syndrome, and coronavirus disease 2019: a review of clinical evidence. Infect. Chemother., 2020, 52(3), 317-334.
[http://dx.doi.org/10.3947/ic.2020.52.3.317] [PMID: 32869558]
[31]
World Health Organization. World Health Organization model list of essential medicines, 2019.
[32]
Sidwell, R.W.; Bailey, K.W.; Wong, M.H.; Barnard, D.L.; Smee, D.F. In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antiviral Res., 2005, 68(1), 10-17.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.003] [PMID: 16087250]
[33]
Tian, L.; Qiang, T.; Liang, C.; Ren, X.; Jia, M.; Zhang, J.; Li, J.; Wan, M.; YuWen, X.; Li, H.; Cao, W.; Liu, H. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur. J. Med. Chem., 2021, 213, 113201.
[http://dx.doi.org/10.1016/j.ejmech.2021.113201] [PMID: 33524687]
[34]
Unal, M.A.; Bitirim, C.V.; Summak, G.Y.; Bereketoglu, S.; Cevher Zeytin, I.; Besbinar, O.; Gurcan, C.; Aydos, D.; Goksoy, E.; Kocakaya, E.; Eran, Z.; Murat, M.; Demir, N.; Aksoy Ozer, Z.B.; Somers, J.; Demir, E.; Nazir, H.; Ozkan, S.A.; Ozkul, A.; Azap, A.; Yilmazer, A.; Akcali, K.C. Ribavirin shows antiviral activity against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 in vitro. Can. J. Physiol. Pharmacol., 2021, 99(5), 449-460.
[http://dx.doi.org/10.1139/cjpp-2020-0734] [PMID: 33689451]
[35]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[36]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052]
[37]
Hung, I.F.N.; Lung, K.C.; Tso, E.Y.K.; Liu, R.; Chung, T.W.H.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; Shum, H.P.; Chan, V.; Wu, A.K.L.; Sin, K.M.; Leung, W.S.; Law, W.L.; Lung, D.C.; Sin, S.; Yeung, P.; Yip, C.C.Y.; Zhang, R.R.; Fung, A.Y.F.; Yan, E.Y.W.; Leung, K.H.; Ip, J.D.; Chu, A.W.H.; Chan, W.M.; Ng, A.C.K.; Lee, R.; Fung, K.; Yeung, A.; Wu, T.C.; Chan, J.W.M.; Yan, W.W.; Chan, W.M.; Chan, J.F.W.; Lie, A.K.W.; Tsang, O.T.Y.; Cheng, V.C.C.; Que, T.L.; Lau, C.S.; Chan, K.H.; To, K.K.W.; Yuen, K.Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020, 395(10238), 1695-1704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[38]
Tong, S.; Su, Y.; Yu, Y.; Wu, C.; Chen, J.; Wang, S.; Jiang, J. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int. J. Antimicrob. Agents, 2020, 56(3), 106114.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106114] [PMID: 32712334]
[39]
Abbaspour Kasgari, H.; Moradi, S.; Shabani, A.M.; Babamahmoodi, F.; Davoudi Badabi, A.R.; Davoudi, L.; Alikhani, A.; Hedayatizadeh Omran, A.; Saeedi, M.; Merat, S.; Wentzel, H.; Garratt, A.; Levi, J.; Simmons, B.; Hill, A.; Tirgar Fakheri, H. Evaluation of the efficacy of sofosbuvir plus daclatasvir in combination with ribavirin for hospitalized COVID-19 patients with moderate disease compared with standard care: a single-centre, randomized controlled trial. J. Antimicrob. Chemother., 2020, 75(11), 3373-3378.
[http://dx.doi.org/10.1093/jac/dkaa332] [PMID: 32812025]
[40]
Beigel, J.; Bray, M. Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res., 2008, 78(1), 91-102.
[http://dx.doi.org/10.1016/j.antiviral.2008.01.003] [PMID: 18328578]
[41]
Hsieh, H.P.; Hsu, J. Strategies of development of antiviral agents directed against influenza virus replication. Curr. Pharm. Des., 2007, 13(34), 3531-3542.
[http://dx.doi.org/10.2174/138161207782794248] [PMID: 18220789]
[42]
Gowen, B.B.; Wong, M.H.; Jung, K.H.; Sanders, A.B.; Mendenhall, M.; Bailey, K.W.; Furuta, Y.; Sidwell, R.W. In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob. Agents Chemother., 2007, 51(9), 3168-3176.
[http://dx.doi.org/10.1128/AAC.00356-07] [PMID: 17606691]
[43]
Sidwell, R.W.; Barnard, D.L.; Day, C.W.; Smee, D.F.; Bailey, K.W.; Wong, M.H.; Morrey, J.D.; Furuta, Y. Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob. Agents Chemother., 2007, 51(3), 845-851.
[http://dx.doi.org/10.1128/AAC.01051-06] [PMID: 17194832]
[44]
Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother., 2005, 49(3), 981-986.
[http://dx.doi.org/10.1128/AAC.49.3.981-986.2005] [PMID: 15728892]
[45]
Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; Narita, H.; Shiraki, K. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother., 2002, 46(4), 977-981.
[http://dx.doi.org/10.1128/AAC.46.4.977-981.2002] [PMID: 11897578]
[46]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[47]
Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis., 2019, 32(2), 176-186.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[48]
Madelain, V.; Nguyen, T.H.T.; Olivo, A.; de Lamballerie, X.; Guedj, J.; Taburet, A.M.; Mentré, F. Ebola virus infection: review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials. Clin. Pharmacokinet., 2016, 55(8), 907-923.
[http://dx.doi.org/10.1007/s40262-015-0364-1] [PMID: 26798032]
[49]
Wang, Y.; Li, P.; Rajpoot, S.; Saqib, U.; Yu, P.; Li, Y.; Li, Y.; Ma, Z.; Baig, M.S.; Pan, Q. Comparative assessment of favipiravir and remdesivir against human coronavirus NL63 in molecular docking and cell culture models. Sci. Rep., 2021, 11(1), 23465.
[http://dx.doi.org/10.1038/s41598-021-02972-y] [PMID: 34873274]
[50]
Nandi, S.; Kumar, M.; Saxena, M.; Saxena, A.K. The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat COVID-19 utilizing structure-based molecular docking. Comb. Chem. High Throughput Screen., 2021, 24(7), 1055-1068.
[http://dx.doi.org/10.2174/1386207323999200824115536] [PMID: 32838713]
[51]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing), 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[52]
Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis., 2021, 102, 501-508.
[http://dx.doi.org/10.1016/j.ijid.2020.10.069] [PMID: 33130203]
[53]
Chen, C.; Zhang, Y.; Huang, J.; Yin, P.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv, 2020, 2020, 20037432.
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[54]
Rattanaumpawan, P.; Jirajariyavej, S.; Lerdlamyong, K.; Palavutitotai, N.; Saiyarin, J. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: results from a multicenter observational study. MedRxiv, 2020, 2020, 20133249.
[http://dx.doi.org/10.1101/2020.06.24.20133249]
[55]
Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. RETRACTED ARTICLE: Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Arch. Virol., 2021, 166(3), 949-954.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[56]
National Library of Medicine Remdesivir. Available from:. https://pubchem.ncbi.nlm.nih.gov/compound/Remdesivir
[57]
Kaddoura, M.; AlIbrahim, M.; Hijazi, G.; Soudani, N.; Audi, A.; Alkalamouni, H.; Haddad, S.; Eid, A.; Zaraket, H. COVID-19 therapeutic options under investigation. Front. Pharmacol., 2020, 11, 1196.
[http://dx.doi.org/10.3389/fphar.2020.01196] [PMID: 32848795]
[58]
Younis, N.K.; Zareef, R.O.; Fakhri, G.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19: potential therapeutics for pediatric patients. Pharmacol. Rep., 2021, 73(6), 1520-1538.
[http://dx.doi.org/10.1007/s43440-021-00316-1] [PMID: 34458951]
[59]
Frediansyah, A.; Nainu, F.; Dhama, K.; Mudatsir, M.; Harapan, H. Remdesivir and its antiviral activity against COVID-19: A systematic review. Clin. Epidemiol. Glob. Health, 2021, 9, 123-127.
[http://dx.doi.org/10.1016/j.cegh.2020.07.011] [PMID: 32838064]
[60]
Food & Drug Administration. Fact Sheet for Health Care Providers EUA of Remdesivir., Available from: https://www.fda.gov/media/137566/download
[61]
Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178, 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[62]
Puhl, A.C.; Fritch, E.J.; Lane, T.R.; Tse, L.V.; Yount, B.L.; Sacramento, C.Q.; Fintelman-Rodrigues, N.; Tavella, T.A.; Maranhão Costa, F.T.; Weston, S.; Logue, J.; Frieman, M.; Premkumar, L.; Pearce, K.H.; Hurst, B.L.; Andrade, C.H.; Levi, J.A.; Johnson, N.J.; Kisthardt, S.C.; Scholle, F.; Souza, T.M.L.; Moorman, N.J.; Baric, R.S.; Madrid, P.B.; Ekins, S. Repurposing the ebola and marburg virus inhibitors tilorone, quinacrine, and pyronaridine: in vitro activity against SARS-CoV-2 and potential mechanisms. ACS Omega, 2021, 6(11), 7454-7468.
[http://dx.doi.org/10.1021/acsomega.0c05996] [PMID: 33778258]
[63]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[64]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[65]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S. Lopez, de Castilla D.; Remdesivir for the treatment of Covid-19. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[66]
Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; Chai, L.Y.A.; Roestenberg, M.; Tsang, O.T.Y.; Bernasconi, E.; Le Turnier, P.; Chang, S.C.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wang, H.; Gaggar, A.; Brainard, D.M.; McPhail, M.J.; Bhagani, S.; Ahn, M.Y.; Sanyal, A.J.; Huhn, G.; Marty, F.M. Effect of remdesivir vs. standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA, 2020, 324(11), 1048-1057.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[67]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[68]
Elalfy, H.; Besheer, T.; El-Mesery, A.; El-Gilany, A.H.; Soliman, M.A.A.; Alhawarey, A.; Alegezy, M.; Elhadidy, T.; Hewidy, A.A.; Zaghloul, H.; Neamatallah, M.A.M.; Raafat, D.; El-Emshaty, W.M.; Abo El Kheir, N.Y.; El-Bendary, M. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID-19. J. Med. Virol., 2021, 93(5), 3176-3183.
[http://dx.doi.org/10.1002/jmv.26880] [PMID: 33590901]
[69]
Mahmoud, D.B.; Shitu, Z.; Mostafa, A. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J. Genet. Eng. Biotechnol., 2020, 18(1), 35.
[http://dx.doi.org/10.1186/s43141-020-00055-5] [PMID: 32725286]
[70]
Cadegiani, F.A.; Goren, A.; McCoy, J.; Wambier, C.G. Hydroxychloroquine, nitazoxanide and ivermectin have similar effects in early COVID-19: a head-to-head comparison of the Pre-AndroCoV Trial. Res. Sq., 2020, 2020, 307575.
[http://dx.doi.org/10.21203/rs.3.rs-98106/v1]
[71]
Blum, V.F.; Cimerman, S.; Hunter, J.R.; Tierno, P.; Lacerda, A.; Soeiro, A.; Cardoso, F.; Belley, N.C.; Maricato, J.; Mantovani, N.; Vassao, M.; Dias, D.; Galinskas, J.; Karcher, D.; Fonseca, F.M.P.; Pinto, R.N.; Janini, L.M.R.; Santos-Oliveira, J.R.; Da-Cruz, A.M.; Diaz, R.S. Nitazoxanide in vitro efficacy against SARS CoV-2 and in vivo superiority to placebo to treat moderate COVID-19 - a phase 2 randomized double-blind clinical trial. EClinicalMedicine, 2021, 37, 100981.
[http://dx.doi.org/10.2139/ssrn.3763773]
[72]
Kelleni, M.T. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol. Res., 2020, 157, 104874.
[http://dx.doi.org/10.1016/j.phrs.2020.104874] [PMID: 32360581]
[73]
Ashiru, O.; Howe, J.D.; Butters, T.D. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca2+ stores. Virology, 2014, 462-463, 135-148.
[http://dx.doi.org/10.1016/j.virol.2014.05.015] [PMID: 24971706]
[74]
Balderas-Acata, J.I.; Ríos-Rogríguez, B.E.P.; Perez-Becerril, F.; Espinosa-Martinez, C.; Burke-Fraga, V.; la Parra, M.G. Bioavailability of two oral-suspension formulations of a single dose of nitazoxanide 500 mg: an open-label, randomized-sequence, two-period crossover, comparison in healthy fasted mexican adult volunteers. J. Bioequiv. Availab., 2011, 3(3), 43-47.
[http://dx.doi.org/10.4172/jbb.1000056]
[75]
Lokhande, A.S.; Devarajan, P.V. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur. J. Pharmacol., 2021, 891, 173748.
[http://dx.doi.org/10.1016/j.ejphar.2020.173748] [PMID: 33227285]
[76]
Blum, V.F.; Cimerman, S.; Hunter, J.R.; Tierno, P.; Lacerda, A.; Soeiro, A.; Cardoso, F.; Bellei, N.C.; Maricato, J.; Mantovani, N.; Vassao, M.; Dias, D.; Galinskas, J.; Janini, L.M.R.; Santos-Oliveira, J.R.; Da-Cruz, A.M.; Diaz, R.S. Nitazoxanide superiority to placebo to treat moderate COVID-19 - A Pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine, 2021, 37, 100981.
[http://dx.doi.org/10.1016/j.eclinm.2021.100981] [PMID: 34222847]
[77]
Rocco, P.R.M.; Silva, P.L.; Cruz, F.F.; Melo-Junior, M.A.C.; Tierno, P.F.G.M.M.; Moura, M.A.; De Oliveira, L.F.G.; Lima, C.C.; Dos Santos, E.A.; Junior, W.F.; Fernandes, A.P.S.M.; Franchini, K.G.; Magri, E.; de Moraes, N.F.; Gonçalves, J.M.J.; Carbonieri, M.N.; Dos Santos, I.S.; Paes, N.F.; Maciel, P.V.M.; Rocha, R.P.; de Carvalho, A.F.; Alves, P.A.; Proença-Módena, J.L.; Cordeiro, A.T.; Trivella, D.B.B.; Marques, R.E.; Luiz, R.R.; Pelosi, P.; Lapa e Silva, J.R. Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. Eur. Respir. J., 2021, 58(1), 2003725.
[http://dx.doi.org/10.1183/13993003.03725-2020] [PMID: 33361100]
[78]
Mendieta Zerón, H.; Meneses Calderón, J.; Paniagua Coria, L.; Meneses Figueroa, J.; Vargas Contreras, M.J.; Vives Aceves, H.L.; Carranza Salazar, F.M.; Californias Hernández, D.; Miraflores Vidaurri, E.; Carrillo González, A.; Anaya Herrera, J. Nitazoxanide as an early treatment to reduce the intensity of COVID-19 outbreaks among health personnel. World Acad. Sci. J., 2021, 3(3), 23.
[http://dx.doi.org/10.3892/wasj.2021.94]
[79]
Silva, M.; Espejo, A.; Pereyra, M.L.; Lynch, M.; Thompson, M.; Taconelli, H.; Baré, P.; Pereson, M.; Garbini, M.; Crucci, P.; Enriquez, D. Efficacy of Nitazoxanide in reducing the viral load in COVID-19 patients. Randomized, placebo-controlled, single-blinded, parallel group, pilot study. Medrxiv, 2021, 2021, 21252509.
[http://dx.doi.org/10.1101/2021.03.03.21252509]
[80]
Meneses Calderón, J.; Figueroa Flores, M.R.; Paniagua Coria, L.; Briones Garduño, J.C.; Meneses Figueroa, J.; Vargas Contretas, M.J.; De la Cruz Ávila, L.; Díaz Meza, S.; Ramírez Chacón, R.; Padmanabhan, S.; Mendieta Zerón, H. Nitazoxanide against COVID-19 in three explorative scenarios. J. Infect. Dev. Ctries., 2020, 14(9), 982-986.
[http://dx.doi.org/10.3855/jidc.13274]
[81]
Rajoli, R.K.R.; Pertinez, H.; Arshad, U.; Box, H.; Tatham, L.; Curley, P.; Neary, M.; Sharp, J.; Liptrott, N.J.; Valentijn, A.; David, C.; Rannard, S.P.; Aljayyoussi, G.; Pennington, S.H.; Hill, A.; Boffito, M.; Ward, S.A.; Khoo, S.H.; Bray, P.G.; O’Neill, P.M.; Hong, W.D.; Biagini, G.A.; Owen, A. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. Br. J. Clin. Pharmacol., 2021, 87(4), 2078-2088.
[http://dx.doi.org/10.1111/bcp.14619] [PMID: 33085781]
[82]
Haffizulla, J.; Hartman, A.; Hoppers, M.; Resnick, H.; Samudrala, S.; Ginocchio, C.; Bardin, M.; Rossignol, J.F. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis., 2014, 14(7), 609-618.
[http://dx.doi.org/10.1016/S1473-3099(14)70717-0] [PMID: 24852376]
[83]
Clinicaltrials.gov. Trial to Evaluate Efficacy and Safety of Nitazoxanide in the Treatment of Mild or Moderate COVID-19., Available from: https://clinicaltrials.gov/ct2/show/NCT04486313
[84]
Rabbani, A.B.; Parikh, R.V.; Rafique, A.M. Colchicine for the treatment of myocardial injury in patients with coronavirus disease 2019 (COVID-19)-an old drug with new life? JAMA Netw. Open, 2020, 3(6), e2013556.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13556] [PMID: 32579190]
[85]
Lopes, M.I.; Bonjorno, L.P.; Giannini, M.C.; Amaral, N.B.; Menezes, P.I.; Dib, S.M.; Gigante, S.L.; Benatti, M.N.; Rezek, U.C.; Emrich-Filho, L.L.; Sousa, B.A.A.; Almeida, S.C.L.; Luppino Assad, R.; Veras, F.P.; Schneider, A.; Rodrigues, T.S.; Leiria, L.O.S.; Cunha, L.D.; Alves-Filho, J.C.; Cunha, T.M.; Arruda, E.; Miranda, C.H.; Pazin-Filho, A.; Auxiliadora-Martins, M.; Borges, M.C.; Fonseca, B.A.L.; Bollela, V.R.; Del-Ben, C.M.; Cunha, F.Q.; Zamboni, D.S.; Santana, R.C.; Vilar, F.C.; Louzada-Junior, P.; Oliveira, R.D.R. Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebo-controlled clinical trial. RMD Open, 2021, 7(1), e001455.
[http://dx.doi.org/10.1136/rmdopen-2020-001455] [PMID: 33542047]
[86]
Schlesinger, N.; Firestein, B.L.; Brunetti, L. Colchicine in COVID-19: an old drug, new use. Curr. Pharmacol. Rep., 2020, 6(4), 137-145.
[http://dx.doi.org/10.1007/s40495-020-00225-6] [PMID: 32837853]
[87]
Paschke, S.; Weidner, A.F.; Paust, T.; Marti, O.; Beil, M.; Ben-Chetrit, E. Technical Advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J. Leukoc. Biol., 2013, 94(5), 1091-1096.
[http://dx.doi.org/10.1189/jlb.1012510] [PMID: 23901122]
[88]
Kamel, N.A.; Ismail, N.S.M.; Yahia, I.S.; Aboshanab, K.M. Potential role of colchicine in combating COVID-19 cytokine storm and its ability to inhibit protease enzyme of SARS-CoV-2 as conferred by molecular docking analysis. Medicina (Kaunas), 2021, 58(1), 20.
[http://dx.doi.org/10.3390/medicina58010020] [PMID: 35056328]
[89]
Reyes, A.Z.; Hu, K.A.; Teperman, J.; Wampler Muskardin, T.L.; Tardif, J.C.; Shah, B.; Pillinger, M.H. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann. Rheum. Dis., 2021, 80(5), 550-557.
[http://dx.doi.org/10.1136/annrheumdis-2020-219174] [PMID: 33293273]
[90]
Karatza, E.; Ismailos, G.; Karalis, V. Colchicine for the treatment of COVID-19 patients: efficacy, safety, and model informed dosage regimens. Xenobiotica, 2021, 51(6), 643-656.
[http://dx.doi.org/10.1080/00498254.2021.1909782] [PMID: 33845715]
[91]
Imazio, M.; Bobbio, M.; Cecchi, E.; Demarie, D.; Demichelis, B.; Pomari, F.; Moratti, M.; Gaschino, G.; Giammaria, M.; Ghisio, A.; Belli, R.; Trinchero, R. Colchicine in addition to conventional therapy for acute pericarditis: results of the colchicine for acute PEricarditis (COPE) trial. Circulation, 2005, 112(13), 2012-2016.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.542738] [PMID: 16186437]
[92]
Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; Berry, C.; López-Sendón, J.; Ostadal, P.; Koenig, W.; Angoulvant, D.; Grégoire, J.C.; Lavoie, M.A.; Dubé, M.P.; Rhainds, D.; Provencher, M.; Blondeau, L.; Orfanos, A.; L’Allier, P.L.; Guertin, M.C.; Roubille, F. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med., 2019, 381(26), 2497-2505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[93]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol., 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[94]
Tardif, J.C.; Bouabdallaoui, N.; L’Allier, P.L.; Gaudet, D.; Shah, B.; Pillinger, M.H.; Lopez-Sendon, J.; da Luz, P.; Verret, L.; Audet, S.; Dupuis, J.; Denault, A.; Pelletier, M.; Tessier, P.A.; Samson, S.; Fortin, D.; Tardif, J.D.; Busseuil, D.; Goulet, E.; Lacoste, C.; Dubois, A.; Joshi, A.Y.; Waters, D.D.; Hsue, P.; Lepor, N.E.; Lesage, F.; Sainturet, N.; Roy-Clavel, E.; Bassevitch, Z.; Orfanos, A.; Stamatescu, G.; Grégoire, J.C.; Busque, L.; Lavallée, C.; Hétu, P.O.; Paquette, J.S.; Deftereos, S.G.; Levesque, S.; Cossette, M.; Nozza, A.; Chabot-Blanchet, M.; Dubé, M.P.; Guertin, M.C.; Boivin, G. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir. Med., 2021, 9(8), 924-932.
[http://dx.doi.org/10.1016/S2213-2600(21)00222-8] [PMID: 34051877]
[95]
Demidowich, A.P.; Levine, J.A.; Apps, R.; Cheung, F.K.; Chen, J.; Fantoni, G.; Patel, T.P.; Yanovski, J.A. Colchicine’s effects on metabolic and inflammatory molecules in adults with obesity and metabolic syndrome: results from a pilot randomized controlled trial. Int. J. Obes., 2020, 44(8), 1793-1799.
[http://dx.doi.org/10.1038/s41366-020-0598-3] [PMID: 32461554]
[96]
Dalili, N.; Kashefizadeh, A.; Nafar, M.; Poorrezagholi, F.; Firouzan, A.; Samadian, F.; Samavat, S.; Ziaie, S.; Fatemizadeh, S. Adding colchicine to the antiretroviral medication-lopinavir/] ritonavir (Kaletra) in hospitalized patients with non-severe Covid-19 pneumonia: A structured summary of a study protocol for a randomized controlled trial. Trials, 2020, 21(1), 489.
[http://dx.doi.org/10.1186/s13063-020-04455-3] [PMID: 31898511]
[97]
Manenti, L.; Maggiore, U.; Fiaccadori, E.; Meschi, T.; Antoni, A.D.; Nouvenne, A.; Ticinesi, A.; Cerundolo, N.; Prati, B.; Delsante, M.; Gandoflini, I.; Donghi, L.; Gentile, M.; Farina, M.T.; Oliva, V.; Zambrano, C.; Regolisti, G.; Palmisano, A.; Caminiti, C.; Cocchi, E.; Ferrari, C.; Riella, L.V.; Cravedi, P.; Peruzzi, L. Reduced mortality in COVID-19 patients treated with colchicine: Results from a retrospective, observational study. PLoS One, 2021, 16(3), e0248276.
[http://dx.doi.org/10.1371/journal.pone.0248276] [PMID: 33760858]
[98]
Hong, S.; Chang, J.; Jeong, K.; Lee, W. Raloxifene as a treatment option for viral infections. J. Microbiol., 2021, 59(2), 124-131.
[http://dx.doi.org/10.1007/s12275-021-0617-7] [PMID: 33527314]
[99]
Smetana, K., Jr; Rosel, D.; Brábek, J. BrÁbek, J.; Raloxifene and bazedoxifene could be promising candidates for preventing the COVID-19 related cytokine storm, ARDS and mortality. In Vivo, 2020, 34(5), 3027-3028.
[http://dx.doi.org/10.21873/invivo.12135] [PMID: 32871847]
[101]
Chiou, W.C.; Hsu, M.S.; Chen, Y.T.; Yang, J.M.; Tsay, Y.G.; Huang, H.C.; Huang, C. Repurposing existing drugs: identification of SARS-CoV-2 3C-like protease inhibitors. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 147-153.
[http://dx.doi.org/10.1080/14756366.2020.1850710] [PMID: 33430659]
[102]
Hochner-Celnikier, D. Pharmacokinetics of raloxifene and its clinical application. Eur. J. Obstet. Gynecol. Reprod. Biol., 1999, 85(1), 23-29.
[http://dx.doi.org/10.1016/S0301-2115(98)00278-4] [PMID: 10428318]
[103]
Yoon, Y.S.; Jang, Y.; Hoenen, T.; Shin, H.; Lee, Y.; Kim, M. Antiviral activity of sertindole, raloxifene and ibutamoren against transcription and replication-competent Ebola virus-like particles. BMB Rep., 2020, 53(3), 166-171.
[http://dx.doi.org/10.5483/BMBRep.2020.53.3.175] [PMID: 31964466]
[104]
Schultz, B.; Zaliani, A.; Ebeling, C.; Reinshagen, J.; Bojkova, D.; Lage-Rupprecht, V.; Karki, R.; Lukassen, S.; Gadiya, Y.; Ravindra, N.G.; Das, S.; Baksi, S.; Domingo-Fernández, D.; Lentzen, M.; Strivens, M.; Raschka, T.; Cinatl, J.; DeLong, L.N.; Gribbon, P.; Geisslinger, G.; Ciesek, S.; van Dijk, D.; Gardner, S.; Kodamullil, A.T.; Fröhlich, H.; Peitsch, M.; Jacobs, M.; Hoeng, J.; Eils, R.; Claussen, C.; Hofmann-Apitius, M. A method for the rational selection of drug repurposing candidates from multimodal knowledge harmonization. Sci. Rep., 2021, 11(1), 11049.
[http://dx.doi.org/10.1038/s41598-021-90296-2] [PMID: 34040048]
[105]
Mishra, R.; Behera, L.M.; Rana, S. Binding of raloxifene to human complement fragment 5a (h C5a): a perspective on cytokine storm and COVID19. J. Biomol. Struct. Dyn., 2022, 40(3), 982-994.
[http://dx.doi.org/10.1080/07391102.2020.1820381] [PMID: 32930050]
[106]
Lancaster, J.R. Jr Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications., Future Sci. OA, 2015, 1(1), fso.15.59.
[http://dx.doi.org/10.4155/fso.15.59] [PMID: 28031866]
[107]
Frostell, C.G.; Hedenstierna, G. Nitric oxide and COVID-19: Dose, timing and how to administer it might be crucial. Acta Anaesthesiol. Scand., 2021, 65(5), 576-577.
[http://dx.doi.org/10.1111/aas.13788]
[108]
Longobardo, A.; Montanari, C.; Shulman, R.; Benhalim, S.; Singer, M.; Arulkumaran, N. Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome. Br. J. Anaesth., 2021, 126(1), e44-e46.
[http://dx.doi.org/10.1016/j.bja.2020.10.011] [PMID: 33138964]
[109]
Abou-Arab, O.; Huette, P.; Debouvries, F.; Dupont, H.; Jounieaux, V.; Mahjoub, Y. Inhaled nitric oxide for critically ill COVID-19 patients: a prospective study. Crit. Care, 2020, 24(1), 645.
[http://dx.doi.org/10.1186/s13054-020-03371-x] [PMID: 31833982]
[110]
Mel, A. Potential roles of nitric oxide in COVID-19: A perspective. Integr. Mol. Med., 2020, 7(3), 1-4.
[http://dx.doi.org/10.15761/IMM.1000403]
[111]
Åkerström, S.; Gunalan, V.; Keng, C.T.; Tan, Y.J.; Mirazimi, A. Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected. Virology, 2009, 395(1), 1-9.
[http://dx.doi.org/10.1016/j.virol.2009.09.007] [PMID: 19800091]
[112]
Åkerström, S.; Mousavi-Jazi, M.; Klingström, J.; Leijon, M.; Lundkvist, Å.; Mirazimi, A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(3), 1966-1969.
[http://dx.doi.org/10.1128/JVI.79.3.1966-1969.2005] [PMID: 15650225]
[113]
Gerlach, H.; Rossaint, R.; Pappert, D.; Falke, K.J. Time-course and dose-response of nitric oxide inhalation for systemic oxygenation and pulmonary hypertension in patients with adult respiratory distress syndrome. Eur. J. Clin. Invest., 1993, 23(8), 499-502.
[http://dx.doi.org/10.1111/j.1365-2362.1993.tb00797.x] [PMID: 8405003]
[114]
Akaberi, D.; Krambrich, J.; Ling, J.; Luni, C.; Hedenstierna, G.; Järhult, J.D.; Lennerstrand, J.; Lundkvist, Å. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol., 2020, 37, 101734.
[http://dx.doi.org/10.1016/j.redox.2020.101734] [PMID: 33007504]
[115]
Safaee Fakhr, B.; Wiegand, S.B.; Pinciroli, R.; Gianni, S.; Morais, C.C.A.; Ikeda, T.; Miyazaki, Y.; Marutani, E.; Di Fenza, R.; Larson, G.M.; Parcha, V.; Gibson, L.E.; Chang, M.G.; Arora, P.; Carroll, R.W.; Kacmarek, R.M.; Ichinose, F.; Barth, W.H., Jr; Kaimal, A.; Hohmann, E.L.; Zapol, W.M.; Berra, L. High concentrations of nitric oxide inhalation therapy in pregnant patients with severe coronavirus disease 2019 (COVID-19). Obstet. Gynecol., 2020, 136(6), 1109-1113.
[http://dx.doi.org/10.1097/AOG.0000000000004128] [PMID: 32852324]
[116]
Aksu, K.; Yesilkaya, S.; Topel, M.; Turkyilmaz, S.; Ercelebi, D.C.; Oncul, A.; Kalkan, I.K.; Ates, H. COVID-19 in a patient with severe asthma using mepolizumab. Allergy Asthma Proc., 2021, 42(2), 55.
[http://dx.doi.org/10.2500/aap.2021.42.200125]
[117]
Food & Drug Adminitration. FDA Approves First Drug to Treat Group of Rare Blood Disorders in Nearly 14 Years., Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-treat-group-rare-blood-disorders-nearly-14-years
[118]
Basavaraju, K.P.; Wong, T. Eosinophilic oesophagitis: a common cause of dysphagia in young adults? Int. J. Clin. Pract., 2008, 62(7), 1096-1107.
[http://dx.doi.org/10.1111/j.1742-1241.2008.01782.x] [PMID: 18564273]
[119]
Liddament, M.; Husten, J.; Estephan, T.; Laine, D.; Mabon, D.; Pukac, L.; Lyons, J.; Clarke, A.W.; Doyle, A. Higher binding affinity and in vitro potency of reslizumab for interleukin-5 compared with mepolizumab. Allergy Asthma Immunol. Res., 2019, 11(2), 291-298.
[http://dx.doi.org/10.4168/aair.2019.11.2.291] [PMID: 30661320]
[120]
Bermejo, I.; Stevenson, M.; Cooper, K.; Harnan, S.; Hamilton, J.; Clowes, M.; Carroll, C.; Harrison, T.; Saha, S. Mepolizumab for treating severe eosinophilic asthma: an evidence review group perspective of a NICE single technology appraisal. PharmacoEconomics, 2018, 36(2), 131-144.
[http://dx.doi.org/10.1007/s40273-017-0571-8] [PMID: 28933002]
[121]
Kuang, F.L.; Fay, M.P.; Ware, J.; Wetzler, L.; Holland-Thomas, N.; Brown, T.; Ortega, H.; Steinfeld, J.; Khoury, P.; Klion, A.D. Long-term clinical outcomes of high-dose mepolizumab treatment for hypereosinophilic syndrome. J. Allergy Clin. Immunol. Pract., 2018, 6(5), 1518-1527.e5.
[http://dx.doi.org/10.1016/j.jaip.2018.04.033] [PMID: 29751154]
[122]
Azim, A.; Pini, L.; Khakwani, Z.; Kumar, S.; Howarth, P. Severe acute respiratory syndrome coronavirus 2 infection in those on mepolizumab therapy. Ann. Allergy Asthma Immunol., 2021, 126(4), 438-440.
[http://dx.doi.org/10.1016/j.anai.2021.01.006] [PMID: 33453381]
[123]
Verma, A.; Adhikary, A.; Woloschak, G.; Dwarakanath, B.S.; Papineni, R.V.L. A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management. Int. J. Radiat. Biol., 2020, 96(11), 1323-1328.
[http://dx.doi.org/10.1080/09553002.2020.1818865] [PMID: 32910699]
[124]
Corey, L.; Holmes, K.K. The use of 2-deoxy-D-glucose for genital herpes. JAMA, 1980, 243(1), 29-30.
[http://dx.doi.org/10.1001/jama.1980.03300270017010] [PMID: 7350329]
[125]
Raman, A.P.S.; Kumari, K.; Jain, P.; Vishvakarma, V.K.; Kumar, A.; Kaushik, N.; Choi, E.H.; Kaushik, N.K.; Singh, P. In silico evaluation of binding of 2-deoxy-d-glucose with Mpro of nCoV to combat COVID-19. Pharmaceutics, 2022, 14(1), 135.
[http://dx.doi.org/10.3390/pharmaceutics14010135] [PMID: 35057031]
[126]
Sahu, K.; Kumar, R. Role of 2-Deoxy-D-Glucose (2-DG) in COVID-19 disease: A potential game-changer. J. Family Med. Prim. Care, 2021, 10(10), 3548-3552.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1338_21] [PMID: 34934645]
[127]
Bhatt, A.N.; Shenoy, S.; Munjal, S.; Chinnadurai, V.; Agarwal, A.; Kumar, A.V.; Shanavas, A.; Kanvar, R.; Chandna, S. 2-deoxy-d-glucose as an adjunct to standard of care in the medical management of COVID-19: a proof-of-concept & dose-ranging randomised clinical trial. Medrxiv, 2021, 2021, 21258621.
[http://dx.doi.org/10.1101/2021.10.08.21258621]
[128]
Ardestani, A.; Azizi, Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 112.
[http://dx.doi.org/10.1038/s41392-021-00532-4] [PMID: 33677470]
[129]
Blough, H.A.; Giuntoli, R.L. Successful treatment of human genital herpes infections with 2-deoxy-D-glucose. JAMA, 1979, 241(26), 2798-2801.
[http://dx.doi.org/10.1001/jama.1979.03290520022018] [PMID: 221691]
[130]
Ministry of Defence. DCGI approves anti-COVID drug developed by DRDO for emergency use., Available from: https://pib.gov.in/PressReleasePage.aspx?PRID=1717007
[131]
Banerjee, P.; Sarma, I.D.; Sekhar, D.H.; Brahma, D.K.; Surong, M. 2-deoxy-d-glucose: A ray of hope in COVID pandemic. J. Pharmacol. Pharmacother., 2021, 12(3), 107-109.
[http://dx.doi.org/10.4103/jpp.jpp_69_21]
[132]
Taylor, S.P.; Sellers, E.; Taylor, B.T. Azithromycin for the Prevention of COPD Exacerbations: The Good, Bad, and Ugly. Am. J. Med., 2015, 128(12), e1-e6.
[http://dx.doi.org/10.1016/j.amjmed.2015.07.032]
[133]
Simoens, S.; Laekeman, G.; Decramer, M. Preventing COPD exacerbations with macrolides: A review and budget impact analysis. Respir. Med., 2013, 107(5), 637-648.
[http://dx.doi.org/10.1016/j.rmed.2012.12.019] [PMID: 23352223]
[134]
Zarogoulidis, P.; Papanas, N.; Kioumis, I.; Chatzaki, E.; Maltezos, E.; Zarogoulidis, K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur. J. Clin. Pharmacol., 2012, 68(5), 479-503.
[http://dx.doi.org/10.1007/s00228-011-1161-x] [PMID: 22105373]
[135]
Mori, F.; Pecorari, L.; Pantano, S.; Rossi, M.E.; Pucci, N.; De Martino, M.; Novembre, E. Azithromycin anaphylaxis in children. Int. J. Immunopathol. Pharmacol., 2014, 27(1), 121-126.
[http://dx.doi.org/10.1177/039463201402700116] [PMID: 24674687]
[136]
Luke, D.R.; Foulds, G. Disposition of oral azithromycin in humans. Clin. Pharmacol. Ther., 1997, 61(6), 641-648.
[http://dx.doi.org/10.1016/S0009-9236(97)90098-9] [PMID: 9209246]
[137]
Echeverría-Esnal, D.; Martin-Ontiyuelo, C.; Navarrete-Rouco, M.E.; De-Antonio Cuscó, M.; Ferrández, O.; Horcajada, J.P.; Grau, S. Azithromycin in the treatment of COVID-19: a review. Expert Rev. Anti Infect. Ther., 2021, 19(2), 147-163.
[http://dx.doi.org/10.1080/14787210.2020.1813024] [PMID: 32853038]
[138]
Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant., 2020, 39(5), 405-407.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[139]
Ulrich, H.; Pillat, M.M. CD147 as a target for COVID-19 treatment: suggested effects of Azithromycin and stem cell engagement. Stem Cell Rev. Rep., 2020, 16(3), 434-440.
[http://dx.doi.org/10.1007/s12015-020-09976-7] [PMID: 32307653]
[140]
Million, M.; Lagier, J.C.; Gautret, P.; Colson, P.; Fournier, P.E.; Amrane, S.; Hocquart, M.; Mailhe, M.; Esteves-Vieira, V.; Doudier, B.; Aubry, C.; Correard, F.; Giraud-Gatineau, A.; Roussel, Y.; Berenger, C.; Cassir, N.; Seng, P.; Zandotti, C.; Dhiver, C.; Ravaux, I.; Tomei, C.; Eldin, C.; Tissot-Dupont, H.; Honoré, S.; Stein, A.; Jacquier, A.; Deharo, J.C.; Chabrière, E.; Levasseur, A.; Fenollar, F.; Rolain, J.M.; Obadia, Y.; Brouqui, P.; Drancourt, M.; La Scola, B.; Parola, P.; Raoult, D. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Med. Infect. Dis., 2020, 35, 101738.
[http://dx.doi.org/10.1016/j.tmaid.2020.101738] [PMID: 32387409]
[141]
Hinks, T.S.C.; Cureton, L.; Knight, R.; Wang, A.; Cane, J.L.; Barber, V.S.; Black, J.; Dutton, S.J.; Melhorn, J.; Jabeen, M.; Moss, P.; Garlapati, R.; Baron, T.; Johnson, G.; Cantle, F.; Clarke, D.; Elkhodair, S.; Underwood, J.; Lasserson, D.; Pavord, I.D.; Morgan, S.; Richards, D. Azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): an open-label, randomised trial. Lancet Respir. Med., 2021, 9(10), 1130-1140.
[http://dx.doi.org/10.1016/S2213-2600(21)00263-0] [PMID: 34252378]
[142]
Butler, C.C.; Dorward, J.; Yu, L-M.; Gbinigie, O.; Hayward, G.; Saville, B.R.; Van Hecke, O.; Berry, N.; Detry, M.; Saunders, C.; Fitzgerald, M.; Harris, V.; Patel, M.G.; de Lusignan, S.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; Hobbs, F.D.R. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet, 2021, 397(10279), 1063-1074.
[http://dx.doi.org/10.1016/S0140-6736(21)00461-X] [PMID: 33676597]
[143]
Oldenburg, C.E.; Pinsky, B.A.; Brogdon, J.; Chen, C.; Ruder, K.; Zhong, L.; Nyatigo, F.; Cook, C.A.; Hinterwirth, A.; Lebas, E.; Redd, T.; Porco, T.C.; Lietman, T.M.; Arnold, B.F.; Doan, T. Effect of oral azithromycin vs. placebo on COVID-19 symptoms in outpatients with SARS-CoV-2 infection. JAMA, 2021, 326(6), 490-498.
[http://dx.doi.org/10.1001/jama.2021.11517] [PMID: 34269813]
[144]
Gyselinck, I.; Liesenborghs, L.; Landeloos, E.; Belmans, A.; Verbeke, G.; Verhamme, P.; Vos, R.; Janssens, W.; Janssens, W.; Vos, R.; Gyselinck, I.; Vanderhelst, E.; Bouckaert, B.; Alexander, P.; De Mayer, N.; Papleux, E.; Soenen, A-C.; Derweduwe, A.; Vandeurzen, K.; Martinot, J-B.; Goeminne, P.; Nguyen, H.; Pilette, C.; Schildermans, R.; Decoster, L. Direct antivirals working against the novel coronavirus: azithromycin (DAWn-AZITHRO), a randomized, multicenter, open-label, adaptive, proof-of-concept clinical trial of new antivirals working against SARS-CoV-2—azithromycin trial. Trials, 2021, 22(1), 126-139.
[http://dx.doi.org/10.1186/s13063-021-05033-x] [PMID: 33563325]
[145]
Griffin, M.O.; Fricovsky, E.; Ceballos, G.; Villarreal, F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am. J. Physiol. Cell Physiol., 2010, 299(3), C539-C548.
[http://dx.doi.org/10.1152/ajpcell.00047.2010] [PMID: 20592239]
[146]
Conforti, C.; Giuffrida, R.; Zalaudek, I.; Di Meo, N. Doxycycline, a widely used antibiotic in dermatology with a possible anti-inflammatory action against IL-6 in COVID -19 outbreak. Dermatol. Ther., 2020, 33(4), e13437.
[http://dx.doi.org/10.1111/dth.13437] [PMID: 32314492]
[147]
Dorobisz, K.; Dorobisz, T.; Janczak, D.; Zatoński, T. Doxycycline in the coronavirus disease 2019 therapy. Ther. Clin. Risk Manag., 2021, 17, 1023-1026.
[http://dx.doi.org/10.2147/TCRM.S314923] [PMID: 34584416]
[148]
Gendrot, M.; Andreani, J.; Jardot, P.; Hutter, S.; Delandre, O.; Boxberger, M.; Mosnier, J.; Le Bideau, M.; Duflot, I.; Fonta, I.; Rolland, C.; Bogreau, H.; La Scola, B.; Pradines, B. In vitro antiviral activity of doxycycline against SARS-CoV-2. Molecules, 2020, 25(21), 5064.
[http://dx.doi.org/10.3390/molecules25215064] [PMID: 33142770]
[149]
A, S.; Brindha Devi, P.; Hari, S.; R, D. COVID-19 - in silico structure prediction and molecular docking studies with doxycycline and quinine. Biomed. Pharmacol. J., 2020, 13(3), 1185-1193.https://link.gale.com/apps/doc/A643331544/HRCA
[http://dx.doi.org/10.13005/bpj/1986]
[150]
Sachdeva, C.; Wadhwa, A.; Kumari, A.; Hussain, F.; Jha, P.; Kaushik, N.K. In silico potential of approved antimalarial drugs for repurposing against COVID-19. OMICS, 2020, 24(10), 568-580.
[http://dx.doi.org/10.1089/omi.2020.0071] [PMID: 32757981]
[151]
te Velthuis, A.J.W.; van den Worm, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog., 2010, 6(11), e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[152]
Santa-Cecília, F.V.; Socias, B.; Ouidja, M.O.; Sepulveda-Diaz, J.E.; Acuña, L.; Silva, R.L.; Michel, P.P.; Del-Bel, E.; Cunha, T.M.; Raisman-Vozari, R. Doxycycline suppresses microglial activation byinhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox. Res., 2016, 29(4), 447-459.
[http://dx.doi.org/10.1007/s12640-015-9592-2] [PMID: 26745968]
[153]
Choi, B.; Lee, S.; Kim, S.M.; Lee, E.J.; Lee, S.R.; Kim, D.H.; Jang, J.Y.; Kang, S.W.; Lee, K.U.; Chang, E.J.; Song, J.K. Dipeptidyl peptidase-4 induces aortic valve calcification by inhibiting insulin-like growth factor-1 signaling in valvular interstitial cells. Circulation, 2017, 135(20), 1935-1950.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024270] [PMID: 28179397]
[154]
Emingil, G.; Atilla, G.; Sorsa, T.; Tervahartiala, T. The effect of adjunctive subantimicrobial dose doxycycline therapy on GCF EMMPRIN levels in chronic periodontitis. J. Periodontol., 2008, 79(3), 469-476.
[http://dx.doi.org/10.1902/jop.2008.070165] [PMID: 18315429]
[155]
Wang, X.; Xu, W.; Hu, G.; Xia, S.; Sun, Z.; Liu, Z.; Xie, Y.; Zhang, R.; Jiang, S.; Lu, L. SARS-CoV-2 infects T lymphocytes through its spike proteinmediated membrane fusion. Cell. Mol. Immunol., 2020, 7, 1-3.
[http://dx.doi.org/10.1038/s41423-020-0424-9]
[156]
Ali, A.S. ASattar, M.A.; Karim, S.; Kutbi, D.; Aljohani, H.; Bakhshwin, D.; Alsieni, M.; Alkreathy, H.M. Pharmacological basis for the potential role of azithromycin and doxycycline in management of COVID-19. Arab. J. Chem., 2021, 14(3), 102983.
[http://dx.doi.org/10.1016/j.arabjc.2020.102983] [PMID: 34909062]
[157]
Alam, M.M.; Mahmud, S.; Rahman, M.M.; Simpson, J.; Aggarwal, S.; Ahmed, Z. Clinical outcomes of early treatment with doxycycline for 89 high-risk COVID-19 patients in long-term care facilities in New York. Cureus, 2020, 12(8), e9658.
[http://dx.doi.org/10.7759/cureus.9658] [PMID: 32802622]
[158]
Mahmud, R.; Rahman, M.M.; Alam, I.; Ahmed, K.G.U.; Kabir, A.K.M.H.; Sayeed, S.K.J.B.; Rassel, M.A.; Monayem, F.B.; Islam, M.S.; Islam, M.M.; Barshan, A.D.; Hoque, M.M.; Mallik, M.D.U.; Yusuf, M.A.; Hossain, M.Z. Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial. J. Int. Med. Res., 2021, 49(5), 03000605211013550.
[http://dx.doi.org/10.1177/03000605211013550]
[159]
Tamura, K.; Nishioka, S.; Tamura, N.; Saito, Z.; Kuwano, K. Successful treatment with methyl-prednisolone pulses for the late phase of COVID-19 with respiratory failure: A single-center case series. Respir. Med. Case Rep., 2020, 31, 101318.
[http://dx.doi.org/10.1016/j.rmcr.2020.101318] [PMID: 33318924]
[160]
Wehbe, Z.; Wehbe, M.; Iratni, R.; Pintus, G.; Zaraket, H.; Yassine, H.M.; Eid, A.H. Repurposing ivermectin for COVID-19: molecular aspects and therapeutic possibilities. Front. Immunol., 2021, 12(663586), 663586.
[http://dx.doi.org/10.3389/fimmu.2021.663586] [PMID: 33859652]
[161]
Corral-Gudino, L.; Bahamonde, A.; Arnaiz-Revillas, F.; Gómez-Barquero, J.; Abadía-Otero, J.; García-Ibarbia, C.; Mora, V.; Cerezo-Hernández, A.; Hernández, J.L.; López-Muñíz, G.; Hernández-Blanco, F.; Cifrián, J.M.; Olmos, J.M.; Carrascosa, M.; Nieto, L.; Fariñas, M.C.; Riancho, J.A. Methylprednisolone in adults hospitalized with COVID-19 pneumonia. Wien. Klin. Wochenschr., 2021, 133(7-8), 303-311.
[http://dx.doi.org/10.1007/s00508-020-01805-8] [PMID: 33534047]
[162]
Mehta, J.; Rolta, R.; Mehta, B.B.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Role of dexamethasone and methylprednisolone corticosteroids in coronavirus disease 2019 hospitalized patients: a review. Front. Microbiol., 2022, 13, 813358.
[http://dx.doi.org/10.3389/fmicb.2022.813358] [PMID: 35242118]
[163]
Pinzón, M.A.; Ortiz, S.; Holguín, H.; Betancur, J.F.; Cardona Arango, D.; Laniado, H.; Arias Arias, C.; Muñoz, B.; Quiceno, J.; Jaramillo, D.; Ramirez, Z. Dexamethasone vs. methylprednisolone high dose for COVID-19 pneumonia. PLoS One, 2021, 16(5), e0252057.
[http://dx.doi.org/10.1371/journal.pone.0252057] [PMID: 34033648]
[164]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: a computational study. J. Biomol. Struct. Dyn., 2020, 2020, 1835728.
[http://dx.doi.org/10.1080/07391102.2020.1835728] [PMID: 33094701]
[165]
Patel, V.K.; Shirbhate, E.; Patel, P.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Corticosteroids for treatment of COVID-19: effect, evidence, expectation and extent. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 78.
[http://dx.doi.org/10.1186/s43088-021-00165-0] [PMID: 34751250]
[166]
Annane, D. Corticosteroids for COVID-19. J. Intens. Med., 2021, 1(1), 14-25.
[http://dx.doi.org/10.1016/j.jointm.2021.01.002] [PMID: 33706794]
[167]
Khiali, S.; Entezari-Maleki, T. Therapeutic application of corticosteroids in COVID-19: a focus on optimum dose and duration of therapy. J. Clin. Pharmacol., 2021, 61(9), 1145-1148.
[http://dx.doi.org/10.1002/jcph.1929] [PMID: 34157144]
[168]
Edalatifard, M.; Akhtari, M.; Salehi, M.; Naderi, Z.; Jamshidi, A.; Mostafaei, S.; Najafizadeh, S.R.; Farhadi, E.; Jalili, N.; Esfahani, M.; Rahimi, B.; Kazemzadeh, H.; Mahmoodi Aliabadi, M.; Ghazanfari, T.; Sattarian, M.; Ebrahimi Louyeh, H.; Raeeskarami, S.R.; Jamalimoghadamsiahkali, S.; Khajavirad, N.; Mahmoudi, M.; Rostamian, A. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur. Respir. J., 2020, 56(6), 2002808.
[http://dx.doi.org/10.1183/13993003.02808-2020] [PMID: 32943404]
[169]
Ranjbar, K.; Moghadami, M.; Mirahmadizadeh, A.; Fallahi, M.J.; Khaloo, V.; Shahriarirad, R.; Erfani, A.; Khodamoradi, Z.; Gholampoor Saadi, M.H. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC Infect. Dis., 2021, 21(1), 337-344.
[http://dx.doi.org/10.1186/s12879-021-06045-3] [PMID: 33838657]
[170]
Ahmad, B.; Manzar, A.; Khrshid, S.; Ul Hassan, N.; Muhammad, A. Methylprednisolone for COVID-19 patients admitted to a tertiary care hospital: a single-centre study. Cureus, 2021, 13(9), e17693.
[http://dx.doi.org/10.7759/cureus.17693] [PMID: 34650867]
[171]
Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Netto, R.L.A.; Maciel, A.B.S.; Neto, J.R.S.; Oliveira, L.B.; Figueiredo, E.F.G.; Oliveira Dinelly, K.M.; de Almeida Rodrigues, M.G.; Brito, M.; Mourão, M.P.G.; Pivoto João, G.A.; Hajjar, L.A.; Bassat, Q.; Romero, G.A.S.; Naveca, F.G.; Vasconcelos, H.L.; de Araújo Tavares, M.; Brito-Sousa, J.D.; Costa, F.T.M.; Nogueira, M.L.; Baía-da-Silva, D.C.; Xavier, M.S.; Monteiro, W.M.; Lacerda, M.V.G.; de Lemos Vasconcelos, A.; Praia Marins, A.F.; de Oliveira Trindade, A.; Mendes Záu, A.S.; de Oliveira, A.C.; Azevedo Furtado, A.C.; Coelho Rocha, A.P.; da Silva Souza, A.; de Souza Dias, A.; Belém, A.; dos Santos, A.G.R.; da Silva Sousa, A.M.; da Silva, B.F.; Franco, B.L.; da Silva, B.M.; da Costa, B.L.G.; Sato Barros do Amaral, C.M.S.; Judice, C.C.; de Morais, C.E.P.; Camilo, C.C.; Sena da Silva, D.S.; Gomes Duarte, D.C.; da Silva, E.G.N.; da Silva Lemos, E.; de Fátima Ponte Frota, E.; do Nascimento, E.F.; de Almeida, E.S.; Marques, E.A.; de Almeida, E.M.M.; da Silva, E.L.; dos Santos, E.G.; da Silva Oliveira, E.; Martins Shimizu, F.M.; de Souza, F.R.F.; da Silva do Vale, F.; dos Santos de Almeida Lima, F.; da Fonseca, F.H.J.; Fontenelle, F.A.; de Azevedo Furtado, F.; Da Silva Pereira, G.; Bezerra, G.A.; Maciel Salazar, G.K.; da Silva Pereira, H.; de Melo, H.F.; Oliveira, I.N.; Pereira Filho, I.V.; Gomes, J.V.; e Silva Rosa, J.; Lemos, J.M.; Brutus, J.N.; Pessoa, K.P.; Costa Rodrigues, L.D.; Barros Cirino, L.E.; Mourão Filho, L.F.; Moura, L.; Barbosa, L.R.P.; de Souza, L.P.; Oliveira, L.B.; de Lima Ferreira, L.C.; dos Santos, M.M.; da Silva, M.V.R.; Rodrigues, M.P.; de Menezes, M.T.; dos Santos Mota, M.M.; Freire, M.; Corrêa, N.F.; Rocha, N.M.; Bittencourt, N.; de Melo Silva, N.G.; de Oliveira Saraiva, P.; de Sousa Monteiro, Q.; dos Santos, R.T.; Freire, R.S.; de Araújo Pinto, R.A.; Ferreira, R.B.; de Lima, R.S.; de Melo, R.F.T.; Saenz, S.T.; Alvarez Fernandes, S.S.; Vítor-Silva, S.; de Oliveira, T.M.R.; Tavella, T.A.; Câmara, T.T.; Santos, T.C.; Pinto, T.S.; dos Santos, T.W.R.; do Nascimento, V.A.; Sousa Barbosa, W.P.; de Melo, W.F.; Salgado Sobrinho, W.B. Methylprednisolone as adjunctive therapy for patients hospitalized with coronavirus disease 2019 (COVID-19; metcovid): a randomized, double-blind, phase iib, placebo-controlled trial. Clin. Infect. Dis., 2021, 72(9), e373-e381.
[http://dx.doi.org/10.1093/cid/ciaa1177] [PMID: 32785710]
[172]
Salton, F.; Confalonieri, P.; Meduri, G.U.; Santus, P.; Harari, S.; Scala, R.; Lanini, S.; Vertui, V.; Oggionni, T.; Caminati, A.; Patruno, V.; Tamburrini, M.; Scartabellati, A.; Parati, M.; Villani, M.; Radovanovic, D.; Tomassetti, S.; Ravaglia, C.; Poletti, V.; Vianello, A.; Gaccione, A.T.; Guidelli, L.; Raccanelli, R.; Lucernoni, P.; Lacedonia, D.; Foschino Barbaro, M.P.; Centanni, S.; Mondoni, M.; Davì, M.; Fantin, A.; Cao, X.; Torelli, L.; Zucchetto, A.; Montico, M.; Casarin, A.; Romagnoli, M.; Gasparini, S.; Bonifazi, M.; D’Agaro, P.; Marcello, A.; Licastro, D.; Ruaro, B.; Volpe, M.C.; Umberger, R.; Confalonieri, M. Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia. Open Forum Infect. Dis., 2020, 7(10), ofaa421.
[http://dx.doi.org/10.1093/ofid/ofaa421] [PMID: 33072814]
[173]
Dastenae, Z.H.; Bahadori, A.; Dehghani, M.; Asadi-Samani, M.; Izadi, I.; Shahraki, H.R. Comparison of the effect of intravenous dexamethasone and methylprednisolone on the treatment of hospitalized patients with COVID-19: a randomized clinical trial. Int. J. Infect. Dis., 2022, 122, 659-664.
[http://dx.doi.org/10.1016/j.ijid.2022.07.019] [PMID: 35817286]
[174]
Saeed, M.A.M.; Mohamed, A.H.; Owaynat, A.H. Comparison between methylprednisolone infusion and dexamethasone in COVID-19 ARDS mechanically ventilated patients. Egypt. J. Intern. Med., 2022, 34(1), 19.
[http://dx.doi.org/10.1186/s43162-022-00113-z] [PMID: 35194371]
[175]
Barati, F.; Pouresmaieli, M.; Ekrami, E.; Asghari, S.; Ziarani, F.R.; Mamoudifard, M. Potential drugs and remedies for the treatment of COVID-19: a critical review. Biol. Proced. Online, 2020, 22(1), 15-31.
[http://dx.doi.org/10.1186/s12575-020-00129-1] [PMID: 32754003]
[176]
Penman, S.L.; Kiy, R.T.; Jensen, R.L.; Beoku-Betts, C.; Alfirevic, A.; Back, D.; Khoo, S.H.; Owen, A.; Pirmohamed, M.; Park, B.K.; Meng, X.; Goldring, C.E.; Chadwick, A.E. Safety perspectives on presently considered drugs for the treatment of COVID‐19. Br. J. Pharmacol., 2020, 177(19), bph.15204.
[http://dx.doi.org/10.1111/bph.15204] [PMID: 32681537]
[177]
Nejat, R.; Sadr, A.S.; Freitas, B.; Crabttree, J.; Pegan, S.D.; Tripp, R.A.; Najafi, D. Losartan inhibits SARS-CoV-2 replication in vitro. J. Pharm. Pharm. Sci., 2021, 24, 390-399.
[http://dx.doi.org/10.18433/jpps31931] [PMID: 34319871]
[178]
Alnajjar, R.; Mostafa, A.; Kandeil, A.; Al-Karmalawy, A.A. Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon, 2020, 6(12), e05641.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05641] [PMID: 33294721]
[179]
Yan, F.; Huang, F.; Xu, J.; Yang, P.; Qin, Y.; Lv, J.; Zhang, S.; Ye, L.; Gong, M.; Liu, Z.; Wei, J.; Xie, T.; Xu, K.F.; Gao, G.F.; Wang, F.S.; Cai, L.; Jiang, C. Antihypertensive drugs are associated with reduced fatal outcomes and improved clinical characteristics in elderly COVID-19 patients. Cell Discov., 2020, 6(1), 77-86.
[http://dx.doi.org/10.1038/s41421-020-00221-6] [PMID: 33298897]
[180]
Li, G.; Hu, R.; Zhang, X. Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated by hypertension. Hypertens. Res., 2020, 43(6), 588-590.
[http://dx.doi.org/10.1038/s41440-020-0433-1] [PMID: 32231220]
[181]
Zaheer, J.; Kim, H.; Kim, J.S. Correlation of ACE2 with RAS components after Losartan treatment in light of COVID-19. Sci. Rep., 2021, 11(1), 24397.
[http://dx.doi.org/10.1038/s41598-021-03921-5] [PMID: 34937861]
[182]
Puskarich, M.A.; Ingraham, N.E.; Merck, L.H.; Driver, B.E.; Wacker, D.A.; Black, L.P.; Jones, A.E.; Fletcher, C.V.; South, A.M.; Nelson, A.C.; Murray, T.A.; Tignanelli, C.J. Effect of losartan on hospitalized patients with COVID-19-induced lung injury: A randomized clinical trial. MedRxiv, 2021, 2021, 21262623.
[http://dx.doi.org/10.1101/2021.08.25.21262623]
[183]
Bengtson, C.D.; Montgomery, R.N.; Nazir, U.; Satterwhite, L.; Kim, M.D.; Bahr, N.C.; Castro, M.; Baumlin, N.; Salathe, M. An open label trial to assess safety of losartan for treating worsening respiratory illness in COVID-19. Front. Med. (Lausanne), 2021, 8, 630209.
[http://dx.doi.org/10.3389/fmed.2021.630209] [PMID: 33681257]
[184]
Puskarich, M.A.; Cummins, N.W.; Ingraham, N.E.; Wacker, D.A.; Reilkoff, R.A.; Driver, B.E.; Biros, M.H.; Bellolio, F.; Chipman, J.G.; Nelson, A.C.; Beckman, K.; Langlois, R.; Bold, T.; Aliota, M.T.; Schacker, T.W.; Voelker, H.T.; Murray, T.A.; Koopmeiners, J.S.; Tignanelli, C.J. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine, 2021, 37, 100957.
[http://dx.doi.org/10.1016/j.eclinm.2021.100957] [PMID: 34195577]
[185]
Alkotaji, M. Azithromycin and ambroxol as potential pharmacotherapy for SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 56(6), 106192.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106192] [PMID: 33045350]
[186]
Ishiguro, N.; Senda, C.; Kishimoto, W.; Sakai, K.; Funae, Y.; Igarashi, T. Identification of CYP3A4 as the predominant isoform responsible for the metabolism of ambroxol in human liver microsomes. Xenobiotica, 2000, 30(1), 71-80.
[http://dx.doi.org/10.1080/004982500237839] [PMID: 10659952]
[187]
Seifart, C.; Clostermann, U.; Seifart, U.; Müller, B.; Vogelmeier, C.; von Wichert, P.; Fehrenbach, H. Cell-specific modulation of surfactant proteins by ambroxol treatment. Toxicol. Appl. Pharmacol., 2005, 203(1), 27-35.
[http://dx.doi.org/10.1016/j.taap.2004.07.015] [PMID: 15694461]
[188]
Habtemariam, S.; Nabavi, S.F.; Ghavami, S.; Cismaru, C.A.; Berindan-Neagoe, I.; Nabavi, S.M. Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the Transmembrane Serine Protease 2. Pharmacol. Res., 2020, 157, 104853.
[http://dx.doi.org/10.1016/j.phrs.2020.104853] [PMID: 32360584]
[189]
Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; Thiel, V.; Pöhlmann, S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol., 2013, 87(11), 6150-6160.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
[190]
Olaleye, O.A.; Kaur, M.; Onyenaka, C.C. Ambroxol hydrochloride inhibits the interaction between severe acute respiratory syndrome coronavirus 2 spike protein’s receptor binding domain and recombinant human ACE2. BioRxiv, 2020, 2020, 295691.
[http://dx.doi.org/10.1101/2020.09.13.295691]
[191]
Min, L.; Jin, W. Prospect of ambroxol in the treatment of COVID-19. Chin. J. Clin. Pharmacol., 2020, 2020, 4376.
[http://dx.doi.org/10.1016/j.jpha.2020.12.001]
[192]
Huynh, T.; Wang, H.; Luan, B. In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2‟s main protease. J. Phys. Chem. Lett., 2020, 11(11), 4413-4420.
[http://dx.doi.org/10.1021/acs.jpclett.0c00994] [PMID: 32406687]
[193]
Kumar, P. Co-aerosolized pulmonary surfactant and ambroxol for COVID-19 ARDS intervention: what are we waiting for? Front. Bioeng. Biotechnol., 2020, 8, 577172.
[http://dx.doi.org/10.3389/fbioe.2020.577172] [PMID: 33102461]
[194]
Ollier, C.; Sent, U.; Mesquita, M.; Michel, M.C. Pharmacokinetics of ambroxol sustained release (Mucosolvan® Retard) compared with other formulations in healthy volunteers. Pulm. Ther., 2020, 6(1), 119-130.
[http://dx.doi.org/10.1007/s41030-020-00116-7] [PMID: 32372294]
[195]
Zhang, J.; Yi, N.; Bao, L.; Yu, T. Pharmacokinetics and relative bioavailability of ambroxol hydrochloride aerosol and injection. Am. J. Clin. Exper. Med., 2015, 3(6), 368-371.
[http://dx.doi.org/10.11648/j.ajcem.20150306.18]
[196]
Boehringer. COVID-19-19/global-support-program., 2022. Available from: https://www.boehringer-ingelheim.com/COVID-19-19/global-support-program/china/relief-efforts-in-china
[197]
Shen, K.L.; Yang, Y.H.; Jiang, R.M.; Wang, T.Y.; Zhao, D.C.; Jiang, Y.; Lu, X.X.; Jin, R.M.; Zheng, Y.J.; Xu, B.P.; Xie, Z.D. Updated diagnosis, treatment and prevention of COVID-19 in children: experts’ consensus statement (condensed version of the second edition). World J. Clin. Pediatr., 2020, 16(3), 232-239.
[http://dx.doi.org/10.1007/s12519-020-00362-4]
[198]
Zhou, C.; Gao, C.; Xie, Y.; Xu, M. COVID-19 with spontaneous pneumomediastinum. Lancet Infect. Dis., 2020, 20(4), 510.
[http://dx.doi.org/10.1016/S1473-3099(20)30156-0] [PMID: 32164830]
[199]
Liu, F.; Zhu, Y.; Zhang, J.; Li, Y.; Peng, Z. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open, 2020, 10(7), e039519.
[http://dx.doi.org/10.1136/bmjopen-2020-039519] [PMID: 32641343]
[200]
Huang, L.; Wang, L.; Tan, J.; Liu, H.; Ni, Y. High-dose vitamin C intravenous infusion in the treatment of patients with COVID-19. Medicine (Baltimore), 2021, 100(19), e25876.
[http://dx.doi.org/10.1097/MD.0000000000025876] [PMID: 34106642]
[201]
Milani, G.P.; Macchi, M.; Guz-Mark, A. Vitamin C in the Treatment of COVID-19. Nutrients, 2021, 13(4), 1172-1181.
[http://dx.doi.org/10.3390/nu13041172] [PMID: 33916257]
[202]
Malla, T.N.; Pandey, S.; Poudyal, I.; Aldama, L.; Feliz, D.; Noda, M.; Phillips, G.N., Jr; Stojkovic, E.A.; Schmidt, M. Vitamin C inhibits SARS coronavirus-2 main protease essential for viral replication bioRxiv, 2021, 2021, 442358.
[http://dx.doi.org/10.1101/2021.05.02.442358]
[203]
Belhassan, A.; Chtita, S.; Zaki, H.; Alaqarbeh, M.; Alsakhen, N.; Almohtaseb, F.; Lakhlifi, T.; Bouachrine, M. In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling. J. Mol. Struct., 2022, 1258, 132652.
[http://dx.doi.org/10.1016/j.molstruc.2022.132652] [PMID: 35194243]
[204]
JamaliMoghadamSiahkali, S.; Zarezade, B.; Koolaji, S.; SeyedAlinaghi, S.; Zendehdel, A.; Tabarestani, M.; Sekhavati Moghadam, E.; Abbasian, L.; Dehghan Manshadi, S.A.; Salehi, M.; Hasannezhad, M.; Ghaderkhani, S.; Meidani, M.; Salahshour, F.; Jafari, F.; Manafi, N.; Ghiasvand, F.; Manaf, N.; Ghiasvand, F. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: a randomized open-label clinical trial. Eur. J. Med. Res., 2021, 26(1), 20-28.
[http://dx.doi.org/10.1186/s40001-021-00490-1] [PMID: 33573699]
[205]
Hui, L.L.; Nelson, E.A.S.; Lin, S.L.; Zhao, J.V. The role of vitamin C in pneumonia and COVID-19 infection in adults with European ancestry: a Mendelian randomisation study. Eur. J. Clin. Nutr., 2022, 76(4), 588-591.
[http://dx.doi.org/10.1038/s41430-021-00993-4] [PMID: 34462559]
[206]
Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; Desai, M.Y. Effect of high-dose zinc and ascorbic acid supplementation vs. usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection. JAMA Netw. Open, 2021, 4(2), e210369.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.0369] [PMID: 33576820]
[207]
Kumari, P.; Dembra, S.; Dembra, P.; Bhawna, F.; Gul, A.; Ali, B.; Sohail, H.; Kumar, B.; Memon, M.K.; Rizwan, A. The role of vitamin C as adjuvant therapy in COVID-19. Cureus, 2020, 12(11), e11779.
[http://dx.doi.org/10.7759/cureus.11779] [PMID: 33409026]
[208]
Haidar, M.A.; Jourdi, H.; Haj Hassan, Z.; Ashekyan, O.; Fardoun, M.; Wehbe, Z.; Maaliki, D.; Wehbe, M.; Mondello, S.; Abdelhady, S.; Shahjouei, S.; Bizri, M.; Mechref, Y.; Gold, M.S.; Dbaibo, G.; Zaraket, H.; Eid, A.H.; Kobeissy, F.; Dbaibo, G.; Zaraket, H.; Eid, A.H.; Kobeissy, F. Neurological and neuropsychological changes associated with SARS-CoV-2 infection: new observations. New mechanisms. Neuroscientist, 2021, 1073858420984106, 1073858420984106.
[http://dx.doi.org/10.1177/1073858420984106] [PMID: 33393420]
[209]
Sabra, M.; Kobeissy, F.; Bizri, M.; Haidar, M.A.; Shakkour, Z.; Reslan, M.A.; Al-Haj, N.; Chamoun, P.; Habashy, K.; Kaafarani, H.; Shahjouei, S.; Farran, S.H.; Shaito, A.; Saba, E.S.; Badran, B. SARS-CoV-2 involvement in central nervous system tissue damage. Neural Regen. Res., 2022, 17(6), 1228-1239.
[http://dx.doi.org/10.4103/1673-5374.327323] [PMID: 34782556]
[210]
Yin, R.; Feng, W.; Wang, T.; Chen, G.; Wu, T.; Chen, D.; Lv, T.; Xiang, D. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. J. Med. Virol., 2020, 92(10), 1782-1784.
[http://dx.doi.org/10.1002/jmv.25888] [PMID: 32293714]
[211]
Filatov, A.; Sharma, P.; Hindi, F.; Espinosa, P.S. Neurological complications of coronavirus disease (COVID-19) Encephalopathy. Cureus, 2020, 12(3), e7352.
[http://dx.doi.org/10.7759/cureus.7352] [PMID: 32328364]
[212]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy