Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

The Flavonoid Components of Scutellaria baicalensis: Biopharmaceutical Properties and their Improvement using Nanoformulation Techniques

Author(s): Jilin Wang, Xiaojiao Feng, Ziwei Li, Yiting Liu, Wenzhuo Yang, Tingen Zhang, Pan Guo, Zhidong Liu, Dongli Qi and Jiaxin Pi*

Volume 23, Issue 1, 2023

Published on: 26 December, 2022

Page: [17 - 29] Pages: 13

DOI: 10.2174/1568026623666221128144258

open access plus

Abstract

Scutellaria baicalensis georgi, known as “Huangqin” in its dried root form, is a herb widely used in traditional Chinese medicine for “clearing away heat, removing dampness, purging fire and detoxification”. Baicalin, baicalein, wogonin, and wogonoside are the main flavonoid compounds found in Scutellaria baicalensis. Scutellaria baicalensis flavonoid components have the potential to prevent and treat a host of diseases. The components of S. baicalensis have limited clinical application due to their low water solubility, poor permeability, and microbial transformation in vivo. Nanopharmaceutical techniques can improve their biopharmaceutical properties, enhance their absorption in vivo, and improve their bioavailability. However, due to the limited number of clinical trials, doubts remain about their toxicity and improvements in human absorption as a result of nanoformulations. This review summarizes the latest and most comprehensive information regarding the absorption, distribution, metabolism, and excretion of the Scutellaria baicalensis components in vivo. We examined the main advantages of nanodrug delivery systems and collected detailed information on the nanosystem delivery of the Scutellaria baicalensis components, including nanosuspensions and various lipid-based nanosystems. Lipid-based systems including liposomes, solid lipid nanoparticles, nanoemulsions, and self-micro emulsifying drug delivery systems are introduced in detail. In addition, we make recommendations for related and future research directions. Future research should further examine the absorption mechanisms and metabolic pathways of nanoformulations of the components of Scutellaria baicalensis in vivo, and accurately track the in vivo behavior of these drug delivery systems to discover the specific reasons for the enhanced bioavailability of nanoformulations of the scutellaria baicalensis components. The development of targeted oral administration of intact nanoparticles of Scutellaria baicalensis components is an exciting prospect.

Keywords: Scutellaria baicalensis, Georgi, Baicalin, Baicalein, Wogonin, Biopharmaceutics, Nanoformulations.

Graphical Abstract
[1]
Wang, Z.L.; Wang, S.; Kuang, Y.; Hu, Z.M.; Qiao, X.; Ye, M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol., 2018, 56(1), 465-484.
[http://dx.doi.org/10.1080/13880209.2018.1492620] [PMID: 31070530]
[2]
Long, T.; Yu, J.; Huang, Y.; Shi, Z.; Xu, L. Rapid fingerprint analysis of Radix scutellariae by UFLC-DAD. J. Chromatogr. Sci., 2013, 51(10), 939-942.
[http://dx.doi.org/10.1093/chromsci/bms193] [PMID: 23212135]
[3]
Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Yao, W.F.; Gao, H.; Wei, M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia‐mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/NF ‐κB signaling pathway. CNS Neurosci. Ther., 2019, 25(5), 575-590.
[http://dx.doi.org/10.1111/cns.13086] [PMID: 30676698]
[4]
Xu, T.; Ge, X.; Lu, C.; Dai, W.; Chen, H.; Xiao, Z.; Wu, L.; Liang, G.; Ying, S.; Zhang, Y.; Dai, Y. Baicalein attenuates OVA-induced allergic airway inflammation through the inhibition of the NF-κB signaling pathway. Aging, 2019, 11(21), 9310-9327.
[http://dx.doi.org/10.18632/aging.102371] [PMID: 31692453]
[5]
Huang, L.; Peng, B.; Nayak, Y.; Wang, C.; Si, F.; Liu, X.; Dou, J.; Xu, H.; Peng, G. Baicalein and baicalin promote melanoma apoptosis and senescence via metabolic inhibition. Front. Cell Dev. Biol., 2020, 8, 836.
[http://dx.doi.org/10.3389/fcell.2020.00836] [PMID: 32984331]
[6]
Guo, J.; You, H.; Li, D. Baicalein exerts anticancer effect in nasopharyngeal carcinoma in vitro and in vivo. Oncol. Res., 2019, 27(5), 601-611.
[http://dx.doi.org/10.3727/096504018X15399945637736] [PMID: 31053182]
[7]
Chu, Y.; Lv, X.; Zhang, L.; Fu, X.; Song, S.; Su, A.; Chen, D.; Xu, L.; Wang, Y.; Wu, Z.; Yun, Z. Wogonin inhibits in vitro herpes simplex virus type 1 and 2 infection by modulating cellular NF-κB and MAPK pathways. BMC Microbiol., 2020, 20(1), 227.
[http://dx.doi.org/10.1186/s12866-020-01916-2] [PMID: 32723300]
[8]
Peng, L.Y.; Yuan, M.; Wu, Z.M.; Song, K.; Zhang, C.L.; An, Q.; Xia, F.; Yu, J.L.; Yi, P.F.; Fu, B.D.; Shen, H.Q. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci. Rep., 2019, 9(1), 4063.
[http://dx.doi.org/10.1038/s41598-019-40684-6] [PMID: 30858423]
[9]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[10]
Benet, L.Z. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J. Pharm. Sci., 2013, 102(1), 34-42.
[http://dx.doi.org/10.1002/jps.23359] [PMID: 23147500]
[11]
Charalabidis, A.; Sfouni, M.; Bergström, C.; Macheras, P. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines. Int. J. Pharm., 2019, 566, 264-281.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.041] [PMID: 31108154]
[12]
Yu, L.X.; Lipka, E.; Crison, J.R.; Amidon, G.L. Transport approaches to the biopharmaceutical design of oral drug delivery systems: Prediction of intestinal absorption. Adv. Drug Deliv. Rev., 1996, 19(3), 359-376.
[http://dx.doi.org/10.1016/0169-409X(96)00009-9] [PMID: 11540095]
[13]
Fong, S.Y.K.; Liu, M.; Wei, H.; Löbenberg, R.; Kanfer, I.; Lee, V.H.L.; Amidon, G.L.; Zuo, Z. Establishing the pharmaceutical quality of Chinese herbal medicine: A provisional BCS classification. Mol. Pharm., 2013, 10(5), 1623-1643.
[http://dx.doi.org/10.1021/mp300502m] [PMID: 23473440]
[14]
Davatgaran Taghipour, Y.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[15]
Edgar, J.Y.C.; Wang, H. Introduction for design of nanoparticle based drug delivery systems. Curr. Pharm. Des., 2017, 23(14), 2108-2112.
[PMID: 27784242]
[16]
Dai, J.; Yang, J.; Li, C. Transport and metabolism of flavonoids from Chinese herbal remedy Xiaochaihu-tang across human intestinal Caco-2 cell monolayers. Acta Pharmacol. Sin., 2008, 29(9), 1086-1093.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00850.x] [PMID: 18718184]
[17]
Zhang, L.; Lin, G.; Kovács, B.; Jani, M.; Krajcsi, P.; Zuo, Z. Mechanistic study on the intestinal absorption and disposition of baicalein. Eur. J. Pharm. Sci., 2007, 31(3-4), 221-231.
[http://dx.doi.org/10.1016/j.ejps.2007.04.001] [PMID: 17507208]
[18]
Zhang, Y.; Zhang, M.; Hu, G.; Zhang, Z.; Song, R. Elevated system exposures of baicalin after combinatory oral administration of rhein and baicalin: Mainly related to breast cancer resistance protein (ABCG2), not UDP-glucuronosyltransferases. J. Ethnopharmacol., 2020, 250, 112528.
[http://dx.doi.org/10.1016/j.jep.2019.112528] [PMID: 31884038]
[19]
Akao, T.; Hanada, M.; Sakashita, Y.; Sato, K.; Morita, M.; Imanaka, T. Efflux of baicalin, a flavone glucuronide of Scutellariae Radix, on Caco-2 cells through multidrug resistance-associated protein 2. J. Pharm. Pharmacol., 2010, 59(1), 87-93.
[http://dx.doi.org/10.1211/jpp.59.1.0012] [PMID: 17227625]
[20]
Lu, T.; Song, J.; Huang, F.; Deng, Y.; Xie, L.; Wang, G.; Liu, X. Comparative pharmacokinetics of baicalin after oral administration of pure baicalin, Radix scutellariae extract and Huang-Lian-Jie-Du-Tang to rats. J. Ethnopharmacol., 2007, 110(3), 412-418.
[http://dx.doi.org/10.1016/j.jep.2006.09.036] [PMID: 17110066]
[21]
Akao, T.; Sato, K.; Hanada, M. Hepatic contribution to a marked increase in the plasma concentration of baicalin after oral administration of its aglycone, baicalein, in multidrug resistance-associated protein 2-deficient rat. Biol. Pharm. Bull., 2009, 32(12), 2079-2082.
[http://dx.doi.org/10.1248/bpb.32.2079] [PMID: 19952434]
[22]
Taiming, L.; Xuehua, J. Investigation of the absorption mechanisms of baicalin and baicalein in rats. J. Pharm. Sci., 2006, 95(6), 1326-1333.
[http://dx.doi.org/10.1002/jps.20593] [PMID: 16628739]
[23]
Lai, M.Y.; Hsiu, S.L.; Tsai, S.Y.; Hou, Y.C.; Chao, P.D.L. Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. J. Pharm. Pharmacol., 2010, 55(2), 205-209.
[http://dx.doi.org/10.1211/002235702522] [PMID: 12631413]
[24]
Xing, J.; Chen, X.; Sun, Y.; Luan, Y.; Zhong, D. Interaction of baicalin and baicalein with antibiotics in the gastrointestinal tract. J. Pharm. Pharmacol., 2010, 57(6), 743-750.
[http://dx.doi.org/10.1211/0022357056244] [PMID: 15969929]
[25]
Shi-Ying, J.I.N.; Jin, H.A.N.; Shi-Xiao, J.I.N.; Qing-Yuan, L.V.; Jin-Xia, B.A.I.; Chen, H.G.; Rui-Sheng, L.I.; Wei, W.U.; Hai-Long, Y.U.A.N. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method. Chin. J. Nat. Med., 2014, 12(1), 71-80.
[http://dx.doi.org/10.1016/S1875-5364(14)60012-1] [PMID: 24484600]
[26]
Xiang, Y.; Long, Y.; Yang, Q.; Zheng, C.; Cui, M.; Ci, Z.; Lv, X.; Li, N.; Zhang, R. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration. Brain Res., 2020, 1726, 146503.
[http://dx.doi.org/10.1016/j.brainres.2019.146503] [PMID: 31605698]
[27]
Wei, Y.; Pi, C.; Yang, G.; Xiong, X.; Lan, Y.; Yang, H.; Zhou, Y.; Ye, Y.; Zou, Y.; Zheng, W.; Zhao, L. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations. Molecules, 2016, 21(4), 444.
[http://dx.doi.org/10.3390/molecules21040444] [PMID: 27104507]
[28]
Hou, Y.C.; Lin, S.P.; Tsai, S.Y.; Ko, M.H.; Chang, Y.C.; Chao, P.D. Flavonoid pharmacokinetics and tissue distribution after repeated dosing of the roots of Scutellaria baicalensis in rats. Planta Med., 2011, 77(5), 455-460.
[http://dx.doi.org/10.1055/s-0030-1250433] [PMID: 20957598]
[29]
Talbi, A.; Zhao, D.; Liu, Q.; Li, J.; Fan, A.; Yang, W.; Han, X.; Chen, X. Pharmacokinetics, tissue distribution, excretion and plasma protein binding studies of wogonin in rats. Molecules, 2014, 19(5), 5538-5549.
[http://dx.doi.org/10.3390/molecules19055538] [PMID: 24786691]
[30]
Zhang, X.J.; Liu, S.; Xing, J.P.; Liu, Z.Q.; Song, F.R. Effect of type 2 diabetes mellitus on flavonoid pharmacokinetics and tissue distribution after oral administration of Radix scutellaria extract in rats. Chin. J. Nat. Med., 2018, 16(6), 418-427.
[http://dx.doi.org/10.1016/S1875-5364(18)30075-X] [PMID: 30047463]
[31]
Zhang, Y.; Ouyang, L.; Mai, X.; Wang, H.; Liu, S.; Zeng, H.; Chen, T.; Li, J. Use of UHPLC-QTOF-MS/MS with combination of in silico approach for distributions and metabolites profile of flavonoids after oral administration of Niuhuang Shangqing tablets in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1114-1115, 55-70.
[http://dx.doi.org/10.1016/j.jchromb.2019.03.021] [PMID: 30928832]
[32]
Wang, C.; Jia, Z.; Wang, Z.; Hu, T.; Qin, H.; Du, G.; Wu, C.; Zhang, J. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-Xu-Ming decoction. J. Pharm. Biomed. Anal., 2016, 122, 110-117.
[http://dx.doi.org/10.1016/j.jpba.2016.01.052] [PMID: 26852160]
[33]
Liu, Z.; Zhao, H.; Shu, L.; Zhang, Y.; Okeke, C.; Zhang, L.; Li, J.; Li, N. Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev. Ind. Pharm., 2015, 41(3), 353-361.
[http://dx.doi.org/10.3109/03639045.2013.861478] [PMID: 25784073]
[34]
Liu, Y.; Ma, Y.; Xu, J.; Chen, Y.; Xie, J.; Yue, P.; Zheng, Q.; Yang, M. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf. B Biointerfaces, 2017, 160, 619-627.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.009] [PMID: 29031222]
[35]
Herath, W.; Mikell, J.R.; Hale, A.L.; Ferreira, D.; Khan, I.A. Microbial metabolism. Part 6. Metabolites of 3- and 7-hydroxyflavones. Chem. Pharm. Bull., 2006, 54(3), 320-324.
[http://dx.doi.org/10.1248/cpb.54.320] [PMID: 16508185]
[36]
Rice-Evans, C. Flavonoid antioxidants. Curr. Med. Chem., 2001, 8(7), 797-807.
[http://dx.doi.org/10.2174/0929867013373011] [PMID: 11375750]
[37]
Xing, J.; Chen, X.; Zhong, D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci., 2005, 78(2), 140-146.
[http://dx.doi.org/10.1016/j.lfs.2005.04.072] [PMID: 16107266]
[38]
Akao, T.; Sato, K.; He, J.X.; Ma, C.M.; Hattori, M. Baicalein 6-O-β-D-glucopyranuronoside is a main metabolite in the plasma after oral administration of baicalin, a flavone glucuronide of Scutellariae radix, to rats. Biol. Pharm. Bull., 2013, 36(5), 748-753.
[http://dx.doi.org/10.1248/bpb.b12-00850] [PMID: 23649334]
[39]
Zuo, F.; Zhou, Z.M.; Yan, M.Z.; Liu, M.L.; Xiong, Y.L.; Zhang, Q.; Song, H.Y.; Ye, W.H. Metabolism of constituents in Huangqin-Tang, a prescription in traditional Chinese medicine, by human intestinal flora. Biol. Pharm. Bull., 2002, 25(5), 558-563.
[http://dx.doi.org/10.1248/bpb.25.558] [PMID: 12033492]
[40]
Kang, M.J.; Ko, G.S.; Oh, D.G.; Kim, J.S.; Noh, K.; Kang, W.; Yoon, W.K.; Kim, H.C.; Jeong, H.G.; Jeong, T.C. Role of metabolism by intestinal microbiota in pharmacokinetics of oral baicalin. Arch. Pharm. Res., 2014, 37(3), 371-378.
[http://dx.doi.org/10.1007/s12272-013-0179-2] [PMID: 23771520]
[41]
Zhang, J.; Cai, W.; Zhou, Y.; Liu, Y.; Wu, X.; Li, Y.; Lu, J.; Qiao, Y. Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 985, 91-102.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.018] [PMID: 25661005]
[42]
Zhang, L.; Li, C.; Lin, G.; Krajcsi, P.; Zuo, Z. Hepatic metabolism and disposition of baicalein via the coupling of conjugation enzymes and transporters-in vitro and in vivo evidences. AAPS J., 2011, 13(3), 378-389.
[http://dx.doi.org/10.1208/s12248-011-9277-6] [PMID: 21607811]
[43]
Li, C.; Zhang, L.; Zhou, L.; Wo, S.K.; Lin, G.; Zuo, Z. Comparison of intestinal absorption and disposition of structurally similar bioactive flavones in Radix scutellariae. AAPS J., 2012, 14(1), 23-34.
[http://dx.doi.org/10.1208/s12248-011-9310-9] [PMID: 22167378]
[44]
Wang, Q.; Shi, R.; Dai, Y.; Li, Y.; Wang, T.; Ma, Y.; Cheng, N. Mechanism in the existent difference in form of wogonin/wogonoside between plasma and intestine/liver in rats. RSC Advances, 2018, 8(7), 3364-3373.
[http://dx.doi.org/10.1039/C7RA08270C] [PMID: 35542957]
[45]
Zhou, Q.; Zheng, Z.; Xia, B.; Tang, L.; Lv, C.; Liu, W.; Liu, Z.; Hu, M. Use of isoform-specific UGT metabolism to determine and describe rates and profiles of glucuronidation of wogonin and oroxylin A by human liver and intestinal microsomes. Pharm. Res., 2010, 27(8), 1568-1583.
[http://dx.doi.org/10.1007/s11095-010-0148-0] [PMID: 20411407]
[46]
Li, M.; Shi, A.; Pang, H.; Xue, W.; Li, Y.; Cao, G.; Yan, B.; Dong, F.; Li, K.; Xiao, W.; He, G.; Du, G.; Hu, X. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J. Ethnopharmacol., 2014, 156, 210-215.
[http://dx.doi.org/10.1016/j.jep.2014.08.031] [PMID: 25219601]
[47]
Ancuceanu, R.; Dinu, M.; Dinu-Pirvu, C.; Anuţa, V.; Negulescu, V. Pharmacokinetics of B-ring unsubstituted flavones. Pharmaceutics, 2019, 11(8), 370.
[http://dx.doi.org/10.3390/pharmaceutics11080370] [PMID: 31374885]
[48]
Chen, Y.; Minh, L.V.; Liu, J.; Angelov, B.; Drechsler, M.; Garamus, V.M.; Willumeit-Römer, R.; Zou, A. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids Surf. B Biointerfaces, 2016, 140, 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.018] [PMID: 26741267]
[49]
Baek, J.S.; Na, Y.G.; Cho, C.W. Sustained cytotoxicity of wogonin on breast cancer cells by encapsulation in solid lipid nanoparticles. Nanomaterials (Basel), 2018, 8(3), 159.
[http://dx.doi.org/10.3390/nano8030159] [PMID: 29533979]
[50]
Xu, Q.; Zhou, A.; Wu, H.; Bi, Y. Development and in vivo evaluation of baicalin-loaded W/O nanoemulsion for lymphatic absorption. Pharm. Dev. Technol., 2019, 24(9), 1155-1163.
[http://dx.doi.org/10.1080/10837450.2019.1646757] [PMID: 31342830]
[51]
Zhou, X.; Liu, D.; Liu, H.; Yang, Q.; Yao, K.; Wang, X.; Wang, L.; Yang, X. Effect of low molecular weight chitosans on drug permeation through mouse skin: 1. Transdermal delivery of baicalin. J. Pharm. Sci., 2010, 99(7), 2991-2998.
[http://dx.doi.org/10.1002/jps.22063] [PMID: 20091820]
[52]
Pathak, K.; Raghuvanshi, S. Oral bioavailability: Issues and solutions via nanoformulations. Clin. Pharmacokinet., 2015, 54(4), 325-357.
[http://dx.doi.org/10.1007/s40262-015-0242-x] [PMID: 25666353]
[53]
Gao, Y.; Li, Z.; Sun, M.; Guo, C.; Yu, A.; Xi, Y.; Cui, J.; Lou, H.; Zhai, G. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv., 2011, 18(2), 131-142.
[http://dx.doi.org/10.3109/10717544.2010.520353] [PMID: 20939679]
[54]
Gao, L.; Liu, G.; Ma, J.; Wang, X.; Zhou, L.; Li, X.; Wang, F. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm. Res., 2013, 30(2), 307-324.
[http://dx.doi.org/10.1007/s11095-012-0889-z] [PMID: 23073665]
[55]
Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[56]
Sigfridsson, K.; Nordmark, A.; Theilig, S.; Lindahl, A. A formulation comparison between micro- and nanosuspensions: The importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev. Ind. Pharm., 2011, 37(2), 185-192.
[http://dx.doi.org/10.3109/03639045.2010.504209] [PMID: 20653464]
[57]
Xie, J.; Luo, Y.; Liu, Y.; Ma, Y.; Yue, P.; Yang, M. Novel redispersible nanosuspensions stabilized by co-processed nanocrystalline cellulose–sodium carboxymethyl starch for enhancing dissolution and oral bioavailability of baicalin. Int. J. Nanomed., 2019, 14, 353-369.
[http://dx.doi.org/10.2147/IJN.S184374] [PMID: 30655668]
[58]
Yue, P.F.; Li, Y.; Wang; Zhu; Wang, J.; Yuan, H-L.; Wan; Yang, M. Process optimization and evaluation of novel baicalin solid nanocrystals. Int. J. Nanomedicine, 2013, 8, 2961-2973.
[http://dx.doi.org/10.2147/IJN.S44924] [PMID: 23976849]
[59]
Zhang, J.; Lv, H.; Jiang, K.; Gao, Y. Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int. J. Pharm., 2011, 420(1), 180-188.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.023] [PMID: 21878378]
[60]
Pi, J.; Wang, S.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.; Guo, P.; Li, N.; Liu, Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci., 2019, 14(2), 154-164.
[http://dx.doi.org/10.1016/j.ajps.2018.04.009] [PMID: 32104447]
[61]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[62]
Vemuri, S.; Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv., 1995, 70(2), 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[63]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[64]
Li, N.; Feng, L.; Tan, Y.; Xiang, Y.; Zhang, R.; Yang, M. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. Molecules, 2018, 23(7), 1747.
[http://dx.doi.org/10.3390/molecules23071747] [PMID: 30018228]
[65]
Wei, Y.; Guo, J.; Zheng, X.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.; Zhao, L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomedicine, 2014, 9, 3623-3630.
[PMID: 25120360]
[66]
Wei, Y.; Liang, J.; Zheng, X.; Pi, C.; Liu, H.; Yang, H.; Zou, Y.; Ye, Y.; Zhao, L. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: Development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer. Int. J. Nanomedicine, 2016, 12, 251-261.
[http://dx.doi.org/10.2147/IJN.S119895] [PMID: 28096670]
[67]
Tian, J.; Wang, L.; Wang, L.; Ke, X. A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Deliv., 2014, 21(7), 553-559.
[http://dx.doi.org/10.3109/10717544.2013.853850] [PMID: 24215357]
[68]
Liang, J.; Wu, W.; Liu, Q.; Chen, S. Long-circulating nanoliposomes (LCNs) sustained delivery of baicalein (BAI) with desired oral bioavailability in vivo. Drug Deliv., 2013, 20(8), 319-323.
[http://dx.doi.org/10.3109/10717544.2013.834420] [PMID: 24028326]
[69]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[70]
Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat., 2020, 30(3), 179-194.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[71]
Muchow, M.; Maincent, P.; Müller, R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 2008, 34(12), 1394-1405.
[http://dx.doi.org/10.1080/03639040802130061] [PMID: 18665980]
[72]
Parhi, R.; Suresh, P. Preparation and characterization of solid lipid nanoparticles-a review. Curr. Drug Discov. Technol., 2012, 9(1), 2-16.
[http://dx.doi.org/10.2174/157016312799304552] [PMID: 22235925]
[73]
Liu, Z.; Zhang, X.; Wu, H.; Li, J.; Shu, L.; Liu, R.; Li, L.; Li, N. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm., 2011, 37(4), 475-481.
[http://dx.doi.org/10.3109/03639045.2010.522193] [PMID: 21054217]
[74]
Liu, Z.; Zhang, L.; He, Q.; Liu, X.; Chukwunweike Ikechukwu, O.; Tong, L.; Guo, L.; Yang, H.; Zhang, Q.; Zhao, H.; Gu, X. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia–reperfusion in rats. Int. J. Pharm., 2015, 489(1-2), 131-138.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.049] [PMID: 25895718]
[75]
Hao, J.; Wang, F.; Wang, X.; Zhang, D.; Bi, Y.; Gao, Y.; Zhao, X.; Zhang, Q. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur. J. Pharm. Sci., 2012, 47(2), 497-505.
[http://dx.doi.org/10.1016/j.ejps.2012.07.006] [PMID: 22820033]
[76]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[77]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[78]
Jaiswal, M.; Dudhe, R.; Sharma, P. K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123-127.
[79]
Ali Khan, A.; Mudassir, J.; Mohtar, N.; Darwis, Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int. J. Nanomedicine, 2013, 8, 2733-2744.
[PMID: 23926431]
[80]
Shi, L.; Qu, Y.; Li, Z.; Fan, B.; Xu, H.; Tang, J. In vitro permeability and bioavailability enhancement of curcumin by nanoemulsion via pulmonary administration. Curr. Drug Deliv., 2019, 16(8), 751-758.
[http://dx.doi.org/10.2174/1567201816666190717125622] [PMID: 31722658]
[81]
Zhao, L.; Wei, Y.; Fu, J.; Huang, Y.; He, B.; Zhou, Y. Nanoemulsion improves the oral bioavailability of baicalin in rats: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2013, 8, 3769-3779.
[http://dx.doi.org/10.2147/IJN.S51578] [PMID: 24124365]
[82]
Wu, L.; Bi, Y.; Wu, H. Formulation optimization and the absorption mechanisms of nanoemulsion in improving baicalin oral exposure. Drug Dev. Ind. Pharm., 2018, 44(2), 266-275.
[http://dx.doi.org/10.1080/03639045.2017.1391831] [PMID: 29022400]
[83]
Yin, J.; Xiang, C.; Wang, P.; Yin, Y.; Hou, Y. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability. Int. J. Nanomedicine, 2017, 12, 2923-2931.
[http://dx.doi.org/10.2147/IJN.S131167] [PMID: 28435268]
[84]
Neslihan Gursoy, R.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58(3), 173-182.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[85]
Kohli, K.; Chopra, S.; Dhar, D.; Arora, S.; Khar, R.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov. Today, 2010, 15(21-22), 958-965.
[http://dx.doi.org/10.1016/j.drudis.2010.08.007] [PMID: 20727418]
[86]
Joyce, P.; Dening, T.J.; Meola, T.R.; Schultz, H.B.; Holm, R.; Thomas, N.; Prestidge, C.A. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv. Drug Deliv. Rev., 2019, 142, 102-117.
[http://dx.doi.org/10.1016/j.addr.2018.11.006] [PMID: 30529138]
[87]
Wu, H.; Long, X.; Yuan, F.; Chen, L.; Pan, S.; Liu, Y.; Stowell, Y.; Li, X. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm. Sin. B, 2014, 4(3), 217-226.
[http://dx.doi.org/10.1016/j.apsb.2014.03.002] [PMID: 26579386]
[88]
Liu, W.; Tian, R.; Hu, W.; Jia, Y.; Jiang, H.; Zhang, J.; Zhang, L. Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia, 2012, 83(8), 1532-1539.
[http://dx.doi.org/10.1016/j.fitote.2012.08.021] [PMID: 22982454]
[89]
Liao, H.; Gao, Y.; Lian, C.; Zhang, Y.; Wang, B.; Yang, Y.; Ye, J.; Feng, Y.; Liu, Y. Oral absorption and lymphatic transport of baicalein following drug–phospholipid complex incorporation in self-microemulsifying drug delivery systems. Int. J. Nanomed., 2019, 14, 7291-7306.
[http://dx.doi.org/10.2147/IJN.S214883] [PMID: 31564878]
[90]
Zhang, H.; Zhao, L.; Chu, L.; Han, X.; Zhai, G. Preparation, optimization, characterization and cytotoxicity in vitro of Baicalin-loaded mixed micelles. J. Colloid Interface Sci., 2014, 434, 40-47.
[http://dx.doi.org/10.1016/j.jcis.2014.07.045] [PMID: 25168581]
[91]
Chen, D.; Yu, H.; Sun, K.; Liu, W.; Wang, H. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Drug Deliv., 2014, 21(4), 258-264.
[http://dx.doi.org/10.3109/10717544.2013.838717] [PMID: 24102086]
[92]
Gao, Z.G.; Fain, H.D.; Rapoport, N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J. Control. Release, 2005, 102(1), 203-222.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.021] [PMID: 15653146]
[93]
Zhang, H.; Yang, X.; Zhao, L.; Jiao, Y.; Liu, J.; Zhai, G. In vitro and in vivo study of Baicalin-loaded mixed micelles for oral delivery. Drug Deliv., 2016, 23(6), 1933-1939.
[PMID: 25693642]
[94]
Zhao, Y.; Wang, J.; Wu, F.; Xie, R.; Zhou, D. Preparation and characterization of baicalin PEG-PLGA nanomicelles and tissue distribution in rats with acute myocardial ischemia. Chin. Tradit. Herbal Drugs, 2018, 49(18), 4269-4276.
[95]
Hsu, S.H.; Wen, C.J.; Al-Suwayeh, S.A.; Chang, H.W.; Yen, T.C.; Fang, J.Y. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. Nanotechnology, 2010, 21(40), 405101.
[http://dx.doi.org/10.1088/0957-4484/21/40/405101] [PMID: 20823498]
[96]
Zhang, S.; Wang, J.; Pan, J. Baicalin-loaded PEGylated lipid nanoparticles: Characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats. Drug Deliv., 2016, 23(9), 3696-3703.
[http://dx.doi.org/10.1080/10717544.2016.1223218] [PMID: 27749105]
[97]
Wu, Y.; Song, X.; Kebebe, D.; Li, X.; Xue, Z.; Li, J.; Du, S.; Pi, J.; Liu, Z. Brain targeting of baicalin and salvianolic acid B combination by OX26 functionalized nanostructured lipid carriers. Int. J. Pharm., 2019, 571, 118754.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118754] [PMID: 31604118]
[98]
Tsai, M.J.; Wu, P.C.; Huang, Y.B.; Chang, J.S.; Lin, C.L.; Tsai, Y.H.; Fang, J.Y. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int. J. Pharm., 2012, 423(2), 461-470.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.009] [PMID: 22193056]
[99]
Wei, S.; Xie, J.; Luo, Y.; Ma, Y.; Tang, S.; Yue, P.; Yang, M. Hyaluronic acid based nanocrystals hydrogels for enhanced topical delivery of drug: A case study. Carbohydr. Polym., 2018, 202, 64-71.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.112] [PMID: 30287044]
[100]
Yu, Y.; Feng, R.; Li, J.; Wang, Y.; Song, Y.; Tan, G.; Liu, D.; Liu, W.; Yang, X.; Pan, H.; Li, S. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian J. Pharm. Sci., 2019, 14(4), 423-434.
[http://dx.doi.org/10.1016/j.ajps.2018.08.002] [PMID: 32104471]
[101]
Li, B.; Wen, M.; Li, W.; He, M.; Yang, X.; Li, S. Preparation and characterization of baicalin-poly-vinylpyrrolidone coprecipitate. Int. J. Pharm., 2011, 408(1-2), 91-96.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.055] [PMID: 21291971]
[102]
Li, B.; He, M.; Li, W.; Luo, Z.; Guo, Y.; Li, Y.; Zang, C.; Wang, B.; Li, F.; Li, S.; Ji, P. Dissolution and pharmacokinetics of baicalin–polyvinylpyrrolidone coprecipitate. J. Pharm. Pharmacol., 2013, 65(11), 1670-1678.
[http://dx.doi.org/10.1111/jphp.12146] [PMID: 24111594]
[103]
Cui, L.; Sune, E.; Song, J.; Wang, J.; Jia, X.B.; Zhang, Z.H. Characterization and bioavailability study of baicalin-mesoporous carbon nanopowder solid dispersion. Pharmacogn. Mag., 2016, 12(48), 326-332.
[PMID: 27867277]

© 2024 Bentham Science Publishers | Privacy Policy