Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

The Radioprotective Potentials of Silymarin/Silibinin Against Radiotherapy- Induced Toxicities: A Systematic Review of Clinical and Experimental Studies

Author(s): Gloria Alexandra Latacela, Pushpamala Ramaiah*, Indrajit Patra, Abduladheem Turki Jalil*, Reena Gupta, Fakhriddin Akhmadovich Madaminov, Shafik Shaker Shafik, Moaed Emran Al-Gazally, Mohammad Javed Ansari, Mahmoud Kandeel, Yasser Fakri Mustafa and Bagher Farhood*

Volume 30, Issue 33, 2023

Published on: 28 December, 2022

Page: [3775 - 3797] Pages: 23

DOI: 10.2174/0929867330666221124155339

Price: $65

Abstract

Background: Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment can lead to different adverse effects. In this regard, it has been shown that the use of radioprotective agents may alleviate the ionizing radiation-induced toxicities.

Objective: The present study aims to review the radioprotective potentials of silymarin/silibinin in the prevention/reduction of ionizing radiation-induced adverse effects on healthy cells/tissues.

Methods: Based on PRISMA guidelines, a comprehensive and systematic search was performed for identifying relevant literature on the “potential protective role of silymarin/silibinin in the treatment of radiotherapy-induced toxicities” in the different electronic databases of Web of Science, PubMed, and Scopus up to April 2022. Four hundred and fifty-five articles were obtained and screened in accordance with the inclusion and exclusion criteria of the current study. Finally, 19 papers were included in this systematic review.

Results: The findings revealed that the ionizing radiation-treated groups had reduced survival rates and body weight in comparison with the control groups. It was also found that radiation can induce mild to severe adverse effects on the skin, digestive, hematologic, lymphatic, respiratory, reproductive, and urinary systems. Nevertheless, the administration of silymarin/silibinin could mitigate the ionizing radiation-induced adverse effects in most cases. This herbal agent exerts its radioprotective effects through anti-oxidant, anti-apoptosis, anti-inflammatory activities, and other mechanisms.

Conclusion: The results of the current systematic review showed that co-treatment of silymarin/silibinin with radiotherapy alleviates the radiotherapy-induced adverse effects in healthy cells/tissues

Keywords: Cancer, radiotherapy, silymarin, silibinin, anti-oxidant, anti-apoptosis, anti-inflammatory.

[1]
Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Liang, J.L.; Luo, G.F.; Chen, W.H.; Zhang, X.Z. Recent advances in engineered materials for immunotherapy-involved combination cancer therapy. Adv. Mater., 2021, 33(31), 2007630.
[http://dx.doi.org/10.1002/adma.202007630] [PMID: 34050564]
[4]
Jiang, J.; Shen, N.; Ci, T.; Tang, Z.; Gu, Z.; Li, G.; Chen, X. Combretastatin A4 nanodrug-induced MMP9 amplification boosts tumor-selective release of Doxorubicin prodrug. Adv. Mater., 2019, 31(44), 1904278.
[http://dx.doi.org/10.1002/adma.201904278] [PMID: 31549774]
[5]
Ford, E.C.; Terezakis, S. How safe is safe? Risk in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(2), 321-322.
[http://dx.doi.org/10.1016/j.ijrobp.2010.04.047] [PMID: 20832662]
[6]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[7]
Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[8]
Farhood, B; Geraily, G; Abtahi, SMM Abtahi SMM: A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl. Radiat. Isotopes, 2019, 143, 47-59.
[http://dx.doi.org/10.1016/j.apradiso.2018.08.018]
[9]
Bagheri, H.; Rabie Mahdavi, S.; Shekarchi, B.; Manouchehri, F.; Farhood, B. Measurement of the contralateral breast photon and thermal neutron doses in breast cancer radiotherapy: A comparison between physical and dynamic wedges. Radiat. Prot. Dosimetry, 2018, 178(1), 73-81.
[http://dx.doi.org/10.1093/rpd/ncx076] [PMID: 28591863]
[10]
Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov., 2013, 12(7), 526-542.
[http://dx.doi.org/10.1038/nrd4003] [PMID: 23812271]
[11]
Farhood, B.; khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Eleojo Musa, A.; Najafi, M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol. Res., 2020, 155, 104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[12]
Kim, J.H.; Jenrow, K.A.; Brown, S.L. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J., 2014, 32(3), 103-115.
[http://dx.doi.org/10.3857/roj.2014.32.3.103] [PMID: 25324981]
[13]
Kavanagh, BD; Pan, CC; Dawson, LA; Das, SK; Li, XA; Ten Haken, RK; Miften, M Radiation dose–volume effects in the stomach and small bowel. Int. J. Radiat. Oncol., 201076(3), S101-S107.
[http://dx.doi.org/10.1016/j.ijrobp.2009.05.071]
[14]
Pollom, EL; Deng, L; Pai, RK; Brown, JM; Giaccia, A; Loo, BW, Jr; Shultz, DB; Le, QT; Koong, AC; Chang, DT Gastrointestinal toxicities with combined antiangiogenic and stereotactic body radiation therapy. Int. J. Radiat. Oncol., 2015, 92(3), 568-576.
[http://dx.doi.org/10.1016/j.ijrobp.2015.02.016]
[15]
Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest Irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202.
[PMID: 31565651]
[16]
Sheikhzadeh, P.D.; Khezerloo, D.; Mortezazadeh, T.; Farhood, B.; Seyfizadeh, N.; Pezhman, L. The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. J. Cancer Res. Ther., 2019, 15(3), 517-521.
[http://dx.doi.org/10.4103/jcrt.JCRT_1341_16] [PMID: 31169213]
[17]
Aliasgharzadeh, A.; Farhood, B.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.H.; Eleojo Musa, A.; Mohseni, M.; Moradi, H.; Najafi, M. Melatonin attenuates upregulation of duox1 and duox2 and protects against lung injury following chest irradiation in rats. Cell J., 2019, 21(3), 236-242.
[PMID: 31210428]
[18]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina (Kaunas), 2019, 55(7), 317.
[http://dx.doi.org/10.3390/medicina55070317] [PMID: 31252673]
[19]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina (Kaunas), 2019, 55(8), 417.
[http://dx.doi.org/10.3390/medicina55080417] [PMID: 31366142]
[20]
Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Eftekhari, S-M.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Farhood, B. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2021, 21(2), 142-150.
[PMID: 32436827]
[21]
Farhood, B.; Hassanzadeh, G.; Amini, P.; Shabeeb, D.; Musa, A.E.; Khodamoradi, E.; Mohseni, M.; Aliasgharzadeh, A.; Moradi, H.; Najafi, M. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or Alpha-lipoic Acid: A Pilot Histopathological Study. Anti-Inflamm. Anti-Allergy Agents Med. Chem., 2020, 19(4), 413-424.
[http://dx.doi.org/10.2174/1871523018666191111124028]
[22]
Nodooshan, S.J.; Amini, P.; Ashrafizadeh, M.; Tavakoli, S.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Ahmadi, A. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr. Drug Res. Rev., 2021, 13(2), 148-153.
[PMID: 33371865]
[23]
Motallebzadeh, E.; Tameh, A.A.; Zavareh, S.A.T.; Farhood, B.; Aliasgharzedeh, A.; Mohseni, M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J. Cell. Physiol., 2020, 235(11), 8791-8798.
[http://dx.doi.org/10.1002/jcp.29722] [PMID: 32324264]
[24]
Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int., 2021, 21(1), 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[25]
Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741.
[http://dx.doi.org/10.1016/j.intimp.2021.107741] [PMID: 33989970]
[26]
Ahmed, R.F.; Moussa, R.A.; Eldemerdash, R.S.; Zakaria, M.M.; Abdel-Gaber, S.A. Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway. Iran. J. Basic Med. Sci., 2019, 22(12), 1483-1492.
[PMID: 32133068]
[27]
Comelli, M.C.; Mengs, U.; Schneider, C.; Prosdocimi, M. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integr. Cancer Ther., 2007, 6(2), 120-129.
[http://dx.doi.org/10.1177/1534735407302349] [PMID: 17548791]
[28]
de Oliveira, D.R.; Tintino, S.R.; Braga, M.F.; Boligon, A.A.; Athayde, M.L.; Coutinho, H.D.; de Menezes, I.R.; Fachinetto, R. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. BioMed Res. Int., 2015, 2015, 292797.
[PMID: 25866771]
[29]
Ferenci, P. Silymarin in the treatment of liver diseases: What is the clinical evidence? Clin. Liver Dis. (Hoboken), 2016, 7(1), 8-10.
[http://dx.doi.org/10.1002/cld.522] [PMID: 31041017]
[30]
Ferenci, P.; Dragosics, B.; Dittrich, H.; Frank, H.; Benda, L.; Lochs, H.; Meryn, S.; Base, W.; Schneider, B. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J. Hepatol., 1989, 9(1), 105-113.
[http://dx.doi.org/10.1016/0168-8278(89)90083-4] [PMID: 2671116]
[31]
Abenavoli, L.; Milic, N. Silymarin for Liver Disease. In: Liver Pathophysiology; Muriel, P., Ed.; Academic Press: Boston, 2017; pp. 621-631.
[http://dx.doi.org/10.1016/B978-0-12-804274-8.00045-X]
[32]
Gazák, R.; Walterová, D.; Kren, V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem., 2007, 14(3), 315-338.
[http://dx.doi.org/10.2174/092986707779941159] [PMID: 17305535]
[33]
Testino, G.; Leone, S.; Ansaldi, F.; Borro, P. Silymarin and S-adenosyl-L-methionine (SAMe): two promising pharmacological agents in case of chronic alcoholic hepathopathy. A review and a point of view. Minerva Gastroenterol. Dietol., 2013, 59(4), 341-356.
[PMID: 24212353]
[34]
Zholobenko, A.; Modriansky, M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia, 2014, 97, 122-132.
[http://dx.doi.org/10.1016/j.fitote.2014.05.016] [PMID: 24879900]
[35]
Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, A.; Esquivel-Soto, J.; Esquivel-Chirino, C.; García-Luna Y González-Rubio, M.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective effect of silymarin. World J. Hepatol., 2014, 6(3), 144-149.
[http://dx.doi.org/10.4254/wjh.v6.i3.144] [PMID: 24672644]
[36]
Surai, P. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants, 2015, 4(1), 204-247.
[http://dx.doi.org/10.3390/antiox4010204] [PMID: 26785346]
[37]
Guzel, S.; Sahinogullari, Z.U.; Canacankatan, N.; Antmen, S.E.; Kibar, D.; Coskun Yilmaz, B. Potential renoprotective effects of silymarin against vancomycin-induced nephrotoxicity in rats. Drug Chem. Toxicol., 2020, 43(6), 630-636.
[http://dx.doi.org/10.1080/01480545.2019.1584208] [PMID: 30862206]
[38]
Zhu, Z.; Sun, G. Silymarin mitigates lung impairments in a rat model of acute respiratory distress syndrome. Inflammopharmacology, 2018, 26(3), 747-754.
[http://dx.doi.org/10.1007/s10787-017-0407-3] [PMID: 29098546]
[39]
Taleb, A; Ahmad, KA; Ihsan, AU; Qu, J; Lin, N; Hezam, K; Koju, N; Hui, L; Qilong, D Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother., 2018, 102, 689-698.
[http://dx.doi.org/10.1016/j.biopha.2018.03.140]
[40]
Abd Eldaim, M.A.; Barakat, E.R.; Alkafafy, M.; Elaziz, S.A.A. Antioxidant and anti-apoptotic prophylactic effect of silymarin against lead-induced hepatorenal toxicity in rats. Environ. Sci. Pollut. Res. Int., 2021, 28(41), 57997-58006.
[http://dx.doi.org/10.1007/s11356-021-14722-8] [PMID: 34100211]
[41]
Ferraz, A.C.; Almeida, L.T.; da Silva Caetano, C.C.; da Silva Menegatto, M.B.; Souza Lima, R.L.; de Senna, J.P.N.; de Oliveira Cardoso, J.M.; Perucci, L.O.; Talvani, A.; Geraldo de Lima, W.; de Mello Silva, B.; Barbosa Reis, A.; de Magalhães, J.C.; Lopes de Brito Magalhães, C. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antiviral Res., 2021, 194, 105168.
[http://dx.doi.org/10.1016/j.antiviral.2021.105168] [PMID: 34437912]
[42]
Post-White, J.; Ladas, E.J.; Kelly, K.M. Advances in the use of milk thistle (Silybum marianum). Integr. Cancer Ther., 2007, 6(2), 104-109.
[http://dx.doi.org/10.1177/1534735407301632] [PMID: 17548789]
[43]
Hosseinabadi, T.; Lorigooini, Z.; Tabarzad, M.; Salehi, B.; Rodrigues, C.F.; Martins, N.; Sharifi-Rad, J. Silymarin antiproliferative and apoptotic effects: Insights into its clinical impact in various types of cancer. Phytother. Res., 2019, 33(11), 2849-2861.
[http://dx.doi.org/10.1002/ptr.6470] [PMID: 31407422]
[44]
Barros, T.M.B.; Lima, A.P.B.; Almeida, T.C.; Silva, G.N. Inhibition of urinary bladder cancer cell proliferation by silibinin. Environ. Mol. Mutagen., 2020, 61(4), 445-455.
[http://dx.doi.org/10.1002/em.22363] [PMID: 32078183]
[45]
Féher, J.; Lengyel, G. Silymarin in the prevention and treatment of liver diseases and primary liver cancer. Curr. Pharm. Biotechnol., 2012, 13(1), 210-217.
[http://dx.doi.org/10.2174/138920112798868818] [PMID: 21466434]
[46]
Kim, S.H.; Choo, G.S.; Yoo, E.S.; Woo, J.S.; Lee, J.H.; Han, S.H.; Jung, S.H.; Kim, H.J.; Jung, J.Y. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol. Lett., 2021, 21(6), 492.
[http://dx.doi.org/10.3892/ol.2021.12753] [PMID: 33968208]
[47]
Koltai, T.; Fliegel, L. Role of silymarin in cancer treatment: Facts, hypotheses, and questions. J. Evid.-Based Integr. Med., 2022, 27, 2515690x211068826.
[http://dx.doi.org/10.1177/2515690X211068826]
[48]
Singh, R.P.; Agarwal, R. Flavonoid antioxidant silymarin and skin cancer. Antioxid. Redox Signal., 2002, 4(4), 655-663.
[http://dx.doi.org/10.1089/15230860260220166] [PMID: 12230878]
[49]
Wu, T; Liu, W; Guo, W; Zhu, X Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells. Biomed. Pharmacother., 2016, 81, 460-467.
[http://dx.doi.org/10.1016/j.biopha.2016.04.039]
[50]
Yu, H.C.; Chen, L.J.; Cheng, K.C.; Li, Y.X.; Yeh, C.H.; Cheng, J.T. Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother. Res., 2012, 26(5), 709-715.
[http://dx.doi.org/10.1002/ptr.3618] [PMID: 22016029]
[51]
Zhu, W.; Zhang, J.S.; Young, C.Y. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 2001, 22(9), 1399-1403.
[http://dx.doi.org/10.1093/carcin/22.9.1399] [PMID: 11532861]
[52]
Delmas, D.; Xiao, J.; Vejux, A.; Aires, V. Silymarin and Cancer: A dual strategy in both in chemoprevention and chemosensitivity. Molecules, 2020, 25(9), 2009.
[http://dx.doi.org/10.3390/molecules25092009] [PMID: 32344919]
[53]
Křen, V.; Walterová, D. Silybin and silymarin - new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2005, 149(1), 29-41.
[http://dx.doi.org/10.5507/bp.2005.002] [PMID: 16170386]
[54]
Polyak, S.J.; Morishima, C.; Shuhart, M.C.; Wang, C.C.; Liu, Y.; Lee, D.Y.W. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology, 2007, 132(5), 1925-1936.
[http://dx.doi.org/10.1053/j.gastro.2007.02.038] [PMID: 17484885]
[55]
Saller, R; Brignoli, R; Melzer, J; Meier, R An updated systematic review with meta-analysis for the clinical evidence of silymarin. Forschende Komplementarmedizin (2006), 2008, 15(1), 9-20.
[http://dx.doi.org/10.1159/000113648]
[56]
Zhong, X.; Zhu, Y.; Lu, Q.; Zhang, J.; Ge, Z.; Zheng, S. Silymarin causes caspases activation and apoptosis in K562 leukemia cells through inactivation of Akt pathway. Toxicology, 2006, 227(3), 211-216.
[http://dx.doi.org/10.1016/j.tox.2006.07.021] [PMID: 16949716]
[57]
Moher, D; Liberati, A; Tetzlaff, J; Altman, DG Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med., 2009, 151(4), 264-269.
[58]
Tiwari, P.; Kumar, A.; Ali, M.; Mishra, K.P. Radioprotection of plasmid and cellular DNA and Swiss mice by silibinin. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2010, 695(1-2), 55-60.
[http://dx.doi.org/10.1016/j.mrgentox.2009.11.007] [PMID: 19945544]
[59]
Son, Y.; Lee, H.J.; Rho, J.K.; Chung, S.Y.; Lee, C.G.; Yang, K.; Kim, S.H.; Lee, M.; Shin, I.S.; Kim, J.S. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer. BMC Pulm. Med., 2015, 15(1), 68.
[http://dx.doi.org/10.1186/s12890-015-0055-6] [PMID: 26143275]
[60]
Adhikari, M.; Arora, R. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity. Environ. Toxicol., 2016, 31(6), 641-654.
[http://dx.doi.org/10.1002/tox.22076] [PMID: 25411116]
[61]
Ali, S.; Shaikh, F.; Abbas, K.; Iftikhar, A.; Shaikh, B. Silymarin ameliorates radiation sickness and weight loss: An experimental study on rodents. J. Liaquat. Uni. Med. Health Sci., 2013, 16(4), 222-227.
[62]
Read, G.H.; Bailleul, J.; Vlashi, E.; Kesarwala, A.H. Metabolic response to radiation therapy in cancer. Mol. Carcinog., 2022, 61(2), 200-224.
[http://dx.doi.org/10.1002/mc.23379] [PMID: 34961986]
[63]
Langius, J A E.; Bakker, S.; Rietveld, D.H.F.; Kruizenga, H.M.; Langendijk, J.A.; Weijs, P.J.M.; Leemans, C.R. Critical weight loss is a major prognostic indicator for disease-specific survival in patients with head and neck cancer receiving radiotherapy. Br. J. Cancer, 2013, 109(5), 1093-1099.
[http://dx.doi.org/10.1038/bjc.2013.458] [PMID: 23928661]
[64]
Lau, S.K.M.; Iyengar, P. Implications of weight loss for cancer patients receiving radiotherapy. Curr. Opin. Support. Palliat. Care, 2017, 11(4), 261-265.
[http://dx.doi.org/10.1097/SPC.0000000000000298] [PMID: 28914642]
[65]
Nourissat, A; Bairati, I; Fortin, A; Gélinas, M; Nabid, A; Brochet, F; Têtu, B; Meyer, F Factors associated with weight loss during radiotherapy in patients with stage I or II head and neck cancer. Supportive Care Cancer, 2012, 20(3), 591-599.
[http://dx.doi.org/10.1007/s00520-011-1132-x]
[66]
György, I.; Antus, S.; Blázovics, A.; Földiák, G. Substituent effects in the free radical reactions of silybin: radiation-induced oxidation of the flavonoid at neutral pH. Int. J. Radiat. Biol., 1992, 61(5), 603-609.
[http://dx.doi.org/10.1080/09553009214551411] [PMID: 1349624]
[67]
Haková, H.; Mišúrová, E. The effect of silymarin and gamma radiation on nucleic acids in rat organs. J. Pharm. Pharmacol., 2011, 45(10), 910-912.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05619.x] [PMID: 7507163]
[68]
El-Shennawy, H.; El Shahat, A.; Ahmed, A.; Abdelaziz, N. Ameliorative effect of silymarin against radiation-induced oxidative stress in the liver of male rats. Pak. J. Zool., 2016, 48(6), 1905-1909.
[69]
Abdelmageed Marzook, E.; Abdel-Aziz, A.F.; Abd El-Moneim, A.E.; Mansour, H.A.; Atia, K.S.; Salah, N.A. MicroRNA-122 expression in hepatotoxic and γ-irradiated rats pre-treated with naringin and silymarin. J. Radiat. Res. Appl. Sci., 2020, 13(1), 38-46.
[http://dx.doi.org/10.1080/16878507.2019.1695392]
[70]
Ramadan, L.A.; Roushdy, H.M.; Abu Senna, G.M.; Amin, N.E.; El-Deshw, O.A. Radioprotective effect of silymarin against radiation induced hepatotoxicity. Pharmacol. Res., 2002, 45(6), 447-454.
[http://dx.doi.org/10.1006/phrs.2002.0990] [PMID: 12162944]
[71]
Kim, J.S.; Han, N.K.; Kim, S.H.; Lee, H.J. Silibinin attenuates radiation-induced intestinal fibrosis and reverses epithelial-to-mesenchymal transition. Oncotarget, 2017, 8(41), 69386-69397.
[http://dx.doi.org/10.18632/oncotarget.20624] [PMID: 29050211]
[72]
Elyasi, S.; Hosseini, S.; Niazi Moghadam, M.R.; Aledavood, S.A.; Karimi, G. Effect of oral silymarin administration on prevention of radiotherapy induced mucositis: a randomized, double-blinded, placebo-controlled clinical trial. Phytother. Res., 2016, 30(11), 1879-1885.
[http://dx.doi.org/10.1002/ptr.5704] [PMID: 27555604]
[73]
Mahmoud, A.Z.; Ibrahim, H.A.; El-Sawi, M.R.; Habza, M.N. Effects of silymarin and mesenchymal stem cells on hematological and some biochemical changes induced by gamma radiation in albino rats. Int. J. Radiat. Biol., 2020, 96(2), 220-227.
[http://dx.doi.org/10.1080/09553002.2020.1689438] [PMID: 31692407]
[74]
Karri, V.; Gowthamarajan, K.; Satish Kumar, M.; Rajkumar, M. Multiple biological actions of curcumin in the management of diabetic foot ulcer complications: a systematic review. Trop. Med. Surg., 2015, 3(179), 2.
[75]
Salah Noori, R.; Abdul-RedhaIsmaiel, M. Relationship between oxidative stress and the blood iron concentration and antioxidant status in major ß-thalassemia in Iraq. Arch. Razi Inst., 2022, 77(1), 187-198.
[PMID: 35891728]
[76]
Marzban, M.; Anjamshoa, M.; Jafari, P.; Masoumi, H.; Ahadi, R.; Fatehi, D. Effects of gamma rays on rat testis tissue according to the morphological parameters and immunohistochemistry: radioprotective role of silymarin. Electron. Physician, 2017, 9(6), 4524-4532.
[http://dx.doi.org/10.19082/4524] [PMID: 28848626]
[77]
Fatehi, D.; Mohammadi, M.; Shekarchi, B.; Shabani, A.; Seify, M.; Rostamzadeh, A. Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. J. Photochem. Photobiol. B, 2018, 178, 489-495.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.12.004] [PMID: 29232573]
[78]
Adhikari, M.; Dhaker, A.; Adhikari, J.; Ivanov, V.; Singh, V.; Chawla, R.; Kumar, R.; Sharma, R.; Karamalakova, Y.; Gadjeva, V.; Arora, R. In vitro studies on radioprotective efficacy of silymarin against γ-irradiation. Int. J. Radiat. Biol., 2013, 89(3), 200-211.
[http://dx.doi.org/10.3109/09553002.2013.741285] [PMID: 23078259]
[79]
Abdel-Magied, N.; Elkady, A.A. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp. Mol. Pathol., 2019, 111, 104299.
[http://dx.doi.org/10.1016/j.yexmp.2019.104299] [PMID: 31442446]
[80]
Mohamed, M.A.E.H.; Mohammed, H.S.; Mostafa, S.A.; Ibrahim, M.T. Protective effects of Saraca indica L. leaves extract (family Fabaceae) against gamma irradiation induced injury in the kidney of female albino rats. Environ. Toxicol., 2021, 36(4), 506-519.
[http://dx.doi.org/10.1002/tox.23056] [PMID: 33166054]
[81]
Becker-Schiebe, M.; Mengs, U.; Schaefer, M.; Bulitta, M.; Hoffmann, W. Topical use of a silymarin-based preparation to prevent radiodermatitis : Results of a prospective study in breast cancer patients. Strahlenther. Onkol., 2011, 187(8), 485-491.
[http://dx.doi.org/10.1007/s00066-011-2204-z] [PMID: 21786113]
[82]
Karbasforooshan, H.; Hosseini, S.; Elyasi, S.; Fani Pakdel, A.; Karimi, G. Topical silymarin administration for prevention of acute radiodermatitis in breast cancer patients: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res., 2019, 33(2), 379-386.
[http://dx.doi.org/10.1002/ptr.6231] [PMID: 30479044]
[83]
Paul, R.; Mukkadan, J. Modulation of blood glucose, oxidative stress, and anxiety level by controlled vestibular stimulation in prediabetes. J. Nat. Sci. Biol. Med., 2020, 11, 111-117.
[84]
Xavier, J.; Farias, C.P.; Soares, M.S.P.; Silveira, GdO.; Spanevello, RM.; Yonamine, M.; Gamaro, GD.; Carvalho, HWd.; Cognato, GdP. Ayahuasca prevents oxidative stress in a rat model of depression elicited by unpredictable chronic mild stress. Arch. Clin. Psychiatry (São Paulo), 2021, 48, 90-98.
[85]
Sangeetha, T.; Chen, Y.; Sasidharan, S. Oxidative stress and aging and medicinal plants as antiaging agents. J. Complement. Med. Res., 2020, 11(3), 01.
[http://dx.doi.org/10.5455/jcmr.2020.11.03.01]
[86]
AlAmeri, A.A.; ALMashhedy, LA The Association between Adipolin and Oxidative Stress for Diabetic Female Type II. Ann. Rom. Soc. Cell Biol., 2021, 25(6), 1348-1357.
[87]
Sheikholeslami, S.; Aryafar, T.; Abedi-Firouzjah, R.; Banaei, A.; Dorri-Giv, M.; Zamani, H.; Ataei, G.; Majdaeen, M.; Farhood, B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci., 2021, 281, 119721.
[http://dx.doi.org/10.1016/j.lfs.2021.119721] [PMID: 34146555]
[88]
Barjaktarovic, Z.; Schmaltz, D.; Shyla, A.; Azimzadeh, O.; Schulz, S.; Haagen, J.; Dörr, W.; Sarioglu, H.; Schäfer, A.; Atkinson, M.J.; Zischka, H.; Tapio, S. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One, 2011, 6(12), e27811.
[http://dx.doi.org/10.1371/journal.pone.0027811] [PMID: 22174747]
[89]
Kim, G.J.; Fiskum, G.M.; Morgan, W.F. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res., 2006, 66(21), 10377-10383.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3036] [PMID: 17079457]
[90]
Vaiserman, A.M.; Lushchak, O.V.; Koliada, A.K. Anti-aging pharmacology: Promises and pitfalls. Ageing Res. Rev., 2016, 31, 9-35.
[http://dx.doi.org/10.1016/j.arr.2016.08.004] [PMID: 27524412]
[91]
Wu, X.; Ji, H.; Wang, Y.; Gu, C.; Gu, W.; Hu, L.; Zhu, L. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid. Med. Cell. Longev., 2019, 2019, 4087298.
[http://dx.doi.org/10.1155/2019/4087298] [PMID: 30755784]
[92]
Yahyapour, R; Motevaseli, E; Rezaeyan, A; Abdollahi, H; Farhood, B; Cheki, M; Rezapoor, S; Shabeeb, D; Musa, AE; Najafi, M Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin. Transl. Oncol., 2018, 20(8), 975-988.
[93]
Hasan Kadhim, A.; Shamkhi Noor, A.; Amer Ali, M. The effectiveness of biotin (vitamin B7) added to the diet in improving the efficiency of productivity, and some physiological traits for broiler chickens (ross-308) exposed to oxidative stress. Arch. Razi Inst., 2022, 77(5), 1805-1811.
[94]
Varadhan, S.; Venkatachalam, R.; Perumal, S.; Ayyamkulamkara, S. Evaluation of oxidative stress parameters and antioxidant status in coronary artery disease patients. Arch. Razi Inst., 2022, 77(2), 853-859.
[95]
Said, R.S.; Mohamed, H.A.; Kassem, D.H. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology, 2020, 442, 152536.
[http://dx.doi.org/10.1016/j.tox.2020.152536] [PMID: 32649955]
[96]
El-Dein, E.; Anees, L.M.; Aly, S.M.E. Effects of α-lipoic acid on γ-radiation and lindane-induced heart toxicity in rats. Pak. J. Zool., 2016, 48(5), 734.
[97]
Winther, F.Ø. X-ray irradiation of the inner ear of the guinea pig. An electron microscopic study of the degenerating outer hair cells of the organ of Corti. Acta Otolaryngol., 1970, 69(1-6), 61-76.
[http://dx.doi.org/10.3109/00016487009123336] [PMID: 5446609]
[98]
Sekine, S.; Ichijo, H. Mitochondrial proteolysis: Its emerging roles in stress responses. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(2), 274-280.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.012] [PMID: 25459516]
[99]
Kidd, PM Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern. Med. Rev., 2009, 14(3), 226-246.
[100]
Sheweita, S.A.; Al-Shora, S.; Hassan, M. Effects of benzo[a]pyrene as an environmental pollutant and two natural antioxidants on biomarkers of reproductive dysfunction in male rats. Environ. Sci. Pollut. Res. Int., 2016, 23(17), 17226-17235.
[http://dx.doi.org/10.1007/s11356-016-6934-4] [PMID: 27221463]
[101]
Müzes, G.; Deák, G.; Láng, I.; Nékám, K.; Niederland, V.; Fehér, J. Effect of silimarin (Legalon) therapy on the antioxidant defense mechanism and lipid peroxidation in alcoholic liver disease (double blind protocol). Orv. Hetil., 1990, 131(16), 863-866.
[PMID: 2345633]
[102]
Ligeret, H.; Brault, A.; Vallerand, D.; Haddad, Y.; Haddad, P.S. Antioxidant and mitochondrial protective effects of silibinin in cold preservation–warm reperfusion liver injury. J. Ethnopharmacol., 2008, 115(3), 507-514.
[http://dx.doi.org/10.1016/j.jep.2007.10.024] [PMID: 18061382]
[103]
Yardım, A.; Kucukler, S.; Özdemir, S.; Çomaklı, S.; Caglayan, C.; Kandemir, F.M.; Çelik, H. Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Gene, 2021, 769, 145239.
[http://dx.doi.org/10.1016/j.gene.2020.145239] [PMID: 33069805]
[104]
Rolo, AP; Oliveira, PJ; Moreno, AJ; Palmeira, CM Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC. Hepatol. Res., 2003, 26(3), 217-224.
[http://dx.doi.org/10.1016/S1386-6346(03)00108-6]
[105]
Dong, Y.; Tu, J.; Zhou, Y.; Zhou, X.; Xu, B.; Zhu, S.Y. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacogn. Mag., 2014, 10(37), 92.
[http://dx.doi.org/10.4103/0973-1296.127353] [PMID: 24914315]
[106]
Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051.
[http://dx.doi.org/10.1016/j.lfs.2020.118051] [PMID: 32634426]
[107]
Smaili, S.S.; Hsu, Y.T.; Carvalho, A.C.; Rosenstock, T.R.; Sharpe, J.C.; Youle, R.J. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Brazil. Med. Biol. Res., 2003, 36(2), 183-190.
[108]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241.
[http://dx.doi.org/10.1016/j.lfs.2019.05.009] [PMID: 31077716]
[109]
Akbari-Kordkheyli, V.; Abbaszadeh-Goudarzi, K.; Nejati-Laskokalayeh, M.; Zarpou, S.; Khonakdar-Tarsi, A. The protective effects of silymarin on ischemia-reperfusion injuries: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(9), 968-976.
[PMID: 31807239]
[110]
Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Slominski, A. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes. J. Pineal Res., 2008, 44(4), 397-407.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00542.x] [PMID: 18086147]
[111]
Chao, C.; Saito, S.; Anderson, C.W.; Appella, E.; Xu, Y. Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 11936-11941.
[http://dx.doi.org/10.1073/pnas.220252297] [PMID: 11035798]
[112]
Jänicke, R.U.; Sprengart, M.L.; Wati, M.R.; Porter, A.G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem., 1998, 273(16), 9357-9360.
[http://dx.doi.org/10.1074/jbc.273.16.9357] [PMID: 9545256]
[113]
Gondo, H.K. The effect of spirulina on apoptosis through the caspase-3 pathway in a Preeclamptic Wistar rat model. J. Nat. Sci. Biol. Med., 2021, 12(3), 280-284.
[114]
Shi, W.; Hou, X.; Bao, X.; Hou, W.; Jiang, X.; Ma, L.; Jiang, X.; Dong, L. Mechanism and protection of radiotherapy induced sensorineural hearing loss for head and neck cancer. BioMed Res. Int., 2021, 2021, 3548706.
[http://dx.doi.org/10.1155/2021/3548706] [PMID: 34970625]
[115]
McCubrey, J.A.; LaHair, M.M.; Franklin, R.A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal., 2006, 8(9-10), 1775-1789.
[http://dx.doi.org/10.1089/ars.2006.8.1775] [PMID: 16987031]
[116]
Kholodenko, B.N.; Birtwistle, M.R. Four-dimensional dynamics of MAPK information-processing systems. Wiley Interdiscip. Rev. Syst. Biol. Med., 2009, 1(1), 28-44.
[http://dx.doi.org/10.1002/wsbm.16] [PMID: 20182652]
[117]
Rodríguez-Berriguete, G; Fraile, B; Martínez-Onsurbe, P; Olmedilla, G; Paniagua, R; Royuela, M MAP kinases and prostate cancer. J. Signal. Transduc., 2012, 2012, 169170.
[http://dx.doi.org/10.1155/2012/169170]
[118]
Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer, 2014, 120(22), 3446-3456.
[http://dx.doi.org/10.1002/cncr.28864] [PMID: 24948110]
[119]
Johnson, G.L.; Stuhlmiller, T.J.; Angus, S.P.; Zawistowski, J.S.; Graves, L.M. Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin. Cancer Res., 2014, 20(10), 2516-2522.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1081] [PMID: 24664307]
[120]
Brown, L.; Benchimol, S. The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis. J. Biol. Chem., 2006, 281(7), 3832-3840.
[http://dx.doi.org/10.1074/jbc.M507951200] [PMID: 16330547]
[121]
Kim, J.H.; Jung, M.H.; Kim, J.P.; Kim, H.J.; Jung, J.H.; Hahm, J.R.; Kang, K.M.; Jeong, B.K.; Woo, S.H. Alpha lipoic acid attenuates radiation-induced oral mucositis in rats. Oncotarget, 2017, 8(42), 72739-72747.
[http://dx.doi.org/10.18632/oncotarget.20286] [PMID: 29069822]
[122]
Kim, J.H.; Kim, K.M.; Jung, M.H.; Jung, J.H.; Kang, K.M.; Jeong, B.K.; Kim, J.P.; Park, J.J.; Woo, S.H. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats. Oncotarget, 2016, 7(20), 29143-29153.
[http://dx.doi.org/10.18632/oncotarget.8661] [PMID: 27072584]
[123]
Qiu, X.; Dong, K.; Guan, J.; He, J. Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int. Immunopharmacol., 2020, 84, 106517.
[http://dx.doi.org/10.1016/j.intimp.2020.106517] [PMID: 32361189]
[124]
Sherif, I.O.; Al-Gayyar, M.M.H. Antioxidant, anti-inflammatory and hepatoprotective effects of silymarin on hepatic dysfunction induced by sodium nitrite. Eur. Cytokine Netw., 2013, 24(3), 114-121.
[http://dx.doi.org/10.1684/ecn.2013.0341] [PMID: 24225033]
[125]
Song, Z.; Song, M.; Lee, D.Y.W.; Liu, Y.; Deaciuc, I.V.; McClain, C.J. Silymarin prevents palmitate-induced lipotoxicity in HepG2 cells: Involvement of maintenance of Akt kinase activation. Basic Clin. Pharmacol. Toxicol., 2007, 101(4), 262-268.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00116.x] [PMID: 17845508]
[126]
Aghazadeh, S; Amini, R; Yazdanparast, R; Ghaffari, SH Anti-apoptotic and anti-inflammatory effects of Silybum marianum in treatment of experimental steatohepatitis. Exper. Toxicol. Pathol., 2011, 63(6), 569-574.
[http://dx.doi.org/10.1016/j.etp.2010.04.009]
[127]
Kandemir, F.M.; Kucukler, S.; Caglayan, C.; Gur, C.; Batil, A.A.; Gülçin, İ. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J. Food Biochem., 2017, 41(5), e12398.
[http://dx.doi.org/10.1111/jfbc.12398]
[128]
Katiyar, S.K.; Roy, A.M.; Baliga, M.S. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther., 2005, 4(2), 207-216.
[http://dx.doi.org/10.1158/1535-7163.207.4.2] [PMID: 15713892]
[129]
Patel, N.; Joseph, C.; Corcoran, G.B.; Ray, S.D. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver. Toxicol. Appl. Pharmacol., 2010, 245(2), 143-152.
[http://dx.doi.org/10.1016/j.taap.2010.02.002] [PMID: 20144634]
[130]
Manna, SK; Mukhopadhyay, A; Van, NT; Aggarwal, BB Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J. Immunol., 1999, 163(12), 6800-6809.
[131]
Kim, E.J.; Kim, J.; Lee, M.Y.; Sudhanva, M.S.; Devakumar, S.; Jeon, Y.J. Silymarin inhibits cytokine-stimulated pancreatic beta cells by blocking the ERK1/2 pathway. Biomol. Ther. (Seoul), 2014, 22(4), 282-287.
[http://dx.doi.org/10.4062/biomolther.2014.072] [PMID: 25143805]
[132]
Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950.
[http://dx.doi.org/10.1080/17425255.2018.1513492] [PMID: 30118646]
[133]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[134]
Jeong, B.K.; Song, J.H.; Jeong, H.; Choi, H.S.; Jung, J.H.; Hahm, J.R.; Woo, S.H.; Jung, M.H.; Choi, B.H.; Kim, J.H.; Kang, K.M. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget, 2016, 7(12), 15105-15117.
[http://dx.doi.org/10.18632/oncotarget.7874] [PMID: 26943777]
[135]
Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5(1), 9.
[http://dx.doi.org/10.1186/s40779-018-0156-7] [PMID: 29554942]
[136]
Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol., 2012, 2, 98.
[http://dx.doi.org/10.3389/fimmu.2011.00098] [PMID: 22566887]
[137]
Waetzig, V.; Czeloth, K.; Hidding, U.; Mielke, K.; Kanzow, M.; Brecht, S.; Goetz, M.; Lucius, R.; Herdegen, T.; Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 2005, 50(3), 235-246.
[http://dx.doi.org/10.1002/glia.20173] [PMID: 15739188]
[138]
Lee, Y.B.; Schrader, J.W.; Kim, S.U. p38 map kinase regulates tnf-α production in human astrocytes and microglia by multiple mechanisms. Cytokine, 2000, 12(7), 874-880.
[http://dx.doi.org/10.1006/cyto.2000.0688] [PMID: 10880231]
[139]
Min, A.K.; Kim, M.K.; Seo, H.Y.; Kim, H.S.; Jang, B.K.; Hwang, J.S.; Choi, H.S.; Lee, K.U.; Park, K.G.; Lee, I.K. Alpha-lipoic acid inhibits hepatic PAI-1 expression and fibrosis by inhibiting the TGF-β signaling pathway. Biochem. Biophys. Res. Commun., 2010, 393(3), 536-541.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.050] [PMID: 20153726]
[140]
Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci., 2015, 8, 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[141]
Saliou, C.; Rihn, B.; Cillard, J.; Okamoto, T.; Packer, L. Selective inhibition of NF-kappaB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett., 1998, 440(1-2), 8-12.
[http://dx.doi.org/10.1016/S0014-5793(98)01409-4] [PMID: 9862414]
[142]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[143]
Ramasamy, K.; Agarwal, R. Multitargeted therapy of cancer by silymarin. Cancer Lett., 2008, 269(2), 352-362.
[http://dx.doi.org/10.1016/j.canlet.2008.03.053] [PMID: 18472213]
[144]
Abdel-Raheem, I.T.; Khedr, N.F. Renoprotective effects of montelukast, a cysteinyl leukotriene receptor antagonist, against methotrexate-induced kidney damage in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(4), 341-353.
[http://dx.doi.org/10.1007/s00210-013-0949-x] [PMID: 24363042]
[145]
Trivedi, PP; Tripathi, DN; Jena, GB Hesperetin protects testicular toxicity of doxorubicin in rat: role of NFκB, p38 and caspase-3. Food Chem. Toxicol., 2011, 49(4), 838-847.
[http://dx.doi.org/10.1016/j.fct.2010.12.005]
[146]
Moutabian, H.; Majdaeen, M.; Ghahramani-Asl, R.; Yadollahi, M.; Gharepapagh, E.; Ataei, G.; Falahatpour, Z.; Bagheri, H.; Farhood, B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: With a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int., 2022, 22(1), 142.
[http://dx.doi.org/10.1186/s12935-022-02561-7] [PMID: 35366874]
[147]
Raj, V.; Bhadauria, A.S.; Singh, A.K.; Kumar, U.; Rai, A.; Keshari, A.K.; Kumar, P.; Kumar, D.; Maity, B.; Nath, S.; Prakash, A.; Ansari, K.M.; Jat, J.L.; Saha, S. Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling. Cytokine, 2019, 118, 144-159.
[http://dx.doi.org/10.1016/j.cyto.2018.03.026] [PMID: 29580751]
[148]
Banerjee, P.; Kumar, T.; Sarangi, S.C.; Meetei, U.D.; Devi, A.S.; Kumar, R. Anti-inflammatory potential of aqueous extract of Elsoltzia stachyodes on experimental models of inflammation in rats. J. Nat. Sci. Biol. Med., 2021, 12(1), 104.
[149]
Kim, D.; Choi, Y.; Ki, Y.; Cho, K.; Choi, Y.; Kim, W. Topically applied melatonin ameliorates radiation-induced skin fibrosis in mice. Int. J. Radiat. Res., 2019, 17(4), 617-624.
[150]
Hussain, S.A.; Jassim, N.A.; Numan, I.T.; Al-Khalifa, I.I.; Abdullah, T.A. Anti-inflammatory activity of silymarin in patients with knee osteoarthritis. A comparative study with piroxicam and meloxicam. Saudi Med. J., 2009, 30(1), 98-103.
[PMID: 19139781]
[151]
Hussain, S.A.; Mortada, A.H.; Jasim, N.A.; Gorial, F.I. Silibinin improves the effects of methotrexate in patients with active rheumatoid arthritis: Pilot clinical study. Oman Med. J., 2016, 31(4), 263-269.
[http://dx.doi.org/10.5001/omj.2016.52] [PMID: 27403238]
[152]
Zhao, F.; Shi, D.; Li, T.; Li, L.; Zhao, M. Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro. Clin. Exp. Pharmacol. Physiol., 2015, 42(9), 988-998.
[http://dx.doi.org/10.1111/1440-1681.12448] [PMID: 26173462]
[153]
Morishima, C; Shuhart, MC; Wang, CC; Paschal, DM; Apodaca, MC; Liu, Y; Sloan, DD; Graf, TN; Oberlies, NH; Lee, DY Silymarin inhibits in vitro T-cell proliferation and cytokine production in hepatitis C virus infection. Gastroenterology, 2010, 138(2), 671-681-e671-672.
[http://dx.doi.org/10.1053/j.gastro.2009.09.021]
[154]
De La Puerta, R.; Martinez, E.; Bravo, L.; Ahumada, M.C. Effect of silymarin on different acute inflammation models and on leukocyte migration. J. Pharm. Pharmacol., 2011, 48(9), 968-970.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb06014.x] [PMID: 8910865]
[155]
Jin, Y.; Zhao, X.; Zhang, H.; Li, Q.; Lu, G.; Zhao, X. Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury. Exp. Ther. Med., 2016, 12(2), 1135-1140.
[http://dx.doi.org/10.3892/etm.2016.3370] [PMID: 27446333]
[156]
Li, CC; Hsiang, CY; Wu, SL; Ho, TY Identification of novel mechanisms of silymarin on the carbon tetrachloride-induced liver fibrosis in mice by nuclear factor-κB bioluminescent imaging-guided transcriptomic analysis. Food Chem. Toxicol., 2012, 50(5), 1568-1575.
[http://dx.doi.org/10.1016/j.fct.2012.02.025]
[157]
Gharagozloo, M.; Velardi, E.; Bruscoli, S.; Agostini, M.; Di Sante, M.; Donato, V.; Amirghofran, Z.; Riccardi, C. Silymarin suppress CD4+ T cell activation and proliferation: Effects on NF-κB activity and IL-2 production. Pharmacol. Res., 2010, 61(5), 405-409.
[http://dx.doi.org/10.1016/j.phrs.2009.12.017] [PMID: 20056147]
[158]
Trappoliere, M.; Caligiuri, A.; Schmid, M.; Bertolani, C.; Failli, P.; Vizzutti, F.; Novo, E.; Manzano, C.; Marra, F.; Loguercio, C.; Pinzani, M. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J. Hepatol., 2009, 50(6), 1102-1111.
[http://dx.doi.org/10.1016/j.jhep.2009.02.023] [PMID: 19398228]
[159]
Arafa Keshk, W.; Zahran, S.M.; Katary, M.A.; Abd-Elaziz Ali, D. Modulatory effect of silymarin on nuclear factor-erythroid-2-related factor 2 regulated redox status, nuclear factor-κB mediated inflammation and apoptosis in experimental gastric ulcer. Chem. Biol. Interact., 2017, 273, 266-272.
[http://dx.doi.org/10.1016/j.cbi.2017.06.022] [PMID: 28648817]
[160]
Younis, N.N.; Shaheen, M.A.; Mahmoud, M.F. Silymarin preconditioning protected insulin resistant rats from liver ischemia-reperfusion injury: role of endogenous H2S. J. Surg. Res., 2016, 204(2), 398-409.
[http://dx.doi.org/10.1016/j.jss.2016.04.069] [PMID: 27565076]
[161]
Gillessen, A.; Schmidt, H.H.J. Silymarin as supportive treatment in liver diseases: A Narrative Review. Adv. Ther., 2020, 37(4), 1279-1301.
[http://dx.doi.org/10.1007/s12325-020-01251-y] [PMID: 32065376]
[162]
Khazaei, R.; Seidavi, A.; Bouyeh, M. A review on the mechanisms of the effect of silymarin in milk thistle ( Silybum marianum ) on some laboratory animals. Vet. Med. Sci., 2022, 8(1), 289-301.
[http://dx.doi.org/10.1002/vms3.641] [PMID: 34599793]
[163]
Nambiar, D.K.; Rajamani, P.; Singh, R.P. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells. Biochem. Biophys. Res. Commun., 2015, 456(1), 262-268.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.069] [PMID: 25446081]
[164]
Prack Mc Cormick, B.; Langle, Y.; Belgorosky, D.; Vanzulli, S.; Balarino, N.; Sandes, E.; Eiján, A.M. Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer. J. Cell. Biochem., 2018, 119(7), 5402-5412.
[http://dx.doi.org/10.1002/jcb.26693] [PMID: 29363820]
[165]
Nambiar, D.K.; Rajamani, P.; Deep, G.; Jain, A.K.; Agarwal, R.; Singh, R.P. Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling. Mol. Cancer Ther., 2015, 14(12), 2722-2734.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0348] [PMID: 26516160]
[166]
Dheeraj, A.; Tailor, D.; Singh, S.P.; Singh, R.P. Anticancer attributes of silibinin: Chemo-and radiosensitization of cancer. In: Role of Nutraceuticals in Cancer Chemosensitization; Elsevier Amsterdam, 2018; pp. 199-220.
[http://dx.doi.org/10.1016/B978-0-12-812373-7.00010-3]
[167]
Soleimani, V.; Delghandi, P.S.; Moallem, S.A.; Karimi, G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res., 2019, 33(6), 1627-1638.
[http://dx.doi.org/10.1002/ptr.6361] [PMID: 31069872]
[168]
Bijak, M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism. Molecules, 2017, 22(11), 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]
[169]
Amawi, H.; Hussein, N.A.; Karthikeyan, C.; Manivannan, E.; Wisner, A.; Williams, F.E.; Samuel, T.; Trivedi, P.; Ashby, C.R., Jr; Tiwari, A.K. HM015k, a novel silybin derivative, multi-targets metastatic ovarian cancer cells and is safe in zebrafish toxicity studies. Front. Pharmacol., 2017, 8, 498.
[http://dx.doi.org/10.3389/fphar.2017.00498] [PMID: 28824426]
[170]
Kosina, P.; Kren, V.; Gebhardt, R.; Grambal, F.; Ulrichová, J.; Walterová, D. Antioxidant properties of silybin glycosides. Phytother. Res., 2002, 16(Suppl. 1), S33-S39.
[http://dx.doi.org/10.1002/ptr.796] [PMID: 11933137]
[171]
Dobiasová, S.; Řehořová, K.; Kučerová, D.; Biedermann, D.; Káňová, K.; Petrásková, L.; Koucká, K.; Václavíková, R.; Valentová, K.; Ruml, T. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants, 2020, 9(5), 455.
[http://dx.doi.org/10.3390/antiox9050455]
[172]
Simánek, V.; Kubisch, J.; Sedmera, P.; Halada, P.; Gazák, R.; Skottová, N.; Kren, V. Chemoenzymatic preparation of oligoglycosides of silybin, the flavonolignan from Silybum marianum. Heterocycles, 2001, 54(2), 901-915.
[http://dx.doi.org/10.3987/COM-00-S(I)89]
[173]
Škottová, N.; ŠVagera, Z.; Večeřa, R.; Urbánek, K.; Jegorov, A.; Šimánek, V. Pharmacokinetic study of iodine-labeled silibinins in rat. Pharmacol. Res., 2001, 44(3), 247-253.
[http://dx.doi.org/10.1006/phrs.2001.0854] [PMID: 11529693]
[174]
Plíšková, M.; Vondráček, J.; Křen, V.; Gažák, R.; Sedmera, P.; Walterová, D.; Psotová, J.; Šimánek, V.; Machala, M. Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology, 2005, 215(1-2), 80-89.
[http://dx.doi.org/10.1016/j.tox.2005.06.020] [PMID: 16076518]
[175]
Roubalová, L.; Dinkova-Kostova, A.T.; Biedermann, D.; Křen, V.; Ulrichová, J.; Vrba, J. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia, 2017, 119, 115-120.
[http://dx.doi.org/10.1016/j.fitote.2017.04.012] [PMID: 28450126]
[176]
Pyszková, M.; Biler, M.; Biedermann, D.; Valentová, K.; Kuzma, M.; Vrba, J.; Ulrichová, J.; Sokolová, R.; Mojović, M.; Popović-Bijelić, A.; Kubala, M.; Trouillas, P.; Křen, V.; Vacek, J. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med., 2016, 90, 114-125.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.014] [PMID: 26582372]
[177]
Yang, L.X.; Huang, K.X.; Li, H.B.; Gong, J.X.; Wang, F.; Feng, Y.B.; Tao, Q.F.; Wu, Y.H.; Li, X.K.; Wu, X.M.; Zeng, S.; Spencer, S.; Zhao, Y.; Qu, J. Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J. Med. Chem., 2009, 52(23), 7732-7752.
[http://dx.doi.org/10.1021/jm900735p] [PMID: 19673490]
[178]
Rajnochová Svobodová, A.; Gabrielová, E.; Ulrichová, J.; Zálešák, B.; Biedermann, D.; Vostálová, J. A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch. Dermatol. Res., 2019, 311(6), 477-490.
[http://dx.doi.org/10.1007/s00403-019-01928-7] [PMID: 31079190]
[179]
Drouet, S.; Doussot, J.; Garros, L.; Mathiron, D.; Bassard, S.; Favre-Réguillon, A.; Molinié, R.; Lainé, É.; Hano, C. Selective Synthesis of 3-O-Palmitoyl-Silybin, a New-to-nature flavonolignan with increased protective action against oxidative damages in lipophilic media. Molecules, 2018, 23(10), 2594.
[http://dx.doi.org/10.3390/molecules23102594] [PMID: 30309022]
[180]
Di Costanzo, A.; Angelico, R. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art. Molecules, 2019, 24(11), 2155.
[http://dx.doi.org/10.3390/molecules24112155] [PMID: 31181687]
[181]
He, J.; Hou, S.; Lu, W.; Zhu, L.; Feng, J. Preparation, pharmacokinetics and body distribution of silymarin-loaded solid lipid nanoparticles after oral administration. J. Biomed. Nanotechnol., 2007, 3(2), 195-202.
[http://dx.doi.org/10.1166/jbn.2007.024]
[182]
Yousaf, A.M.; Malik, U.R.; Shahzad, Y.; Mahmood, T.; Hussain, T. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: Preparation and in vitro characterization. J. Pharm. Anal., 2019, 9(1), 34-39.
[http://dx.doi.org/10.1016/j.jpha.2018.09.003] [PMID: 30740255]
[183]
Ibrahim, A.H.; Rosqvist, E.; Smått, J.H.; Ibrahim, H.M.; Ismael, H.R.; Afouna, M.I.; Samy, A.M.; Rosenholm, J.M. Formulation and optimization of lyophilized nanosuspension tablets to improve the physicochemical properties and provide immediate release of silymarin. Int. J. Pharm., 2019, 563, 217-227.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.064] [PMID: 30946894]
[184]
Liang, J.; Liu, Y.; Liu, J.; Li, Z.; Fan, Q.; Jiang, Z.; Yan, F.; Wang, Z.; Huang, P.; Feng, N. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J. Nanobiotechnol., 2018, 16(1), 64.
[http://dx.doi.org/10.1186/s12951-018-0391-9] [PMID: 30176941]
[185]
Yang, G.; Zhao, Y.; Feng, N.; Zhang, Y.; Liu, Y.; Dang, B. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J. Pharmaceut. Sci., 2015, 10(3), 194-202.
[http://dx.doi.org/10.1016/j.ajps.2014.12.001]
[186]
Nasr, S.S.; Nasra, M.M.A.; Hazzah, H.A.; Abdallah, O.Y. Mesoporous silica nanoparticles, a safe option for silymarin delivery: Preparation, characterization, and in vivo evaluation. Drug Deliv. Transl. Res., 2019, 9(5), 968-979.
[http://dx.doi.org/10.1007/s13346-019-00640-3] [PMID: 31001719]
[187]
Nagi, A.; Iqbal, B.; Kumar, S.; Sharma, S.; Ali, J.; Baboota, S. Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability. J. Drug Deliv. Sci. Technol., 2017, 40, 35-44.
[http://dx.doi.org/10.1016/j.jddst.2017.05.019]
[188]
Piazzini, V.; Rosseti, C.; Bigagli, E.; Luceri, C.; Bilia, A.; Bergonzi, M. Prediction of permeation and cellular transport of Silybum marianum extract formulated in a nanoemulsion by using PAMPA and Caco-2 cell models. Planta Med., 2017, 83(14/15), 1184-1193.
[http://dx.doi.org/10.1055/s-0043-110052] [PMID: 28472840]
[189]
Woo, J.S.; Kim, T.S.; Park, J.H.; Chi, S.C. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch. Pharm. Res., 2007, 30(1), 82-89.
[http://dx.doi.org/10.1007/BF02977782] [PMID: 17328246]
[190]
El-Far, M.; Salah, N.; Essam, A.; Abd El-Azim, A.O.; El-Sherbiny, I.M. Silymarin nanoformulation as potential anticancer agent in experimental Ehrlich ascites carcinoma-bearing animals. Nanomedicine (Lond.), 2018, 13(15), 1865-1858.
[http://dx.doi.org/10.2217/nnm-2017-0394] [PMID: 30136915]
[191]
Adhikari, M.; Arora, R. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 792, 1-11.
[http://dx.doi.org/10.1016/j.mrgentox.2015.08.006] [PMID: 26433256]
[192]
Azadpour, M.; Farajollahi, M.M.; Dariushnejad, H.; Varzi, A.M.; Varezardi, A.; Barati, M. Effects of synthetic silymarin-PLGA nanoparticles on M2 polarization and inflammatory cytokines in LPS-treated murine peritoneal macrophages. Iran. J. Basic Med. Sci., 2021, 24(10), 1446-1454.
[PMID: 35096304]
[193]
Mombeini, M.; Saki, G.; Khorsandi, L.; Bavarsad, N. Effects of silymarin-loaded nanoparticles on HT-29 human colon cancer cells. Medicina (Kaunas), 2018, 54(1), 1.
[http://dx.doi.org/10.3390/medicina54010001] [PMID: 30344232]
[194]
Hosseini, S.; Rezaei, S.; Moghaddam, M.R.N.; Elyasi, S.; Karimi, G. Evaluation of oral nano-silymarin formulation efficacy on prevention of radiotherapy induced mucositis: A randomized, double-blinded, placebo-controlled clinical trial. PharmaNutrition, 2021, 15, 100253.
[http://dx.doi.org/10.1016/j.phanu.2021.100253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy