Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

The Potential Prognostic, Diagnostic and Therapeutic Targets for Recurrent Arrhythmias in Patients with Coronary Restenosis and Reocclusions After Coronary Stenting

Author(s): Xia Li*, Dianxuan Guo, Wenhang Zhou, Youdong Hu, Hualan Zhou and Ying Chen

Volume 28, Issue 43, 2022

Published on: 09 December, 2022

Page: [3500 - 3512] Pages: 13

DOI: 10.2174/1381612829666221124110445

Price: $65

conference banner
Abstract

Background: The interplay of oxidative stress, proinflammatory microparticles, and proinflammatory cytokines in recurrent arrhythmias is unknown in elderly patients with coronary restenosis and reocclusions after coronary stenting.

Objective: This research sought to investigate the potential diagnostic and therapeutic targets for recurrent arrhythmias in patients with coronary restenosis and reocclusions after coronary stenting.

Methods: We examined whether oxidative stress, proinflammatory microparticles, and proinflammatory cytokines could have effects that lead to recurrent arrhythmias in elderly patients with coronary restenosis and reocclusions. We measured the levels of malondialdehyde (MDA), CD31 + endothelial microparticle (CD31 EMP), CD62E + endothelial microparticle (CD62E + EMP), high-sensitivity C-reactive protein (hs-CRP), interleukin- 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), as well as oxidized low-density lipoprotein (OX-LDL), and assessed the effects of relationship between oxidative stress, proinflammatory microparticles, and proinflammatory cytokines on recurrent atrial and ventricular arrhythmias in elderly patients with coronary restenosis and reocclusions after coronary stenting.

Results: The levels of CD31 + EMP, CD62E + EMP, MDA, hs-CRP, IL-1β, IL-6, IL-8, TNF-α and OX-LDL were found to be increased significantly in coronary restenosis + recurrent atrial arrhythmia group compared to without coronary restenosis and coronary restenosis + without recurrent atrial arrhythmia groups, respectively (P < 0.001). Patients in the coronary reocclusion + recurrent ventricular arrhythmia group also exhibited significantly increased levels of CD31 + EMP, CD62E + EMP, MDA, hs-CRP, IL-1β, IL-6, IL-8, TNF-α and OXLDL compared to without coronary reocclusion and coronary reocclusion + without recurrent ventricular arrhythmia groups, respectively (P < 0.001).

Conclusion: Proinflammatory microparticles, proinflammatory cytokines, and oxidative stress might act as potential targets for recurrent arrhythmias in patients with coronary restenosis and reocclusions after coronary stenting.

Keywords: Coronary stenting, recurrent arrhythmias, coronary restenosis, coronary reocclusions, inflammatory response, oxidative stress.

[1]
Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011; 31(1): 27-33.
[http://dx.doi.org/10.1161/ATVBAHA.110.218123] [PMID: 21160065]
[2]
Sheremata WA, Jy W, Delgado S, Minagar A, McLarty J, Ahn Y. Interferon-beta1a reduces plasma CD31 + endothelial microparticles (CD31 + EMP) in multiple sclerosis. J Neuroinflammation 2006; 3(1): 23.
[http://dx.doi.org/10.1186/1742-2094-3-23] [PMID: 16952316]
[3]
Nourshargh S, Krombach F, Dejana E. The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J Leukoc Biol 2006; 80(4): 714-8.
[http://dx.doi.org/10.1189/jlb.1105645] [PMID: 16857733]
[4]
Giannella A, Radu CM, Franco L, et al. Circulating levels and characterization of microparticles in patients with different degrees of glucose tolerance. Cardiovasc Diabetol 2017; 16(1): 118.
[http://dx.doi.org/10.1186/s12933-017-0600-0] [PMID: 28927403]
[5]
Wang Y, Liu J, Chen X, et al. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-кB and IL-1β signal pathways. J Cell Mol Med 2019; 23(1): 476-86.
[http://dx.doi.org/10.1111/jcmm.13950] [PMID: 30334371]
[6]
Antoniak S, Boltzen U, Eisenreich A, et al. Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro. J Thromb Haemost 2009; 7(5): 871-8.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03323.x] [PMID: 19228282]
[7]
Tramontano AF, Lyubarova R, Tsiakos J, Palaia T, DeLeon JR, Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm 2010; 2010: 1-8.
[http://dx.doi.org/10.1155/2010/250476] [PMID: 20634911]
[8]
Lee ST, Chu K, Jung KH, et al. Circulating CD62E + microparticles and cardiovascular outcomes. PLoS One 2012; 7(4): e35713.
[http://dx.doi.org/10.1371/journal.pone.0035713] [PMID: 22563392]
[9]
Babbitt DM, Diaz KM, Feairheller DL, et al. Endothelial activation microparticles and inflammation status improve with exercise training in african americans. Int J Hypertens 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/538017] [PMID: 23691280]
[10]
Yin Y, Han W, Cao Y. Association between activities of SOD, MDA and Na + -K + -ATPase in peripheral blood of patients with acute myocardial infarction and the complication of varying degrees of arrhythmia. Hellenic J Cardiol 2019; 60(6): 366-71.
[http://dx.doi.org/10.1016/j.hjc.2018.04.003] [PMID: 29702256]
[11]
Scridon A, Serban RC, Balan AI, et al. Atrial electrical remodeling induced by chronic ischemia and inflammation in patients with stable coronary artery disease. Chin J Physiol 2019; 62(1): 11-6.
[http://dx.doi.org/10.4103/CJP.CJP_2_19] [PMID: 30942194]
[12]
Pavlicek V, Kindermann I, Wintrich J, et al. Ventricular arrhythmias and myocardial inflammation: Long-term follow-up of patients with suspected myocarditis. Int J Cardiol 2019; 274: 132-7.
[http://dx.doi.org/10.1016/j.ijcard.2018.07.142] [PMID: 30122502]
[13]
Yang J, Yin H, Cao Y, et al. Arctigenin attenuates ischemia/reperfusion induced ventricular arrhythmias by decreasing oxidative stress in rats. Cell Physiol Biochem 2018; 49(2): 728-42.
[http://dx.doi.org/10.1159/000493038] [PMID: 30165360]
[14]
Yo CH, Lee SH, Chang SS, Lee MCH, Lee CC. Value of high-sensitivity C-reactive protein assays in predicting atrial fibrillation recurrence: A systematic review and meta-analysis. BMJ Open 2014; 4(2): e004418.
[http://dx.doi.org/10.1136/bmjopen-2013-004418] [PMID: 24556243]
[15]
Shomanova Z, Ohnewein B, Schernthaner C, et al. Classic and novel biomarkers as potential predictors of ventricular arrhythmias and sudden cardiac death. J Clin Med 2020; 9(2): 578.
[http://dx.doi.org/10.3390/jcm9020578] [PMID: 32093244]
[16]
Chen Y, Wu S, Li W, et al. Higher high-sensitivity C reactive protein is associated with future premature ventricular contraction: A community based prospective cohort study. Sci Rep 2018; 8(1): 5152.
[http://dx.doi.org/10.1038/s41598-018-22868-8] [PMID: 29581482]
[17]
Rider P, Carmi Y, Guttman O, et al. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 2011; 187(9): 4835-43.
[http://dx.doi.org/10.4049/jimmunol.1102048] [PMID: 21930960]
[18]
Eskan MA, Benakanakere MR, Rose BG, et al. Interleukin-1beta modulates proinflammatory cytokine production in human epithelial cells. Infect Immun 2008; 76(5): 2080-9.
[http://dx.doi.org/10.1128/IAI.01428-07] [PMID: 18332211]
[19]
Nadlonek N, Lee JH, Reece TB, et al. Interleukin-1 beta induces an inflammatory phenotype in human aortic valve interstitial cells through nuclear factor kappa Beta. Ann Thorac Surg 2013; 96(1): 155-62.
[http://dx.doi.org/10.1016/j.athoracsur.2013.04.013] [PMID: 23735716]
[20]
Pasquié JL, Sanders P, Hocini M, et al. Fever as a precipitant of idiopathic ventricular fibrillation in patients with normal hearts. J Cardiovasc Electrophysiol 2004; 15(11): 1271-6.
[http://dx.doi.org/10.1046/j.1540-8167.2004.04388.x] [PMID: 15574177]
[21]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10): a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[22]
Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006; 8(Suppl. 2): S3.
[http://dx.doi.org/10.1186/ar1917] [PMID: 16899107]
[23]
Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol 2015; 12(4): 230-43.
[http://dx.doi.org/10.1038/nrcardio.2015.2] [PMID: 25622848]
[24]
Asfaha S, Dubeykovskiy AN, Tomita H, et al. Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 2013; 144(1): 155-66.
[http://dx.doi.org/10.1053/j.gastro.2012.09.057] [PMID: 23041326]
[25]
Wang XM, Hamza M, Wu TX, Dionne RA. Upregulation of IL-6, IL-8 and CCL2 gene expression after acute inflammation: Correlation to clinical pain. Pain 2009; 142(3): 275-83.
[http://dx.doi.org/10.1016/j.pain.2009.02.001] [PMID: 19233564]
[26]
Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010; 20(2): 87-103.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10] [PMID: 21133840]
[27]
Lazzerini PE, Capecchi PL, El-Sherif N, Laghi-Pasini F, Boutjdir M. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies. J Am Heart Assoc 2018; 7(22): e010595.
[http://dx.doi.org/10.1161/JAHA.118.010595] [PMID: 30571503]
[28]
Bittar MN, Carey JA, Barnard JB, et al. Tumor necrosis factor alpha influences the inflammatory response after coronary surgery. Ann Thorac Surg 2006; 81(1): 132-7.
[http://dx.doi.org/10.1016/j.athoracsur.2005.07.037] [PMID: 16368349]
[29]
Zhu Z, Li J, Zhang X. Astragaloside IV protects against oxidized low-Density lipoprotein (ox-LDL)-induced endothelial cell injury by reducing oxidative stress and inflammation. Med Sci Monit 2019; 25: 2132-40.
[http://dx.doi.org/10.12659/MSM.912894] [PMID: 30901320]
[30]
Mountantonakis S, Deo R. Biomarkers in atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. Cardiovasc Ther 2012; 30(2): e74-80.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00238.x] [PMID: 21070616]
[31]
Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A 2010; 77A(6): 502-14.
[http://dx.doi.org/10.1002/cyto.a.20886] [PMID: 20235276]
[32]
Carballo D, Noble S, Carballo S, et al. Biomarkers and arrhythmia recurrence following radiofrequency ablation of atrial fibrillation. J Int Med Res 2018; 46(12): 5183-94.
[http://dx.doi.org/10.1177/0300060518793807] [PMID: 30178684]
[33]
La Fratta I, Tatangelo R, Campagna G, et al. The plasmatic and salivary levels of IL-1β, IL-18 and IL-6 are associated to emotional difference during stress in young male. Sci Rep 2018; 8(1): 3031-41.
[http://dx.doi.org/10.1038/s41598-018-21474-y] [PMID: 29445205]
[34]
Borilova Linhartova P, Kavrikova D, Tomandlova M, et al. Differences in interleukin-8 plasma levels between diabetic patients and healthy individuals independently on their periodontal status. Int J Mol Sci 2018; 19(10): 3214.
[http://dx.doi.org/10.3390/ijms19103214] [PMID: 30340321]
[35]
Kondkar A, Azad TA, Almobarak F, Kalantan H, Al-Obeidan S, Abu-Amero K. Elevated levels of plasma tumor necrosis factor alpha in patients with pseudoexfoliation glaucoma. Clin Ophthalmol 2018; 12: 153-9.
[http://dx.doi.org/10.2147/OPTH.S155168] [PMID: 29398902]
[36]
Takahara T, Hendrikse J, Kwee TC, et al. Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol 2010; 20(5): 1221-6.
[http://dx.doi.org/10.1007/s00330-009-1665-2] [PMID: 19936753]
[37]
Parra-Fernández ML, Onieva-Zafra MD, Abreu-Sánchez A, Ramos-Pichardo JD, Iglesias-López MT, Fernández-Martínez E. Management of primary dysmenorrhea among university students in the south of spain and family influence. Int J Environ Res Public Health 2020; 17(15): 5570.
[http://dx.doi.org/10.3390/ijerph17155570] [PMID: 32752254]
[38]
Assy N, Djibre A, Farah R, Grosovski M, Marmor A. Presence of coronary plaques in patients with nonalcoholic fatty liver disease. Radiology 2010; 254(2): 393-400.
[http://dx.doi.org/10.1148/radiol.09090769] [PMID: 20093511]
[39]
Haque T, Rahman S, Islam S, Molla NH, Ali N. Assessment of the relationship between serum uric acid and glucose levels in healthy, prediabetic and diabetic individuals. Diabetol Metab Syndr 2019; 11(1): 49.
[http://dx.doi.org/10.1186/s13098-019-0446-6] [PMID: 31285758]
[40]
Hällforsc J, Loukola A, Pitkäniemi J, et al. Scrutiny of the CHRNA5-CHRNA3-CHRNB4 smoking behavior locus reveals a novel association with alcohol use in a Finnish population based study. Int J Mol Epidemiol Genet 2013; 4(2): 109-9.
[41]
Muser D, Castro SA, Santangeli P, Nucifora G. Clinical applications of feature-tracking cardiac magnetic resonance imaging. World J Cardiol 2018; 10(11): 210-21.
[http://dx.doi.org/10.4330/wjc.v10.i11.210] [PMID: 30510638]
[42]
Sánchez-Luna M, Medrano C, Lirio J. Down syndrome as risk factor for respiratory syncytial virus hospitalization: A prospective multicenter epidemiological study. Influenza Other Respir Viruses 2017; 11(2): 157-64.
[http://dx.doi.org/10.1111/irv.12431] [PMID: 27611835]
[43]
Mitra A, Ray A, Datta R, Sengupta S, Sarkar S. Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2. J Cell Physiol 2014; 229(9): 1272-82.
[http://dx.doi.org/10.1002/jcp.24565] [PMID: 24464634]
[44]
Davis K, Farrelly M, Messeri P, Duke J. The impact of national smoking prevention campaigns on tobacco-related beliefs, intentions to smoke and smoking initiation: Results from a longitudinal survey of youth in the United States. Int J Environ Res Public Health 2009; 6(2): 722-40.
[http://dx.doi.org/10.3390/ijerph6020722] [PMID: 19440412]
[45]
Sinclair ELE, Souza CRN, Ward AJW, Seebacher F. Exercise changes behaviour. Funct Ecol 2014; 28(3): 652-9.
[http://dx.doi.org/10.1111/1365-2435.12198]
[46]
Rousan TA, Thadani U. Stable angina medical therapy management guidelines: A critical review of guidelines from the European Society of Cardiology and National Institute for Health and Care Excellence. Eur Cardiol 2019; 14(1): 18-22.
[http://dx.doi.org/10.15420/ecr.2018.26.1] [PMID: 31131033]
[47]
Braunwald E, Morrow DA. Unstable Angina. Circulation 2013; 127(24): 2452-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001258] [PMID: 23775194]
[48]
Neuman RB, Bloom HL, Shukrullah I, et al. Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem 2007; 53(9): 1652-7.
[http://dx.doi.org/10.1373/clinchem.2006.083923] [PMID: 17599958]
[49]
Kim YM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B. Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 2008; 51(1): 68-74.
[http://dx.doi.org/10.1016/j.jacc.2007.07.085] [PMID: 18174039]
[50]
Leftheriotis DI, Fountoulaki KT, Flevari PG, et al. The predictive value of inflammatory and oxidative markers following the successful cardioversion of persistent lone atrial fibrillation. Int J Cardiol 2009; 135(3): 361-9.
[http://dx.doi.org/10.1016/j.ijcard.2008.04.012] [PMID: 18640731]
[51]
Wu Y, Zhang K, Zhao L, Guo J, Hu X, Chen Z. Increased serum HMGB1 is related to oxidative stress in patients with atrial fibrillation. J Int Med Res 2013; 41(6): 1796-802.
[http://dx.doi.org/10.1177/0300060513503917] [PMID: 24265331]
[52]
Frijhoff J, Winyard PG, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 2015; 23(14): 1144-70.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[53]
Li J, He Y, Ke H, Jin Y, Jiang Z, Zhong G. Plasma oxidative stress and inflammatory biomarkers are associated with the sizes of the left atrium and pulmonary vein in atrial fibrillation patients. Clin Cardiol 2017; 40(2): 89-94.
[http://dx.doi.org/10.1002/clc.22633] [PMID: 28207162]
[54]
Siwaponanan P, Keawvichit R, Udompunturak S, et al. Altered profile of circulating microparticles in nonvalvular atrial fibrillation. Clin Cardiol 2019; 42(4): 425-31.
[http://dx.doi.org/10.1002/clc.23158] [PMID: 30680757]
[55]
Peña JM, MacFadyen J, Glynn RJ, Ridker PM. High-sensitivity C-reactive protein, statin therapy, and risks of atrial fibrillation: An exploratory analysis of the JUPITER trial. Eur Heart J 2012; 33(4): 531-7.
[http://dx.doi.org/10.1093/eurheartj/ehr460] [PMID: 22187510]
[56]
Issac TT, Dokainish H, Lakkis NM. Role of inflammation in initiation and perpetuation of atrial fibrillation: A systematic review of the published data. J Am Coll Cardiol 2007; 50(21): 2021-8.
[http://dx.doi.org/10.1016/j.jacc.2007.06.054] [PMID: 18021867]
[57]
Vm M, Al S, Aa A, et al. Circulating interleukin-18: Association with IL-8, IL-10 and VEGF serum levels in patients with and without heart rhythm disorders. Int J Cardiol 2016; 215: 105-9.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.002] [PMID: 27111169]
[58]
Liew R, Khairunnisa K, Gu Y, et al. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ J 2013; 77(5): 1171-9.
[http://dx.doi.org/10.1253/circj.CJ-12-1155] [PMID: 23370453]
[59]
Žėkas V, Matuzevičienė R, Karčiauskaitė D, et al. Chronic and oxidative stress association with total count of endothelial microvesicles in healthy young male plasma. Adv Clin Exp Med 2019; 28(5): 683-92.
[http://dx.doi.org/10.17219/acem/94144] [PMID: 30712335]
[60]
Cheng F, Wang Y, Li J, et al. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans. Int J Cardiol 2013; 167(3): 936-42.
[http://dx.doi.org/10.1016/j.ijcard.2012.03.090] [PMID: 22465347]
[61]
Elshamaa MF, Sabry S, Nabih M, Elghoroury EA, El-Saaid GS, Ismail AAG. Oxidative stress markers and C-reactive protein in pediatric patients on hemodialysis. Ann Nutr Metab 2009; 55(4): 309-16.
[http://dx.doi.org/10.1159/000245938] [PMID: 19828941]
[62]
Hasan A, Akhter N, Al-Roub A, et al. TNF-α in combination with palmitate enhances IL-8 production via the MyD88-independent TLR4 signaling pathway: Potential relevance to metabolic inflammation. Int J Mol Sci 2019; 20(17): 4112.
[http://dx.doi.org/10.3390/ijms20174112] [PMID: 31443599]
[63]
Zhong Y, Liu C, Feng J, Li JF, Fan ZC. Curcumin affects ox-LDL-induced IL-6, TNF-α, MCP-1 secretion and cholesterol efflux in THP-1 cells by suppressing the TLR4/NF-κB/miR33a signaling pathway. Exp Ther Med 2020; 20(3): 1856-70.
[http://dx.doi.org/10.3892/etm.2020.8915] [PMID: 32782494]
[64]
Tsiantoulas D, Perkmann T, Afonyushkin T, et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res 2015; 56(2): 440-8.
[http://dx.doi.org/10.1194/jlr.P054569] [PMID: 25525116]
[65]
Biasucci LM, Porto I, Di Vito L, et al. Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circ J 2012; 76(9): 2174-82.
[http://dx.doi.org/10.1253/circj.CJ-12-0068] [PMID: 22664782]
[66]
Zweier JL, Rayburn BK, Flaherty JT, Weisfeldt ML. Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest 1987; 80(6): 1728-34.
[http://dx.doi.org/10.1172/JCI113264] [PMID: 3680525]
[67]
Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 1987; 61(5): 757-60.
[http://dx.doi.org/10.1161/01.RES.61.5.757] [PMID: 2822281]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy