Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

The Regulatory Mechanisms and Clinical Significance of Lnc SNHG4 in Cancer

Author(s): Navid Pourghasem, Shadi Ghorbanzadeh and Abdol Azim Nejatizadeh*

Volume 28, Issue 44, 2022

Published on: 13 December, 2022

Page: [3563 - 3571] Pages: 9

DOI: 10.2174/1381612829666221121161950

Price: $65

Abstract

Background: LncRNAs have been reported to be involved in a variety of biological functions, including gene expression, cell growth, and differentiation. They may also serve as oncogenes or tumor suppressor genes in diseases. lncRNAs that can encode small nucleolar RNAs (snoRNAs) have been named small nucleolar RNA host genes (SNHGs).

Objective: In this review article, we readily review the regulatory mechanisms and clinical significance of Lnc SNHG4 in cancer.

Methods: We systematically investigated databases, like Scopus, PubMed, Embase, Google Scholar, and Cochrane Library database for all research articles, and have provided an overview regarding the biological functions and mechanisms of lncRNA SNHG4 in tumorigenesis.

Results: Compared to neighboring normal tissues, SNHG4 is significantly dysregulated in various tumor tissues. SNHG4 upregulation is mainly associated with advanced tumor stage, tumor size, TNM stage, and decreased overall survival. In addition, aberrant SNHG4 expression promotes cell proliferation, metastasis, migration, and invasion of cancer cells.

Conclusion: SNHG4 may serve as a new therapeutic target and prognostic biomarker in patients with cancer.

Keywords: Cancer, lncRNAs, SNHGs, SNHG4, expression, tumor, regulatory mechanisms, biomarker.

[1]
Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab 2010; 7(1): 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[2]
Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 2017; 67(2): 93-9.
[3]
Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128(4): 683-92.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[4]
Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 2013; 5(3): 578-90.
[http://dx.doi.org/10.1093/gbe/evt028] [PMID: 23431001]
[5]
St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015; 31(5): 239-51.
[http://dx.doi.org/10.1016/j.tig.2015.03.007] [PMID: 25869999]
[6]
Bunch H, Lawney BP, Burkholder A, et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 2016; 108(2): 64-77.
[http://dx.doi.org/10.1016/j.ygeno.2016.07.003] [PMID: 27432546]
[7]
Rashid F, Shah A, Shan G. Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics 2016; 14(2): 73-80.
[http://dx.doi.org/10.1016/j.gpb.2016.03.005] [PMID: 27163185]
[8]
Scherr M, Eder M. Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle 2007; 6(4): 444-9.
[http://dx.doi.org/10.4161/cc.6.4.3807] [PMID: 17312397]
[9]
Yuan Y, Ren X, Xie Z, Wang X. A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quant Biol 2016; 4(1): 47-57.
[http://dx.doi.org/10.1007/s40484-016-0062-5]
[10]
Koch L. Functional genomics: Screening for lncRNA function. Nat Rev Genet 2017; 18(2): 70-0.
[PMID: 28045101]
[11]
Ghorbanzadeh S, Poor-Ghassem N, Afsa M, Nikbakht M, Malekzadeh K. Long non-coding RNA NR2F2-AS1: Its expanding oncogenic roles in tumor progression. Hum Cell 2022; 35(5): 1355-63.
[http://dx.doi.org/10.1007/s13577-022-00733-1] [PMID: 35796938]
[12]
Yang G, Lu X, Yuan L. LncRNA: A link between RNA and cancer. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2014; 1839: 1097-109.
[13]
Zhang R, Xia LQ, Lu WW, Zhang J, Zhu JS. LncRNAs and cancer. Oncol Lett 2016; 12(2): 1233-9.
[http://dx.doi.org/10.3892/ol.2016.4770] [PMID: 27446422]
[14]
Quan J, Pan X, Zhao L, et al. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: A systematic review and meta-analysis. OncoTargets Ther 2018; 11: 6415-24.
[http://dx.doi.org/10.2147/OTT.S167853] [PMID: 30323619]
[15]
Yang H, Guo JF, Zhang ML, Li AM. LncRNA SNHG4 promotes neuroblastoma proliferation, migration, and invasion by sponging miR-377-3p. Neoplasma 2020; 67(5): 1054-62.
[http://dx.doi.org/10.4149/neo_2020_191023N1081] [PMID: 32614236]
[16]
Hombach S, Kretz M. Non-coding RNAs: Classification, biology and functioning. Non-coding RNAs in colorectal cancer 2016.
[http://dx.doi.org/10.1007/978-3-319-42059-2_1]
[17]
Lui L, Lowe T, Lui L, Lowe T. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem 2013; 54: 53-77.
[http://dx.doi.org/10.1042/bse0540053] [PMID: 23829527]
[18]
Qin Y, Sun W, Wang Z, et al. Long non-coding small nucleolar RNA host genes (SNHGs) in endocrine-related cancers. OncoTargets Ther 2020; 13: 7699-717.
[http://dx.doi.org/10.2147/OTT.S267140] [PMID: 32848414]
[19]
Berger H, Marques MS, Zietlow R, Meyer TF, Machado JC, Figueiredo C. Gastric cancer pathogenesis. Helicobacter 2016; 21 (Suppl. 1): 34-8.
[http://dx.doi.org/10.1111/hel.12338] [PMID: 27531537]
[20]
Zhou Z, Tan F, Pei Q, et al. lncRNA SNHG4 modulates colorectal cancer cell cycle and cell proliferation through regulating miR-590-3p/CDK1 axis. Aging 2021; 13(7): 9838-58.
[http://dx.doi.org/10.18632/aging.202737] [PMID: 33744866]
[21]
Li H, Hong J, Wijayakulathilaka WSMA. Long non-coding RNA SNHG4 promotes cervical cancer progression through regulating c-Met via targeting miR-148a-3p. Cell Cycle 2019; 18(23): 3313-24.
[http://dx.doi.org/10.1080/15384101.2019.1674071] [PMID: 31590627]
[22]
Wang S, Zhu W, Qiu J, Chen F. lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging miR-204-5p in gastric cancer. Mol Med Rep 2021; 23(1): 1-1.
[PMID: 33236157]
[23]
Xu R, Feng F, Yu X, Liu Z, Lao L. LncRNA SNHG4 promotes tumour growth by sponging miR-224-3p and predicts poor survival and recurrence in human osteosarcoma. Cell Prolif 2018; 51(6): e12515.
[http://dx.doi.org/10.1111/cpr.12515] [PMID: 30152090]
[24]
Tang Y, Wu L, Zhao M, et al. LncRNA SNHG4 promotes the proliferation, migration, invasiveness, and epithelial-mesenchymal transition of lung cancer cells by regulating miR-98-5p. Biochem Cell Biol 2019; 97(6): 767-76.
[http://dx.doi.org/10.1139/bcb-2019-0065] [PMID: 31220419]
[25]
Wu J, Liu T, Sun L, Zhang S, Dong G. Long noncoding RNA SNHG4 promotes renal cell carcinoma tumorigenesis and invasion by acting as ceRNA to sponge miR-204-5p and upregulate RUNX2. Cancer Cell Int 2020; 20(1): 514.
[http://dx.doi.org/10.1186/s12935-020-01606-z] [PMID: 33088220]
[26]
Czarnecka AM, Synoradzki K, Firlej W, et al. Molecular biology of osteosarcoma. Cancers 2020; 12(8): 2130.
[http://dx.doi.org/10.3390/cancers12082130] [PMID: 32751922]
[27]
Eaton BR, Schwarz R, Vatner R, et al. Osteosarcoma. Pediatr Blood Cancer 2021; 68(S2): e28352.
[http://dx.doi.org/10.1002/pbc.28352] [PMID: 32779875]
[28]
Huang YF, Lu L, Shen HL, Lu XX. LncRNA SNHG4 promotes osteosarcoma proliferation and migration by sponging miR-377-3p. Mol Genet Genomic Med 2020; 8(8): e1349.
[http://dx.doi.org/10.1002/mgg3.1349] [PMID: 32537941]
[29]
Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 2020; 13(1): 17-33.
[http://dx.doi.org/10.1016/j.path.2019.11.002] [PMID: 32005431]
[30]
Bedell SL, Goldstein LS, Goldstein AR, Goldstein AT. Cervical cancer screening: Past, present, and future. Sex Med Rev 2020; 8(1): 28-37.
[http://dx.doi.org/10.1016/j.sxmr.2019.09.005] [PMID: 31791846]
[31]
Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med 1996; 335(12): 865-75.
[http://dx.doi.org/10.1056/NEJM199609193351207] [PMID: 8778606]
[32]
Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873: 188314.
[33]
Fujita M, Yamaguchi R, Hasegawa T, et al. Classification of primary liver cancer with immunosuppression mechanisms and correlation with genomic alterations. EBioMedicine 2020; 53: 102659.
[http://dx.doi.org/10.1016/j.ebiom.2020.102659] [PMID: 32113157]
[34]
Jiao Y, Li Y, Jia B, et al. The prognostic value of lncRNA SNHG4 and its potential mechanism in liver cancer. Biosci Rep 2020; 40(1): BSR20190729.
[http://dx.doi.org/10.1042/BSR20190729] [PMID: 31967298]
[35]
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[36]
Gagnière J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22(2): 501-18.
[http://dx.doi.org/10.3748/wjg.v22.i2.501] [PMID: 26811603]
[37]
Fong W, Li Q, Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39(26): 4925-43.
[http://dx.doi.org/10.1038/s41388-020-1341-1] [PMID: 32514151]
[38]
Rawla P, Barsouk A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol 2019; 14(1): 26-38.
[http://dx.doi.org/10.5114/pg.2018.80001] [PMID: 30944675]
[39]
Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol 2020; 18(3): 534-42.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[40]
Al-Quteimat OM, Amer AM. A review of Osimertinib in NSCLC and pharmacist role in NSCLC patient care. J Oncol Pharm Pract 2020; 26(6): 1452-60.
[http://dx.doi.org/10.1177/1078155220930285] [PMID: 32525442]
[41]
Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11(3): 511-8.
[http://dx.doi.org/10.1111/1759-7714.13328] [PMID: 31989769]
[42]
Wang F, Quan Q. The long non-coding RNA SNHG4/microRNA-let-7e/KDM3A/p21 pathway is involved in the development of non-small cell lung cancer. Mol Ther Oncolytics 2021; 20: 634-45.
[http://dx.doi.org/10.1016/j.omto.2020.12.010] [PMID: 33816782]
[43]
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70(4): 299-312.
[http://dx.doi.org/10.3322/caac.21613] [PMID: 32478924]
[44]
Wang X, Tian W, Wu L, et al. LncRNA SNHG4 regulates miR-138/c-Met axis to promote the proliferation of glioblastoma cells. Neuroreport 2020; 31(9): 657-62.
[http://dx.doi.org/10.1097/WNR.0000000000001469] [PMID: 32427712]
[45]
Ngan ESW. Heterogeneity of neuroblastoma. Oncoscience 2015; 2(10): 837-8.
[http://dx.doi.org/10.18632/oncoscience.216] [PMID: 26682270]
[46]
Sridhar S, Al-Moallem B, Kamal H, Terrile M, Stallings RL. New insights into the genetics of neuroblastoma. Mol Diagn Ther 2013; 17(2): 63-9.
[http://dx.doi.org/10.1007/s40291-013-0019-6] [PMID: 23329364]
[47]
Jeison M, Ash S, Halevy-Berko G, et al. 2p24 Gain region harboring MYCN gene compared with MYCN amplified and nonamplified neuroblastoma: Biological and clinical characteristics. Am J Pathol 2010; 176(6): 2616-25.
[http://dx.doi.org/10.2353/ajpath.2010.090624] [PMID: 20395439]
[48]
Rawla P. Epidemiology of prostate cancer. World J Oncol 2019; 10(2): 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[49]
Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med 2018; 8(12): a030361.
[http://dx.doi.org/10.1101/cshperspect.a030361] [PMID: 29311132]
[50]
Wang ZY, Duan Y, Wang P. SP1-mediated upregulation of lncRNA SNHG4 functions as a ceRNA for miR-377 to facilitate prostate cancer progression through regulation of ZIC5. J Cell Physiol 2020; 235(4): 3916-27.
[http://dx.doi.org/10.1002/jcp.29285] [PMID: 31608997]
[51]
Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017; 130(6): 722-31.
[http://dx.doi.org/10.1182/blood-2017-04-779405] [PMID: 28588020]
[52]
Yuan Z, Wang W. LncRNA SNHG4 regulates miR-10a/PTEN to inhibit the proliferation of acute myeloid leukemia cells. Hematology 2020; 25(1): 160-4.
[http://dx.doi.org/10.1080/16078454.2020.1754636] [PMID: 32319862]
[53]
Wu Z, Liu X, Liu L, et al. Regulation of lncRNA expression. Cell Mol Biol Lett 2014; 19(4): 561-75.
[http://dx.doi.org/10.2478/s11658-014-0212-6] [PMID: 25311814]
[54]
Barnum KJ, O’Connell MJ. Cell cycle regulation by checkpoints. Methods Mol Biol 2014; 1170: 29-40.
[http://dx.doi.org/10.1007/978-1-4939-0888-2_2]
[55]
Santamaría D, Barrière C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 2007; 448(7155): 811-5.
[http://dx.doi.org/10.1038/nature06046] [PMID: 17700700]
[56]
Jeffers M, Rong S, Vande Woude GF. Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 1996; 16(3): 1115-25.
[http://dx.doi.org/10.1128/MCB.16.3.1115] [PMID: 8622656]
[57]
Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 2004; 6(1): 75-84.
[http://dx.doi.org/10.1016/j.ccr.2004.06.013] [PMID: 15261143]
[58]
Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol 2011; 3(1_suppl): S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[59]
Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R. Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: Implications for tumour invasion. Br J Cancer 2007; 97(3): 368-77.
[http://dx.doi.org/10.1038/sj.bjc.6603884] [PMID: 17667909]
[60]
Kim HJ, Jeong MS, Jang SB. Molecular characteristics of RAGE and advances in small-molecule inhibitors. Int J Mol Sci 2021; 22(13): 6904.
[http://dx.doi.org/10.3390/ijms22136904] [PMID: 34199060]
[61]
Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 2011; 23(9): 1415-23.
[http://dx.doi.org/10.1016/j.cellsig.2011.04.001] [PMID: 21515363]
[62]
Yamamoto KI, Murata H, Putranto EW, et al. DOCK7 is a critical regulator of the RAGE-Cdc42 signaling axis that induces formation of dendritic pseudopodia in human cancer cells. Oncol Rep 2013; 29(3): 1073-9.
[http://dx.doi.org/10.3892/or.2012.2191] [PMID: 23254359]
[63]
El-Deiry W, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75(4): 817-25.
[http://dx.doi.org/10.1016/0092-8674(93)90500-P] [PMID: 8242752]
[64]
Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: Implications for cancer therapy. J Biomed Biotechnol 2012; 2012: 170325.
[http://dx.doi.org/10.1155/2012/170325]
[65]
Ramadoss S, Guo G, Wang C-Y. Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene 2017; 36(1): 47-59.
[http://dx.doi.org/10.1038/onc.2016.174] [PMID: 27270439]
[66]
Grigore A, Jolly M, Jia D, Farach-Carson M, Levine H. Tumor budding: the name is EMT. Partial EMT. J Clin Med 2016; 5(5): 51.
[http://dx.doi.org/10.3390/jcm5050051] [PMID: 27136592]
[67]
Keshamouni VG, Schiemann WP. Epithelial-mesenchymal transition in tumor metastasis: A method to the madness. Future Oncol 2009; 5(8): 1109-11.
[http://dx.doi.org/10.2217/fon.09.87] [PMID: 19852724]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy