Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Novel Insights into the Important Role of Leptin in Modulating the Pathological Development of Fibrotic-related Diseases

Author(s): Huiyuan Kang, Min Lai, Yan’er Yao, Bin Wang, Xin Su* and Ye Cheng

Volume 23, Issue 10, 2023

Published on: 19 December, 2022

Page: [1066 - 1076] Pages: 11

DOI: 10.2174/1566524023666221121105933

Price: $65

conference banner
Abstract

Leptin, as one of the most important cytokines within the circulation, has been confirmed to play a vital role in the hypothalamus of the central nervous system (CNS), which could modulate energy homeostasis by suppressing food intake. Furthermore, leptin could also influence cell metabolism by acting directly on the leptin receptor, which is a relatively small peptide and is mainly produced and released by fat tissue in mammals. On the other hand, the excessive extracellular matrix (ECM) could induce damage in normal tissues or organ structures, which might further induce fibrotic development in multiple tissues or organs, including the liver, heart, and kidneys. Notably, the sustainable development of fibrosis promotes the structural lesion and functional decline of different organs, which subsequently threatens human health and poses serious risks to human life. Emerging evidence has shown that leptin plays an important role in the fibrotic progression within multiple tissues and organs in mammals and has an alleviating effect on fibrosis. Concerning this notion, it has been proposed that leptin could be identified as a vital therapeutic strategy for fibrotic progression in clinical practice. Consequently, this review summarized the potential mechanisms of leptin in modulating fibrotic development in diverse tissues and organs to provide a theoretical basis for treating fibrotic-related diseases. In addition, the potential mechanisms whereby leptin affects the development of fibrosis were also summarized in the current review.

Keywords: Leptin, extracellular, matrix, fibrosis, cytokines, hypothalmus.

[1]
Dragano NRV, Haddad-Tovolli R, Velloso LA. Leptin, neuroinflammation and obesity. Front Horm Res 2017; 48: 84-96.
[http://dx.doi.org/10.1159/000452908] [PMID: 28245454]
[2]
Seth M, Biswas R, Ganguly S, Chakrabarti N, Chaudhuri AG. Leptin and obesity. Physiol Int 2021; 107(4): 455-68.
[http://dx.doi.org/10.1556/2060.2020.00038] [PMID: 33355539]
[3]
Zhou B, Yuan Y, Shi L, et al. Creation of an anti-inflammatory, leptin-dependent anti-obesity celastrol mimic with better druggability. Front Pharmacol 2021; 12: 705252.
[http://dx.doi.org/10.3389/fphar.2021.705252] [PMID: 34526895]
[4]
Wu YY, Wu S, Li XF, et al. LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. Eur J Pharmacol 2021; 911: 174462.
[http://dx.doi.org/10.1016/j.ejphar.2021.174462] [PMID: 34536366]
[5]
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 2018; 68: 490-506.
[http://dx.doi.org/10.1016/j.matbio.2018.01.013] [PMID: 29371055]
[6]
Di Caprio N, Bellas E. Collagen stiffness and architecture regulate fibrotic gene expression in engineered adipose tissue. Adv Biosyst 2020; 4(6): 1900286.
[http://dx.doi.org/10.1002/adbi.201900286] [PMID: 32529801]
[7]
Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism 2015; 64(1): 13-23.
[http://dx.doi.org/10.1016/j.metabol.2014.09.010] [PMID: 25305050]
[8]
Moon HS, Dalamaga M, Kim SY, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34(3): 377-412.
[http://dx.doi.org/10.1210/er.2012-1053] [PMID: 23475416]
[9]
Polyzos S, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 2009; 9(3): 299-314.
[http://dx.doi.org/10.2174/156652409787847191] [PMID: 19355912]
[10]
Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet 2016; 54(5): 565-72.
[http://dx.doi.org/10.1007/s10528-016-9751-z] [PMID: 27313173]
[11]
Wauman J, Zabeau L, Tavernier J. The leptin receptor complex: heavier than expected? Front Endocrinol 2017; 8: 30.
[http://dx.doi.org/10.3389/fendo.2017.00030] [PMID: 28270795]
[12]
Jiang M, He J, Gu H, et al. Protective effect of resveratrol on obesity-related osteoarthritis via alleviating JAK2/STAT3 signaling pathway is independent of SOCS3. Toxicol Appl Pharmacol 2020; 388: 114871.
[http://dx.doi.org/10.1016/j.taap.2019.114871] [PMID: 31881177]
[13]
Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 2010; 21(11): 643-51.
[http://dx.doi.org/10.1016/j.tem.2010.08.002] [PMID: 20846876]
[14]
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295(13): 4101-13.
[http://dx.doi.org/10.1074/jbc.RA119.011881] [PMID: 32047110]
[15]
Wolf G, Ziyadeh FN. Leptin and renal fibrosis. Contrib Nephrol 2006; 151: 175-83.
[http://dx.doi.org/10.1159/000095328] [PMID: 16929141]
[16]
Wong W. Transporting leptin to its targets. Sci Signal 2021; 14(701): eabm4425.
[http://dx.doi.org/10.1126/scisignal.abm4425] [PMID: 34546792]
[17]
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115(2): 209-18.
[http://dx.doi.org/10.1172/JCI24282] [PMID: 15690074]
[18]
Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol 2017; 13(6): 338-51.
[http://dx.doi.org/10.1038/nrendo.2016.222] [PMID: 28232667]
[19]
Makled MN, Sharawy MH, El-Awady MS. The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(12): 1569-76.
[http://dx.doi.org/10.1007/s00210-019-01703-5] [PMID: 31367862]
[20]
Frühbeck G, Catalán V, Rodríguez A, et al. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep 2017; 7(1): 6619.
[http://dx.doi.org/10.1038/s41598-017-06997-0] [PMID: 28747790]
[21]
Saxena NK, Anania FA. Adipocytokines and hepatic fibrosis. Trends Endocrinol Metab 2015; 26(3): 153-61.
[http://dx.doi.org/10.1016/j.tem.2015.01.002] [PMID: 25656826]
[22]
Coombes JD, Choi SS, Swiderska-Syn M, et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim Biophys Acta Mol Basis Dis 2016; 1862(1): 135-44.
[http://dx.doi.org/10.1016/j.bbadis.2015.10.028] [PMID: 26529285]
[23]
Figueroa-Juárez E, Noriega LG, Pérez-Monter C, et al. The role of the unfolded protein response on renal lipogenesis in C57BL/6 mice. Biomolecules 2021; 11(1): 73.
[http://dx.doi.org/10.3390/biom11010073] [PMID: 33430288]
[24]
Cao Q, Zhu X, Zhai X, et al. Leptin suppresses microRNA-122 promoter activity by phosphorylation of foxO1 in hepatic stellate cell contributing to leptin promotion of mouse liver fibrosis. Toxicol Appl Pharmacol 2018; 339: 143-50.
[http://dx.doi.org/10.1016/j.taap.2017.12.007] [PMID: 29248466]
[25]
Li Z, Ji L, Su S, et al. Leptin up-regulates microRNA-27a/b-3p level in hepatic stellate cells. Exp Cell Res 2018; 366(1): 63-70.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.015] [PMID: 29548749]
[26]
Zhang W, Niu M, Yan K, et al. Stat3 pathway correlates with the roles of leptin in mouse liver fibrosis and sterol regulatory element binding protein-1c expression of rat hepatic stellate cells. Int J Biochem Cell Biol 2013; 45(3): 736-44.
[http://dx.doi.org/10.1016/j.biocel.2012.12.019] [PMID: 23295202]
[27]
Dai K, Qi JY, Tian DY. Leptin administration exacerbates thioacetamide-induced liver fibrosis in mice. World J Gastroenterol 2005; 11(31): 4822-6.
[http://dx.doi.org/10.3748/wjg.v11.i31.4822] [PMID: 16097051]
[28]
Piche T, Vandenbos F, Abakar-Mahamat A, et al. The severity of liver fibrosis is associated with high leptin levels in chronic Hepatitis C. J Viral Hepat 2004; 11(1): 91-6.
[http://dx.doi.org/10.1046/j.1365-2893.2003.00483.x] [PMID: 14738564]
[29]
Toffoli B, Tonon F, Tisato V, et al. TRAIL treatment prevents renal morphological changes and TGF-β-induced mesenchymal transition associated with diabetic nephropathy. Clin Sci 2020; 134(17): 2337-52.
[http://dx.doi.org/10.1042/CS20201004] [PMID: 32857135]
[30]
Wang J, Leclercq I, Brymora JM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology 2009; 137(2): 713-23.
[http://dx.doi.org/10.1053/j.gastro.2009.04.011] [PMID: 19375424]
[31]
Sakaida I, Jinhua S, Uchida K, Terai S, Okita K. Leptin receptor-deficient Zucker (fa/fa) rat retards the development of pig serum-induced liver fibrosis with Kupffer cell dysfunction. Life Sci 2003; 73(19): 2491-501.
[http://dx.doi.org/10.1016/S0024-3205(03)00653-2] [PMID: 12954457]
[32]
Wang P, Feng J, Zhang Z, et al. The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway. Acta Pharmacol Sin 2022; 43(2): 367-75.
[http://dx.doi.org/10.1038/s41401-021-00666-9] [PMID: 33875797]
[33]
Van Doorn C, Macht VA, Grillo CA, Reagan LP. Leptin resistance and hippocampal behavioral deficits. Physiol Behav 2017; 176: 207-13.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.002] [PMID: 28267584]
[34]
Quarta C, Sánchez-Garrido MA, Tschöp MH, Clemmensen C. Renaissance of leptin for obesity therapy. Diabetologia 2016; 59(5): 920-7.
[http://dx.doi.org/10.1007/s00125-016-3906-7] [PMID: 26983921]
[35]
Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: Central and peripheral actions of leptin. Metabolism 2015; 64(1): 35-46.
[http://dx.doi.org/10.1016/j.metabol.2014.10.015] [PMID: 25497342]
[36]
Elinav E, Ali M, Bruck R, et al. Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function. Hepatology 2009; 49(1): 278-86.
[http://dx.doi.org/10.1002/hep.22584] [PMID: 19065677]
[37]
Becerril S, Rodríguez A, Catalán V, et al. iNOS gene abLATION prevents liver fibrosis in leptin-deficient ob/ob mice. Genes 2019; 10(3): 184.
[http://dx.doi.org/10.3390/genes10030184] [PMID: 30818874]
[38]
Yang A, Yan X, Fan X, et al. Hepatic stellate cells-specific LOXL1 deficiency abrogates hepatic inflammation, fibrosis, and corrects lipid metabolic abnormalities in non-obese NASH mice. Hepatol Int 2021; 15(5): 1122-35.
[http://dx.doi.org/10.1007/s12072-021-10210-w] [PMID: 34014450]
[39]
Wittig C, Szulcek R. Extracellular matrix protein ratios in the human heart and vessels: how to distinguish pathological from physiological changes? Front Physiol 2021; 12: 708656.
[http://dx.doi.org/10.3389/fphys.2021.708656] [PMID: 34421650]
[40]
Kang Y, Park C, Kim D, Seong CM, Kwon K, Choi C. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc Res 2010; 80(3): 310-6.
[http://dx.doi.org/10.1016/j.mvr.2010.05.006] [PMID: 20510252]
[41]
Popp S, Schmitt-Böhrer A, Langer S, et al. 5-HTT deficiency in male mice affects healing and behavior after myocardial infarction. J Clin Med 2021; 10(14): 3104.
[http://dx.doi.org/10.3390/jcm10143104] [PMID: 34300270]
[42]
Lemoine AY, Ledoux S, Larger E. Adipose tissue angiogenesis in obesity. Thromb Haemost 2013; 110(10): 661-9.
[http://dx.doi.org/10.1160/TH13-01-0073] [PMID: 23595655]
[43]
Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: Pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res 2014; 164(4): 323-35.
[http://dx.doi.org/10.1016/j.trsl.2014.05.001] [PMID: 24880146]
[44]
Martínez-Martínez E, Jurado-López R, Cervantes-Escalera P, Cachofeiro V, Miana M. Leptin, a mediator of cardiac damage associated with obesity. Horm Mol Biol Clin Investig 2014; 18(1): 3-14.
[http://dx.doi.org/10.1515/hmbci-2013-0060] [PMID: 25389996]
[45]
Abe I, Teshima Y, Kondo H, et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm 2018; 15(11): 1717-27.
[http://dx.doi.org/10.1016/j.hrthm.2018.06.025] [PMID: 29908372]
[46]
Chiang DJ, Pritchard MT, Nagy LE. Obesity, diabetes mellitus, and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2011; 300(5): G697-702.
[http://dx.doi.org/10.1152/ajpgi.00426.2010] [PMID: 21350183]
[47]
Takikawa A, Mahmood A, Nawaz A, et al. HIF-1α in myeloid cells promotes adipose tissue remodeling toward insulin resistance. Diabetes 2016; 65(12): 3649-59.
[http://dx.doi.org/10.2337/db16-0012] [PMID: 27625023]
[48]
Hasegawa Y, Ikeda K, Chen Y, et al. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metab 2018; 27(1): 180-194.e6.
[http://dx.doi.org/10.1016/j.cmet.2017.12.005] [PMID: 29320702]
[49]
Zhao S, Li W, Yu W, et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Theranostics 2021; 11(18): 8660-73.
[http://dx.doi.org/10.7150/thno.62820] [PMID: 34522205]
[50]
Frühbeck G, Catalán V, Rodríguez A, et al. Normalization of adiponectin concentrations by leptin replacement in ob/ob mice is accompanied by reductions in systemic oxidative stress and inflammation. Sci Rep 2017; 7(1): 2752.
[http://dx.doi.org/10.1038/s41598-017-02848-0] [PMID: 28584304]
[51]
Bukosza EN, Kaucsár T, Godó M, et al. Glomerular collagen deposition and lipocalin-2 expression are early signs of renal injury in prediabetic obese rats. Int J Mol Sci 2019; 20(17): 4266.
[http://dx.doi.org/10.3390/ijms20174266] [PMID: 31480394]
[52]
Chen SM, Peng YJ, Wang CC, Su SL, Salter DM, Lee HS. Dexamethasone down-regulates osteocalcin in bone cells through leptin pathway. Int J Med Sci 2018; 15(5): 507-16.
[http://dx.doi.org/10.7150/ijms.21881] [PMID: 29559840]
[53]
Lawler HM, Underkofler CM, Kern PA, Erickson C, Bredbeck B, Rasouli N. Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J Clin Endocrinol Metab 2016; 101(4): 1422-8.
[http://dx.doi.org/10.1210/jc.2015-4125] [PMID: 26871994]
[54]
Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 2012; 122(8): 2756-62.
[http://dx.doi.org/10.1172/JCI60323] [PMID: 22850886]
[55]
King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet 2011; 378(9807): 1949-61.
[http://dx.doi.org/10.1016/S0140-6736(11)60052-4] [PMID: 21719092]
[56]
Vanstapel A, Goldschmeding R, Broekhuizen R, et al. Connective tissue growth factor is overexpressed in explant lung tissue and broncho-alveolar lavage in transplant-related pulmonary fibrosis. Front Immunol 2021; 12: 661761.
[http://dx.doi.org/10.3389/fimmu.2021.661761] [PMID: 34122421]
[57]
d’Alessandro M, Bergantini L, Refini RM, et al. Adiponectin and leptin levels in idiopathic pulmonary fibrosis: A new method for BAL and serum assessment. Immunobiology 2020; 225(5): 151997.
[http://dx.doi.org/10.1016/j.imbio.2020.151997] [PMID: 32962817]
[58]
Cao M, Swigris JJ, Wang X, et al. Plasma leptin is elevated in acute exacerbation of idiopathic pulmonary fibrosis. Mediators Inflamm 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/6940480] [PMID: 27642238]
[59]
Luck H, Tsai S, Chung J, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 2015; 21(4): 527-42.
[http://dx.doi.org/10.1016/j.cmet.2015.03.001] [PMID: 25863246]
[60]
Monteiro-Sepulveda M, Touch S, Mendes-Sá C, et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab 2015; 22(1): 113-24.
[http://dx.doi.org/10.1016/j.cmet.2015.05.020] [PMID: 26094890]
[61]
Hsu PS, Lin CM, Chang JF, et al. Participation of NADPH oxidase-related reactive oxygen species in leptin-promoted pulmonary inflammation: Regulation of cPLA2α and COX-2 expression. Int J Mol Sci 2019; 20(5): 1078.
[http://dx.doi.org/10.3390/ijms20051078] [PMID: 30832310]
[62]
Gui X, Chen H, Cai H, Sun L, Gu L. Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2018; 498(3): 660-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.039] [PMID: 29524411]
[63]
Piccioni A, Gaetani E, Palladino M, et al. Sonic hedgehog gene therapy increases the ability of the dystrophic skeletal muscle to regenerate after injury. Gene Ther 2014; 21(4): 413-21.
[http://dx.doi.org/10.1038/gt.2014.13] [PMID: 24572787]
[64]
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289(13): 3603-29.
[PMID: 34109754]
[65]
Yang Y, Zou J-L, Sun J-H, et al. Nerve bundle formation during the promotion of peripheral nerve regeneration: Collagen VI-neural cell adhesion molecule 1 interaction. Neural Regen Res 2022; 17(5): 1023-33.
[http://dx.doi.org/10.4103/1673-5374.324861] [PMID: 34558529]
[66]
Gesta S, Guntur K, Majumdar ID, et al. Reduced expression of collagen VI alpha 3 (COL6A3) confers resistance to inflammation-induced MCP1 expression in adipocytes. Obesity 2016; 24(8): 1695-703.
[http://dx.doi.org/10.1002/oby.21565] [PMID: 27312141]
[67]
Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287(5785): 795-801.
[http://dx.doi.org/10.1038/287795a0] [PMID: 6776413]
[68]
Li M, Zhang HP, Wang XY, Chen ZG, Lin XF, Zhu W. Mesenchymal stem cell-derived exosomes ameliorate dermal fibrosis in a murine model of bleomycin-induced scleroderma. Stem Cells Dev 2021; 30(19): 981-90.
[http://dx.doi.org/10.1089/scd.2021.0112] [PMID: 34428952]
[69]
Wang P, Luo C, Zhu D, et al. Pericardial adipose tissue–derived leptin promotes myocardial apoptosis in high‐fat diet–induced obese rats through janus kinase 2/reactive oxygen species/Na+/K+‐ATPase signaling pathway. J Am Heart Assoc 2021; 10(18): e021369.
[http://dx.doi.org/10.1161/JAHA.121.021369] [PMID: 34482701]
[70]
Poblete JMS, Ballinger MN, Bao S, et al. Macrophage HIF-1α mediates obesity-related adipose tissue dysfunction via interleukin-1 receptor-associated kinase M. Am J Physiol Endocrinol Metab 2020; 318(5): E689-700.
[http://dx.doi.org/10.1152/ajpendo.00174.2019] [PMID: 32154744]
[71]
Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22(18): 2454-72.
[http://dx.doi.org/10.1101/gad.1693608] [PMID: 18794343]
[72]
Sun K, Tordjman J, Clément K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab 2013; 18(4): 470-7.
[http://dx.doi.org/10.1016/j.cmet.2013.06.016] [PMID: 23954640]
[73]
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14(7): 416-29.
[http://dx.doi.org/10.1038/nrm3598] [PMID: 23719536]
[74]
Kaplan J. Is leptin a key to metabolic inflammation in trauma and sepsis? Shock 2017; 48(1): 138.
[http://dx.doi.org/10.1097/SHK.0000000000000836] [PMID: 28125530]
[75]
Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 2006; 3(1): 25-34.
[http://dx.doi.org/10.1016/j.cmet.2005.11.012] [PMID: 16399502]
[76]
Liang S, Chen RT, Zhang DP, et al. Hedgehog signaling pathway regulated the target genes for adipogenesis in silkworm Bombyx mori. Insect Sci 2015; 22(5): 587-96.
[http://dx.doi.org/10.1111/1744-7917.12164] [PMID: 25154865]
[77]
Ingham PW. Drosophila Segment Polarity Mutants and the Rediscovery of the Hedgehog Pathway Genes. Curr Top Dev Biol 2016; 116: 477-88.
[http://dx.doi.org/10.1016/bs.ctdb.2016.01.007] [PMID: 26970635]
[78]
Guzmán-Ruiz R, Tercero-Alcázar C, López-Alcalá J, Sánchez-Ceinos J, Malagón MM, Gordon A. The potential role of the adipokine HMGB1 in obesity and insulin resistance. Novel effects on adipose tissue biology. Mol Cell Endocrinol 2021; 536: 111417.
[http://dx.doi.org/10.1016/j.mce.2021.111417] [PMID: 34339826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy