Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Outlook of Ferroptosis-Targeted Lipid Peroxidation in Cardiovascular Disease

Author(s): Ze-Fan Wu, Xi-Yan Liu, Nian-Hua Deng, Zhong Ren and Zhi-Sheng Jiang*

Volume 30, Issue 31, 2023

Published on: 21 December, 2022

Page: [3550 - 3561] Pages: 12

DOI: 10.2174/0929867330666221111162905

Price: $65

conference banner
Abstract

Lipid metabolism is a complex biochemical process that regulates normal cell activity and death. Ferroptosis is a novel mode of programmed cell death different from apoptosis, pyroptosis, and autophagy. Abnormal lipid metabolism may lead to lipid peroxidation and cell rupture death, which are regulated by lipoxygenase (LOX), long-chain acyl-coA synthases, and antioxidant enzymes. Alternatively, Fe2+ and Fe3+ are required for the activity of LOXs and ferroptosis, and Fe2+ can significantly accelerate lipid peroxidation in ferroptosis. Abnormal lipid metabolism is a certain risk factor for cardiovascular disease. In recent years, the important role of ferroptosis in developing cardiovascular disease has been increasingly reported. Reducing lipid accumulation could reduce the occurrence of ferroptosis, thus alleviating cardiovascular disease deterioration. This article reviews the relationship of lipid peroxidation to the general mechanism of ferroptosis and highlights lipid peroxidation as the common point of ferroptosis and cardiovascular disease.

Keywords: Lipid peroxidation, lipid, cardiovascular disease, ferroptosis, mechanism, lipoxygenase (LOX).

[1]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[2]
Xia, J.; Si, H.; Yao, W.; Li, C.; Yang, G.; Tian, Y.; Hao, C. Research progress on the mechanism of ferroptosis and its clinical application. Exper. Cell Res., 2021, 409(2), 112932.
[http://dx.doi.org/10.1016/j.yexcr.2021.112932]
[3]
Imai, H.; Matsuoka, M.; Kumagai, T.; Sakamoto, T.; Koumura, T. Lipid peroxidation-dependent cell death regulated by GPx4 and Ferroptosis. Curr. Top. Microbiol. Immunol., 2016, 403, 143-170.
[http://dx.doi.org/10.1007/82_2016_508] [PMID: 28204974]
[4]
Daiha; Shin; Eun; Hye; Kim; Jaewang; Lee; Jong-Lyel; Roh. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 10, 426.
[5]
Li, C.; Dong, X.; Du, W.; Shi, X.; Chen, K.; Zhang, W.; Gao, M. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduct. Target. Ther., 2020, 5(1), 187.
[http://dx.doi.org/10.1038/s41392-020-00297-2] [PMID: 32883948]
[6]
Li, N.; Jiang, W.; Wang, W.; Xiong, R.; Wu, X.; Geng, Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol. Res., 2021, 166(5), 105466.
[http://dx.doi.org/10.1016/j.phrs.2021.105466] [PMID: 33548489]
[7]
McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[8]
Zheng, P.; Xie, Z.; Yuan, Y.; Sui, W.; Wang, C.; Gao, X.; Zhao, Y.; Zhang, F.; Gu, Y.; Hu, P.; Ye, J.; Feng, X.; Zhang, L. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Sci. Rep., 2017, 7(1), 42574.
[http://dx.doi.org/10.1038/srep42574] [PMID: 28218306]
[9]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[10]
Çolakoğlu, M.; Tunçer, S.; Banerjee, S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif., 2018, 51(5), e12472.
[http://dx.doi.org/10.1111/cpr.12472] [PMID: 30062726]
[11]
Wan, J.; Ren, H.; Wang, J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc. Neurol., 2019, 4(2), 93-95.
[http://dx.doi.org/10.1136/svn-2018-000205] [PMID: 31338218]
[12]
Forcina, G.C.; Dixon, S.J. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics, 2019, 19(18), 1800311.
[http://dx.doi.org/10.1002/pmic.201800311] [PMID: 30888116]
[13]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[14]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.124] [PMID: 27565726]
[15]
Kan, C.F.K.; Singh, A.B.; Dong, B.; Shende, V.R.; Liu, J. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(5), 577-587.
[http://dx.doi.org/10.1016/j.bbalip.2015.01.008] [PMID: 25645621]
[16]
Zhang, H.L.; Hu, B.X.; Li, Z.L.; Du, T.; Shan, J.L.; Ye, Z.P.; Peng, X.D.; Li, X.; Huang, Y.; Zhu, X.Y.; Chen, Y.H.; Feng, G.K.; Yang, D.; Deng, R.; Zhu, X.F. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat. Cell Biol., 2022, 24(1), 88-98.
[http://dx.doi.org/10.1038/s41556-021-00818-3] [PMID: 35027735]
[17]
Sha, W.; Hu, F.; Xi, Y.; Chu, Y.; Bu, S. Mechanism of Ferroptosis and its role in Type 2 Diabetes Mellitus. J. Diabetes Res., 2021, 2021(2), 1-10.
[http://dx.doi.org/10.1155/2021/9999612] [PMID: 34258295]
[18]
Shintoku, R.; Takigawa, Y.; Yamada, K.; Kubota, C.; Yoshimoto, Y.; Takeuchi, T.; Koshiishi, I.; Torii, S. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci., 2017, 108(11), 2187-2194.
[http://dx.doi.org/10.1111/cas.13380] [PMID: 28837253]
[19]
Yang, F.; Zhang, Y.; Ren, H.; Wang, J.; Shang, L.; Liu, Y.; Zhu, W.; Shi, X. Ischemia reperfusion injury promotes recurrence of hepatocellular carcinoma in fatty liver via ALOX12-12HETE-GPR31 signaling axis. J. Exper. Clin. Cancer Res., 2019, 38, 489.
[20]
Li, Q.Q.; Li, Q.; Jia, J.N.; Liu, Z.Q.; Zhou, H.H.; Mao, X.Y. 12/15 lipoxygenase: A crucial enzyme in diverse types of cell death. Neurochem. Int., 2018, 118, 34-41.
[http://dx.doi.org/10.1016/j.neuint.2018.04.002] [PMID: 29627380]
[21]
Amla, B.; Lw, C.; Hd, B. Inactivation of RIP3 kinase sensitizes to 15LOX/PEBP1-mediated ferroptotic death. Redox Biol., 2022, 50, 102232.
[22]
Sun, W.Y.; Tyurin, V.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Anthonymuthu, T.S.; Zhai, Y.J.; Pan, M.H.; Gong, H.B.; Lu, D.H.; Sun, J.; Duan, W.J.; Korolev, S.; Abramov, A.Y.; Angelova, P.R.; Miller, I.; Beharier, O.; Mao, G.W.; Dar, H.H.; Kapralov, A.A.; Amoscato, A.A.; Hastings, T.G.; Greenamyre, T.J.; Chu, C.T.; Sadovsky, Y.; Bahar, I.; Bayır, H.; Tyurina, Y.Y.; He, R.R.; Kagan, V.E. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol., 2021, 17(4), 465-476.
[http://dx.doi.org/10.1038/s41589-020-00734-x] [PMID: 33542532]
[23]
Touaibia, M.; Faye, D.C.; Doiron, J.A.; Chiasson, A.I.; Blanchard, S.; Roy, P.P.; Surette, M.E. Structure–activity relationship studies of new sinapic acid Phenethyl Ester Analogues targeting the biosynthesis of 5-lipoxygenase products: The role of phenolic moiety, ester function, and bioisosterism. J. Nat. Prod., 2022, 85(1), 225-236.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00982] [PMID: 34995066]
[24]
Hinman, A.; Holst, C.R.; Latham, J.C.; Bruegger, J.J.; Ulas, G.; McCusker, K.P.; Amagata, A.; Davis, D.; Hoff, K.G.; Kahn-Kirby, A.H.; Kim, V.; Kosaka, Y.; Lee, E.; Malone, S.A.; Mei, J.J.; Richards, S.J.; Rivera, V.; Miller, G.; Trimmer, J.K.; Shrader, W.D. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One, 2018, 13(8), e0201369.
[http://dx.doi.org/10.1371/journal.pone.0201369] [PMID: 30110365]
[25]
Seiler, A.; Schneider, M.; Förster, H.; Roth, S.; Wirth, E.K.; Culmsee, C.; Plesnila, N.; Kremmer, E.; Rådmark, O.; Wurst, W.; Bornkamm, G.W.; Schweizer, U.; Conrad, M. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab., 2008, 8(3), 237-248.
[http://dx.doi.org/10.1016/j.cmet.2008.07.005] [PMID: 18762024]
[26]
Yao, Y.; Chen, Z.; Zhang, H.; Chen, C.; Zeng, M.; Yunis, J.; Wei, Y.; Wan, Y.; Wang, N.; Zhou, M.; Qiu, C.; Zeng, Q.; Ong, H.S.; Wang, H.; Makota, F.V.; Yang, Y.; Yang, Z.; Wang, N.; Deng, J.; Shen, C.; Xia, Y.; Yuan, L.; Lian, Z.; Deng, Y.; Guo, C.; Huang, A.; Zhou, P.; Shi, H.; Zhang, W.; Yi, H.; Li, D.; Xia, M.; Fu, J.; Wu, N.; de Haan, J.B.; Shen, N.; Zhang, W.; Liu, Z.; Yu, D. Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat. Immunol., 2021, 22(9), 1127-1139.
[http://dx.doi.org/10.1038/s41590-021-00996-0] [PMID: 34413521]
[27]
Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Okuyama, A.; Shiono, J.; Inoue, K.; Sakashita, H. Down-regulation of Glutathione Peroxidase 4 in oral cancer inhibits tumor growth through SREBP1 signaling. Anticancer Res., 2021, 41(4), 1785-1792.
[http://dx.doi.org/10.21873/anticanres.14944] [PMID: 33813383]
[28]
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Freitas, F.P.; Seibt, T. Selenium utilization by GPX4 Is required to prevent Hydroperoxide-induced Ferroptosis. Cell, 2017, 172(3), 409-422.e21..
[PMID: 29290465]
[29]
Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med., 2020, 152, 175-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.027] [PMID: 32165281]
[30]
Schneider, M.; Wortmann, M.; Mandal, P.K.; Arpornchayanon, W.; Jannasch, K.; Alves, F.; Strieth, S.; Conrad, M.; Beck, H. Absence of glutathione peroxidase 4 affects tumor angiogenesis through increased 12/15-lipoxygenase activity. Neoplasia, 2010, 12(3), 254-263.
[http://dx.doi.org/10.1593/neo.91782] [PMID: 20234819]
[31]
Thayyullathil, F.; Cheratta, A.R.; Alakkal, A.; Subburayan, K.; Pallichankandy, S.; Hannun, Y.A.; Galadari, S. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis., 2021, 12(1), 26.
[http://dx.doi.org/10.1038/s41419-020-03297-w] [PMID: 33414455]
[32]
Stoyanovsky, D.A.; Tyurina, Y.Y.; Shrivastava, I.; Bahar, I.; Kagan, V.E. Iron Catalysis of Lipid Peroxidation in Ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic. Biol. Med., 2018, 133, 153.
[PMID: 30217775]
[33]
He, Y.J.; Liu, X.Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 2020, 241, 119911.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119911] [PMID: 32143060]
[34]
Leidgens, S.; Bullough, K.Z.; Shi, H.; Li, F.; Shakoury-Elizeh, M.; Yabe, T.; Subramanian, P.; Hsu, E.; Natarajan, N.; Nandal, A.; Stemmler, T.L.; Philpott, C.C. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J. Biol. Chem., 2013, 288(24), 17791-17802.
[http://dx.doi.org/10.1074/jbc.M113.460253] [PMID: 23640898]
[35]
Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[36]
Chen, L.; Lin, Z.; Liu, L.; Zhang, X.; Shi, W.; Ge, D.; Sun, Y. Fe 2+ /Fe 3+ Ions chelated with ultrasmall polydopamine nanoparticles induce ferroptosis for cancer therapy. ACS Biomater. Sci. Eng., 2019, 5(9), 4861-4869.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00461]
[37]
Bao, W.D.; Pang, P.; Zhou, X.T.; Hu, F.; Xiong, W.; Chen, K.; Wang, J.; Wang, F.; Xie, D.; Hu, Y.Z.; Han, Z.T.; Zhang, H.H.; Wang, W.X.; Nelson, P.T.; Chen, J.G.; Lu, Y.; Man, H.Y.; Liu, D.; Zhu, L.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ., 2021, 28(5)(Suppl. 1), 1548-1562.
[http://dx.doi.org/10.1038/s41418-020-00685-9] [PMID: 33398092]
[38]
Gray, G.M.; Macfarlane, M.G. Separation and composition of the phospholipids of ox heart. Biochem. J., 1958, 70(3), 409-425.
[http://dx.doi.org/10.1042/bj0700409] [PMID: 13596358]
[39]
Schlame, M.; Rua, D.; Greenberg, M.L. The biosynthesis and functional role of cardiolipin. Prog Lipid Res., 2000, 39(3), 288.
[http://dx.doi.org/10.1016/S0163-7827(00)00005-9]
[40]
Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev., 2005, 85(3), 1093-1129.
[http://dx.doi.org/10.1152/physrev.00006.2004] [PMID: 15987803]
[41]
Taegtmeyer, A.C.M. A scientific statement from the American heart association. Circ. Res., 2016, 118(10), E35-E35.
[PMID: 27174956]
[42]
Tomczyk, M.M.; Dolinsky, V.W. The cardiac lipidome in models of cardiovascular disease. Metabolites, 2020, 10(6), 254.
[http://dx.doi.org/10.3390/metabo10060254] [PMID: 32560541]
[43]
Guo, Y.; Lu, C.; Hu, K.; Cai, C.; Wang, W. Ferroptosis in Cardiovascular Diseases: Current status, challenges, and future perspectives. Biomolecules, 2022, 12(3), 390.
[http://dx.doi.org/10.3390/biom12030390] [PMID: 35327582]
[44]
Shao, B.; Heinecke, J.W. HDL, lipid peroxidation, and atherosclerosis. J. Lipid Res., 2009, 50(4), 599-601.
[http://dx.doi.org/10.1194/jlr.E900001-JLR200] [PMID: 19141435]
[45]
Koleini, N.; Nickel, B.E.; Edel, A.L.; Fandrich, R.R.; Ravandi, A.; Kardami, E. Oxidized phospholipids in doxorubicin-induced cardiotoxicity. Chem. Biol. Interact., 2019, 303, 35-39.
[http://dx.doi.org/10.1016/j.cbi.2019.01.032] [PMID: 30707978]
[46]
Nomura, S.O.; Karger, A.B.; Weir, N.L.; Duprez, D.A.; Tsai, M.Y. Free fatty acids, cardiovascular disease, and mortality in the multi-ethnic study of atherosclerosis. J. Clin. Lipidol., 2020, 14(4), 531-541.
[http://dx.doi.org/10.1016/j.jacl.2020.06.005] [PMID: 32651087]
[47]
Liu, Z.; Cao, S.; Chen, Q.; Fu, F.; Cheng, M.; Huang, X. MicroRNA-132 promotes atherosclerosis by inducing mitochondrial oxidative stressmediated ferroptosis. J. Southern Med. Univ., 2022, 42(1), 143-149.
[48]
Meng, Z.; Liang, H.; Zhao, J.; Gao, J.; Liu, C.; Ma, X.; Liu, J.; Liang, B.; Jiao, X.; Cao, J.; Wang, Y. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci., 2021, 284(3), 119935.
[http://dx.doi.org/10.1016/j.lfs.2021.119935] [PMID: 34508760]
[49]
Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med., 2020, 160, 92-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.026] [PMID: 32768568]
[50]
Cornelissen, A.; Guo, L.; Sakamoto, A.; Virmani, R.; Finn, A.V. New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine, 2019, 47, 598-606.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.014] [PMID: 31416722]
[51]
Xiao, F.J.; Zhang, D.; Wu, Y.; Jia, Q.H.; Zhang, L.; Li, Y.X.; Yang, Y.F.; Wang, H.; Wu, C.T.; Wang, L.S. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem. Biophys. Res. Commun., 2019, 515(3), 448-454.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.147] [PMID: 31160087]
[52]
Luo, E.F.; Li, H.X.; Qin, Y.H.; Qiao, Y.; Yan, G.L.; Yao, Y.Y.; Li, L.Q.; Hou, J.T.; Tang, C.C.; Wang, D. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J. Diabetes, 2021, 12(2), 124-137.
[http://dx.doi.org/10.4239/wjd.v12.i2.124] [PMID: 33594332]
[53]
Martinet, W.; Coornaert, I.; Puylaert, P.; De Meyer, G.R.Y. Macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol., 2019, 10, 306.
[http://dx.doi.org/10.3389/fphar.2019.00306] [PMID: 31019462]
[54]
Fernandez-Garcia, V.; Gonzalez-Ramos, S.; Avendano-Ortiz, J.; Martin-Sanz, P.; Delgado, C.; Castrillo, A.; Bosca, L. NOD1 splenic activation confers ferroptosis protection and reduces macrophage recruitment under pro-atherogenic conditions. Biomed. Pharmacother., 2022, 148, 112769-112769.
[55]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am. J. Physiol. Heart Circ. Physiol., 2018, 315(5), H1341-H1352.
[http://dx.doi.org/10.1152/ajpheart.00028.2018] [PMID: 30095969]
[56]
Li, Y.; Xiong, Z.; Yan, W.; Gao, E.; Cheng, H.; Wu, G.; Liu, Y.; Zhang, L.; Li, C.; Wang, S.; Fan, M.; Zhao, H.; Zhang, F.; Tao, L. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics, 2020, 10(12), 5623-5640.
[http://dx.doi.org/10.7150/thno.44836] [PMID: 32373236]
[57]
Tang, L.J.; Luo, X.J.; Tu, H.; Chen, H.; Xiong, X.M.; Li, N.S.; Peng, J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(2), 401-410.
[http://dx.doi.org/10.1007/s00210-020-01932-z] [PMID: 32621060]
[58]
Ma, X.H.; Liu, J.H.Z.; Liu, C.Y.; Sun, W.Y.; Duan, W.J.; Wang, G.; Kurihara, H.; He, R.R.; Li, Y.F.; Chen, Y.; Shang, H. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal. Transduct. Target. Ther., 2022, 7(1), 288.
[http://dx.doi.org/10.1038/s41392-022-01090-z] [PMID: 35970840]
[59]
Ravingerová, T.; Kindernay, L.; Barteková, M.; Ferko, M.; Adameová, A.; Zohdi, V.; Bernátová, I.; Ferenczyová, K.; Lazou, A. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int. J. Mol. Sci., 2020, 21(21), 7889.
[http://dx.doi.org/10.3390/ijms21217889] [PMID: 33114290]
[60]
Feng, Y.; Madungwe, N.B.; Imam Aliagan, A.D.; Tombo, N.; Bopassa, J.C. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem. Biophys. Res. Commun., 2019, 520(3), 606-611.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.006] [PMID: 31623831]
[61]
Zhang, C.; He, M.; Ni, L.; He, K.; Su, K.; Deng, Y.; Li, Y.; Xia, H. The role of arachidonic acid metabolism in myocardial ischemia–reperfusion injury. Cell Biochem. Biophys., 2020, 78(3), 255-265.
[http://dx.doi.org/10.1007/s12013-020-00928-z] [PMID: 32623640]
[62]
Stamenkovic, A.; O’Hara, K.A.; Nelson, D.C.; Maddaford, T.G.; Edel, A.L.; Maddaford, G.; Dibrov, E.; Aghanoori, M.; Kirshenbaum, L.A.; Fernyhough, P.; Aliani, M.; Pierce, G.N.; Ravandi, A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2021, 320(3), H1170-H1184.
[http://dx.doi.org/10.1152/ajpheart.00237.2020] [PMID: 33513080]
[63]
He, L.; Yang, Y.; Chen, J.; Zou, P.; Li, J. Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin-induced toxicity. Mol. Med. Rep., 2021, 24(3), 668.
[http://dx.doi.org/10.3892/mmr.2021.12307] [PMID: 34296293]
[64]
Sun, W.; Wu, X.; Yu, P.; Zhang, Q.; Shen, L.; Chen, J.; Tong, H.; Fan, M.; Shi, H.; Chen, X. LncAABR07025387.1 enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis. Front. Cell Dev. Biol., 2022, 10, 672391.
[http://dx.doi.org/10.3389/fcell.2022.672391] [PMID: 35186915]
[65]
Yen, C.H.; Lin, J.L.; Sung, K.T.; Su, C.H.; Huang, W.H.; Chen, Y.Y.; Chien, S.C.; Lai, Y.H.; Lee, P.Y.; Liu, Y.Y.; Tsai, J.P.; Tsai, C.T.; Hou, C.J.Y.; Chen, Y.J.; Hsieh, Y.J.; Hung, C.L.; Hung, T.C.; Yeh, H.I. Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci. Rep., 2021, 11(1), 16501.
[http://dx.doi.org/10.1038/s41598-021-95534-1] [PMID: 34389755]
[66]
Tuunanen, H.; Ukkonen, H.; Knuuti, J. Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr. Cardiol. Rep., 2008, 10(2), 142-148.
[http://dx.doi.org/10.1007/s11886-008-0024-2] [PMID: 18417015]
[67]
Fragasso, G. Inhibition of free fatty acids metabolism as a therapeutic target in patients with heart failure. Int. J. Clin. Pract., 2007, 61(4), 603-610.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01280.x] [PMID: 17394434]
[68]
Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants, 2021, 10(12), 1864.
[http://dx.doi.org/10.3390/antiox10121864] [PMID: 34942967]
[69]
Ning, D.; Yang, X.; Wang, T.; Jiang, Q.; Yu, J.; Wang, D. Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2021, 574, 39-47.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.017] [PMID: 34438345]
[70]
Liu, B.; Zhao, C.; Li, H.; Chen, X.; Ding, Y.; Xu, S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 233-240.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.061] [PMID: 29427658]
[71]
Shi, P.; Song, C.; Qi, H.; Ren, J.; Ren, P.; Wu, J.; Xie, Y.; Zhang, M.; Sun, H.; Cao, Y. Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat. J. Nutr. Biochem., 2022, 104, 108972-108972.
[http://dx.doi.org/10.1016/j.jnutbio.2022.108972] [PMID: 35227883]
[72]
Aneja, A.; Tang, W.H.W.; Bansilal, S.; Garcia, M.J.; Farkouh, M.E. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am. J. Med., 2008, 121(9), 748-757.
[http://dx.doi.org/10.1016/j.amjmed.2008.03.046] [PMID: 18724960]
[73]
Carpentier, A.C. Abnormal myocardial dietary fatty acid metabolism and diabetic cardiomyopathy. Can. J. Cardiol., 2018, 34(5), 605-614.
[http://dx.doi.org/10.1016/j.cjca.2017.12.029] [PMID: 29627307]
[74]
Yan, X.; Chen, J.; Zhang, C.; Zhou, S.; Zhang, Z.; Chen, J.; Feng, W.; Li, X.; Tan, Y. FGF 21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J. Cell. Mol. Med., 2015, 19(7), 1557-1568.
[http://dx.doi.org/10.1111/jcmm.12530] [PMID: 25823710]
[75]
Ma, S.; Jing, F.; Zhang, R.; Chen, J.; Han, D.; Li, X.; Bo, Y.; Li, X.; Fan, M.; Li, C. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid. Med. Cell. Longev., 2017, 2017, 4602715.
[76]
Wang, X.; Chen, X.; Zhou, W.; Men, H.; Bao, T.; Sun, Y.; Wang, Q.; Tan, Y.; Keller, B.B.; Tong, Q.; Zheng, Y.; Cai, L. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm. Sin. B, 2022, 12(2), 708-722.
[http://dx.doi.org/10.1016/j.apsb.2021.10.005] [PMID: 35256941]
[77]
Zou, C.; Liu, X.; Xie, R.; Bao, Y.; Jin, Q.; Jia, X.; Li, L.; Liu, R. Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem. Biophys. Res. Commun., 2017, 486(4), 930-936.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.127] [PMID: 28347819]
[78]
Pei, Z.; Deng, Q.; Babcock, S.A.; He, E.Y.; Ren, J.; Zhang, Y. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress. Toxicol. Lett., 2018, 284, 10-20.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.018] [PMID: 29174818]
[79]
Tadokoro, T.; Ikeda, M.; Ide, T.; Deguchi, H.; Ikeda, S.; Okabe, K.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.; Imai, H.; Tsutsui, H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight, 2020, 5(9), e132747.
[http://dx.doi.org/10.1172/jci.insight.132747] [PMID: 32376803]
[80]
Kitakata, H.; Endo, J.; Ikura, H.; Moriyama, H.; Shirakawa, K.; Katsumata, Y.; Sano, M. Therapeutic targets for DOX-induced cardiomyopathy: Role of apoptosis vs. rerroptosis. Int. J. Mol. Sci., 2022, 23(3), 1414.
[http://dx.doi.org/10.3390/ijms23031414] [PMID: 35163335]
[81]
Liu, Y.; Zeng, L.; Yang, Y.; Chen, C.; Wang, D.; Wang, H. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis., 2020, 11(9), 756.
[http://dx.doi.org/10.1038/s41419-020-02948-2] [PMID: 32934217]
[82]
Hang, C. A.; Ji, Z. B.; Yl, A.; Jp, C.; Ying, L. A.; Zl, A.; Cui, W. A.; Xd, A.; Dl, A. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine., 2022, 99, 153964.
[83]
Chang, J-C.; Yang, K-T.; Chao, T-H.; Wang, I-C.; Luo, Y-P.; Ting, P-C.; Lin, J-H. Berberine protects cardiac cells against ferroptosis. Tzu-Chi Med. J., 2022, 34(3), 310-317.
[http://dx.doi.org/10.4103/tcmj.tcmj_236_21] [PMID: 35912047]
[84]
Pinto, C.; Duque, A.L.; Rodríguez-Galdón, B.; Cestero, J.J.; Macías, P. Xanthohumol prevents carbon tetrachloride-induced acute liver injury in rats. Food Chem. Toxicol., 2012, 50(10), 3405-3412.
[http://dx.doi.org/10.1016/j.fct.2012.07.035] [PMID: 22884764]
[85]
Jiefu, L.; Tingting, W.; Yalan, L.; Mengxia, W.; Haobo, L.; Irwin, M. G.; Zhengyuan, X. N-acetylcysteine restores sevoflurane postconditioning cardioprotection against myocardial ischemia-reperfusion injury in diabetic rats. J. Diabetes Res., 2016, 2015, 9213034.
[86]
Zhang, W.; Bai, X.; Zheng, X.; Xie, X.; Yuan, Z. Icariin attenuates the enhanced prothrombotic state in atherosclerotic rabbits independently of its lipid-lowering effects. Planta Med., 2013, 79(9), 731-736.
[http://dx.doi.org/10.1055/s-0032-1328551] [PMID: 23700112]
[87]
Chen, Y.; Yu, F.; Zhang, Y.; Li, M.; Di, M.; Chen, W.; Liu, X.; Zhang, Y.; Zhang, M. Traditional chinese medication tongxinluo attenuates lipidosis in Ox-LDL-stimulated macrophages by enhancing beclin-1-induced autophagy. Front. Pharmacol., 2021, 12, 673366.
[http://dx.doi.org/10.3389/fphar.2021.673366] [PMID: 34248627]
[88]
Liu, X.J.; Lv, Y.F.; Cui, W.Z.; Li, Y.; Liu, Y.; Xue, Y.T.; Dong, F. Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio, 2021, 11(11), 2966-2976.
[http://dx.doi.org/10.1002/2211-5463.13276] [PMID: 34407320]
[89]
Wang, Y.; Kuang, X.; Yin, Y.; Han, N.; Chang, L.; Wang, H.; Hou, Y.; Li, H.; Li, Z.; Liu, Y.; Hao, Y.; Wei, Y.; Wang, X.; Jia, Z. Tongxinluo prevents chronic obstructive pulmonary disease complicated with atherosclerosis by inhibiting ferroptosis and protecting against pulmonary microvascular barrier dysfunction. Biomed. Pharmacother., 2022, 145, 112367.
[http://dx.doi.org/10.1016/j.biopha.2021.112367] [PMID: 34740097]
[90]
Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep., 2020, 40(8), BSR20201807.
[http://dx.doi.org/10.1042/BSR20201807] [PMID: 32776119]
[91]
Chen, X.; Li, X.; Xu, X.; Li, L.; Liang, N.; Zhang, L.; Lv, J.; Wu, Y.C.; Yin, H. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic. Res., 2021, 55(4), 405-415.
[http://dx.doi.org/10.1080/10715762.2021.1876856] [PMID: 33455488]
[92]
Farmer, L.A.; Wu, Z.; Poon, J.F.; Zilka, O.; Lorenz, S.M.; Huehn, S.; Proneth, B.; Conrad, M.; Pratt, D.A. Intrinsic and extrinsic limitations to the design and optimization of inhibitors of lipid peroxidation and associated cell death. J. Am. Chem. Soc., 2022, 144(32), 14706-14721.
[http://dx.doi.org/10.1021/jacs.2c05252] [PMID: 35921655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy