Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Role of HLA-DPrs3077 and HLA-DQrs3920 Polymorphisms as Risk Factors for Type 1 Diabetes Mellitus

Author(s): Amany A. Ghazy*

Volume 23, Issue 6, 2023

Published on: 26 December, 2022

Page: [850 - 856] Pages: 7

DOI: 10.2174/1871530323666221111153102

Price: $65

conference banner
Abstract

Background: Type 1 diabetes mellitus (T1DM) is a chronic disease caused by the destruction of insulin-producing pancreatic β-cells. During disease progression, inflammatory insulitis increases the presentation of islet antigens on human leukocyte antigen (HLA) molecules to T lymphocytes. This complex system plays a pivotal role in cellular immunity. Thus, genetic variability in HLA can affect the susceptibility to and clinical outcomes of DM.

Aim: This case-control study aimed to assess the role of HLA-DP-rs3077 (A/G) and HLA-DQrs3920 (A/G) polymorphism in T1DM.

Subjects and Methods: This study enrolled 400 individuals: 200 patients with T1DM and 200 ageand sex-matched healthy controls. Hemoglobin A1C and random, fasting, and postprandial blood sugar levels were determined for all subjects. Genotypic and allelic distributions of HLA-DPrs3077 (A/G) and HLA-DQrs3920 (A/G) SNPs were determined using real-time polymerase chain reaction (PCR).

Results: Frequency of the HLA-DPrs3077A allele was high among the diabetic group (91.3%); however, the difference was non-significant [OR (95% C.I) = 1.422(0.89-2.252), P=0.098]. The frequency of the HLA-DQrs3920 GG genotype was higher in control than the diabetic group (52.5% vs.12%), whereas that of the AA genotype was higher in the person with diabetes than in the control group (34% vs.4%). Individuals carrying the HLA-DQrs3920A allele were 4.5 times more likely to have T1DM than those carrying the G allele [OR (95% C.I) = 4.510 (3.338- 6.094), P<0.001*]. The presence of HLA-DPrs3077A and HLA-DQ rs3920A in the same person increases T1DM risk by 3.6 times that of G allele [OR (95%C.I) = 3.608(2.173-5.991), P<0.001*].

Conclusion: HLA-DPrs3077 and HLA-DQrs3920 SNPs have a role in T1DM as the coexistence of HLA-DPrs3077A and HLA-DQrs3920A alleles increases the risk.

Keywords: T1DM, HLA-D, Prs3077, SNP, HLA-DQ-rs3920SNP, genotype.

Graphical Abstract
[1]
Ziegler, R.; Neu, A. Diabetes in childhood and adolescence. Dtsch. Arztebl. Int., 2018, 115(9), 146-156.
[http://dx.doi.org/10.3238/arztebl.2018.0146] [PMID: 29563012]
[2]
Nyaga, D.M.; Vickers, M.H.; Jefferies, C.; Perry, J.K.; O’Sullivan, J.M. Type 1 diabetes mellitus-associated genetic variants contribute to overlapping immune regulatory networks. Front. Genet., 2018, 9, 535.
[http://dx.doi.org/10.3389/fgene.2018.00535] [PMID: 30524468]
[3]
Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect., 2020, 10(2), 98-115.
[http://dx.doi.org/10.34172/hpp.2020.18] [PMID: 32296622]
[4]
Burrack, A.L.; Martinov, T.; Fife, B.T. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol., 2017, 8, 343.
[http://dx.doi.org/10.3389/fendo.2017.00343] [PMID: 29259578]
[5]
Nygård, L.; Laine, A.P.; Kiviniemi, M.; Toppari, J.; Härkönen, T.; Knip, M. Tri-SNP polymorphism in the intron of HLA-DRA1 affects type 1 diabetes susceptibility in the Finnish population. Hum. Immunol., 2021, 82(12), 912-916.
[6]
Lee, H.S.; Hwang, J.S. Genetic aspects of type 1 diabetes. Ann. Pediatr. Endocrinol. Metab., 2019, 24(3), 143-148.
[http://dx.doi.org/10.6065/apem.2019.24.3.143] [PMID: 31607106]
[7]
Cruz-Tapias, P.; Castiblanco, J.; Anaya, J.M. Major histocompatibility complex: Antigen processing and presentation. In: Autoimmunity: From Bench to Bedside; Anaya, J.M.; Shoenfeld, Y.; Rojas-Villarraga, A., Eds.; El Rosario University Press: Bogota, Colombia, 2013. https://www.ncbi.nlm.nih.gov/books/NBK459467/
[8]
Pugliese, A. Autoreactive T cells in type 1 diabetes. J. Clin. Invest., 2017, 127(8), 2881-2891.
[http://dx.doi.org/10.1172/JCI94549] [PMID: 28762987]
[9]
Guo, J.; Zhang, T.; Cao, H.; Li, X.; Liang, H.; Liu, M.; Zou, Y.; Zhang, Y.; Wang, Y.; Sun, X.; Hu, F.; Du, Y.; Mo, X.; Liu, X.; Yang, Y.; Yang, H.; Wu, X.; Zhang, X.; Jia, H.; Jiang, H.; Hou, Y.; Liu, X.; Su, Y.; Zhang, M.; Yang, H.; Wang, J.; Sun, L.; Liu, L.; Padyukov, L.; Lai, L.; Yamamoto, K.; Zhang, X.; Klareskog, L.; Xu, X.; Li, Z. Sequencing of the MHC region defines HLA-DQA1 as the major genetic risk for seropositive rheumatoid arthritis in Han Chinese population. Ann. Rheum. Dis., 2019, 78(6), 773-780.
[http://dx.doi.org/10.1136/annrheumdis-2018-214725] [PMID: 30936065]
[10]
Moutsianas, L.; Jostins, L.; Beecham, A.H.; Dilthey, A.T.; Xifara, D.K.; Ban, M.; Shah, T.S.; Patsopoulos, N.A.; Alfredsson, L.; Anderson, C.A.; Attfield, K.E.; Baranzini, S.E.; Barrett, J.; Binder, T.M.C.; Booth, D.; Buck, D.; Celius, E.G.; Cotsapas, C.; D’Alfonso, S.; Dendrou, C.A.; Donnelly, P.; Dubois, B.; Fontaine, B.; Fugger, L.; Goris, A.; Gourraud, P.A.; Graetz, C.; Hemmer, B.; Hillert, J.; Kockum, I.; Leslie, S.; Lill, C.M.; Martinelli-Boneschi, F.; Oksenberg, J.R.; Olsson, T.; Oturai, A.; Saarela, J.; Søndergaard, H.B.; Spurkland, A.; Taylor, B.; Winkelmann, J.; Zipp, F.; Haines, J.L.; Pericak-Vance, M.A.; Spencer, C.C.A.; Stewart, G.; Hafler, D.A.; Ivinson, A.J.; Harbo, H.F.; Hauser, S.L.; De Jager, P.L.; Compston, A.; McCauley, J.L.; Sawcer, S.; McVean, G. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet., 2015, 47(10), 1107-1113.
[http://dx.doi.org/10.1038/ng.3395] [PMID: 26343388]
[11]
Ghazy, A.A.; El-Etreby, N.M. Relevance of HLA-DP/DQ and ICAM-1 SNPs among ovarian cancer patients. Front. Immunol., 2016, 7, 202.
[http://dx.doi.org/10.3389/fimmu.2016.00202] [PMID: 27252704]
[12]
Mishra, V.C.; Deshpande, T.; Gupta, N.; Dorwal, P.; Chandra, D.; Raina, V.; Sharma, G. Frequency analysis of HLA-B allele in leukemia patients from a North Indian population: A case-control study. Meta Gene, 2021, 27, 100842.
[http://dx.doi.org/10.1016/j.mgene.2020.100842]
[13]
Alenzi, M.J.; Ghazy, A.A.; Taha, D.E. The weight of HLA-DPA1 rs3077 single nucleotide polymorphism in prostate cancer, a multicenter study. Prostate Cancer, 2021, 2021, 1-5.
[http://dx.doi.org/10.1155/2021/5539851] [PMID: 33976942]
[14]
Ghazy, A.; El-Sheredy, A.; Al-Din, K.; Khatab, M.; Abdel-Rahman, Z. The effect of IP-10 level and HLA-DP/DQ polymorphisms on response to nucleoside/nucleotide analogues treatment among Hepatitis B Egyptian patients. Br. Microbiol. Res. J., 2016, 13(4), 1-11.
[http://dx.doi.org/10.9734/BMRJ/2016/24047]
[15]
Ghazy, A.A.; Haydara, T.; Farooq, U.D.; Nadwa, E.H.; Ghazy, H.A.; Amer, I. Relation between HLA-DP/DQ polymorphisms, serum IP-10 and response to direct acting antiviral therapy among HCV infected patients. Egypt. J. Immunol., 2020, 27(1), 177-185.
[PMID: 33236620]
[16]
Taher, I.; Almaeen, A.; Ghazy, A.; Abu-Farha, M.; Mohamed Channanath, A.; Elsa John, S.; Hebbar, P.; Arefanian, H.; Abubaker, J.; Al-Mulla, F.; Alphonse Thanaraj, T. Relevance between COVID-19 and host genetics of immune response. Saudi J. Biol. Sci., 2021, 28(11), 6645-6652.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.037] [PMID: 34305429]
[17]
Saribas, S.; Demiryas, S.; Yilmaz, E.; Uysal, O.; Kepil, N.; Demirci, M.; Caliskan, R.; Dinc, H.O.; Akkus, S.; Gareayaghi, N.; Kirmusaoglu, S.; Ozbey, D.; Tokman, H.B.; Koksal, S.S.; Tasci, I.; Kocazeybek, B. Association between human leukocyte antigen gene polymorphisms and multiple EPIYA-C repeats in gastrointestinal disorders. World J. Gastroenterol., 2020, 26(32), 4817-4832.
[http://dx.doi.org/10.3748/wjg.v26.i32.4817] [PMID: 32921959]
[18]
Raha, O.; Sarkar, B.; Lakkakula, B.V.K.S.; Pasumarthy, V.; Godi, S.; Chowdhury, S.; Raychaudhuri, P.; Vadlamudi, R.R. HLA class II SNP interactions and the association with type 1 diabetes mellitus in Bengali speaking patients of Eastern India. J. Biomed. Sci., 2013, 20(1), 12.
[http://dx.doi.org/10.1186/1423-0127-20-12] [PMID: 23441825]
[19]
IMGT/HLA Database. Available from: http://www.ebi.ac.uk/imgt/hla/stats.html
[20]
Nguyen, C.; Varney, M.D.; Harrison, L.C.; Morahan, G. Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. Diabetes, 2013, 62(6), 2135-2140.
[http://dx.doi.org/10.2337/db12-1398] [PMID: 23378606]
[21]
Ward, L.D.; Kellis, M. Interpreting non-coding variation in complex disease genetics Lucas. Nat. Biotechnol., 2012, 30, 1095-1106.
[http://dx.doi.org/10.1038/nbt.2422] [PMID: 23138309]
[22]
Noble, J.A.; Valdes, A.M. Genetics of the HLA region in the prediction of type 1 diabetes. Curr. Diab. Rep., 2011, 11(6), 533-542.
[http://dx.doi.org/10.1007/s11892-011-0223-x] [PMID: 21912932]
[23]
Murao, S.; Makino, H.; Kaino, Y.; Konoue, E.; Ohashi, J.; Kida, K.; Fujii, Y.; Shimizu, I.; Kawasaki, E.; Fujiyama, M.; Kondo, S.; Tanaka, K.; Tarumi, Y.; Seto, I.; Kato, K.; Ohno, K.; Kusunoki, Y.; Ebisui, O.; Takada, Y.; Tanabe, K.; Takemoto, K.; Onuma, H.; Nishimiya, T.; Osawa, H. Differences in the contribution of HLA-DR and -DQ haplotypes to susceptibility to adult- and childhood-onset type 1 diabetes in Japanese patients. Diabetes, 2004, 53(10), 2684-2690.
[http://dx.doi.org/10.2337/diabetes.53.10.2684] [PMID: 15448101]
[24]
Sharp, S.A.; Rich, S.S.; Wood, A.R.; Jones, S.E.; Beaumont, R.N.; Harrison, J.W.; Schneider, D.A.; Locke, J.M.; Tyrrell, J.; Weedon, M.N.; Hagopian, W.A.; Oram, R.A. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care, 2019, 42(2), 200-207.
[http://dx.doi.org/10.2337/dc18-1785] [PMID: 30655379]
[25]
Sarrazola, D.C.; Rodríguez, A.M.; Toro, M.; Vélez, A.; García-Ramírez, J.; Lopera, M.V.; Álvarez, C.M.; González, V.B.; Alfaro, J.M.; Pineda-Trujillo, N. Classical HLA alleles tag SNP in families from Antioquia with type 1 diabetes mellitus. Biomédica, 2018, 38(3), 329-337.
[http://dx.doi.org/10.7705/biomedica.v38i3.3768] [PMID: 30335238]
[26]
Jacobi, T.; Massier, L.; Klöting, N.; Horn, K.; Schuch, A.; Ahnert, P.; Engel, C.; Löffler, M.; Burkhardt, R.; Thiery, J.; Tönjes, A.; Stumvoll, M.; Blüher, M.; Doxiadis, I.; Scholz, M.; Kovacs, P. HLA class II allele analyses implicate common genetic components in type 1 and non–insulin-treated type 2 diabetes. J. Clin. Endocrinol. Metab., 2020, 105(3), e245-e254.
[http://dx.doi.org/10.1210/clinem/dgaa027] [PMID: 31974565]
[27]
Khdair, S.I.; Jarrar, W.; Jarrar, Y.B.; Bataineh, S.; Al-Khaldi, O. Association of HLA-DRB1 and -DQ alleles and haplotypes with type 1 diabetes in Jordanians. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 895-902.
[http://dx.doi.org/10.2174/1871530319666191119114031] [PMID: 31742498]
[28]
Claessens, L.A.; Wesselius, J.; van Lummel, M.; Laban, S.; Mulder, F.; Mul, D.; Nikolic, T.; Aanstoot, H.J.; Koeleman, B.P.C.; Roep, B.O. Clinical and genetic correlates of islet-autoimmune signatures in juvenile-onset type 1 diabetes. Diabetologia, 2020, 63(2), 351-361.
[http://dx.doi.org/10.1007/s00125-019-05032-3] [PMID: 31754749]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy