Review Article

Amyotrophic Lateral Sclerosis Risk Genes and Suppressor

Author(s): Rupesh Kumar, Zubbair Malik, Manisha Singh, R. Rachana, Shalini Mani, Kalaiarasan Ponnusamy* and Shazia Haider*

Volume 23, Issue 2, 2023

Published on: 15 December, 2022

Page: [148 - 162] Pages: 15

DOI: 10.2174/1566523223666221108113330

Price: $65

conference banner
Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to death by progressive paralysis and respiratory failure within 2-4 years of onset. About 90-95% of ALS cases are sporadic (sALS), and 5-10% are inherited through family (fALS). Though the mechanisms of the disease are still poorly understood, so far, approximately 40 genes have been reported as ALS causative genes. The mutations in some crucial genes, like SOD1, C9ORF72, FUS, and TDP-43, are majorly associated with ALS, resulting in ROS-associated oxidative stress, excitotoxicity, protein aggregation, altered RNA processing, axonal and vesicular trafficking dysregulation, and mitochondrial dysfunction. Recent studies show that dysfunctional cellular pathways get restored as a result of the repair of a single pathway in ALS. In this review article, our aim is to identify putative targets for therapeutic development and the importance of a single suppressor to reduce multiple symptoms by focusing on important mutations and the phenotypic suppressors of dysfunctional cellular pathways in crucial genes as reported by other studies.

Keywords: ALS, SOD1, C9ORF72, TDP-43, FUS, putative targets, mutations, suppressor.

Graphical Abstract
[1]
de Carvalho M, Kiernan MC, Swash M. Fasciculation in amyotrophic lateral sclerosis: Origin and pathophysiological relevance. J Neurol Neurosurg Psychiatry 2017; 88(9): 773-9.
[http://dx.doi.org/10.1136/jnnp-2017-315574] [PMID: 28490504]
[2]
Verschueren A. Motor neuropathies and lower motor neuron syndromes. Rev Neurol (Paris) 2017; 173(5): 320-5.
[http://dx.doi.org/10.1016/j.neurol.2017.03.018] [PMID: 28434507]
[3]
Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3(1): 17071.
[http://dx.doi.org/10.1038/nrdp.2017.71] [PMID: 28980624]
[4]
van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084-98.
[http://dx.doi.org/10.1016/S0140-6736(17)31287-4] [PMID: 28552366]
[5]
Wijesekera LC, Nigel Leigh P. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009; 4(1): 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[6]
Vogt S, Schreiber S, Kollewe K, et al. Dyspnea in amyotrophic lateral sclerosis: The Dyspnea-ALS-Scale (DALS-15) essentially contributes to the diagnosis of respiratory impairment. Respir Med 2019; 154: 116-21.
[http://dx.doi.org/10.1016/j.rmed.2019.06.014] [PMID: 31234039]
[7]
Cooper-Knock J, Jenkins T, Shaw PJ. Clinical and molecular aspects of motor neuron disease. Colloquium Series on Genomic and Molecular Medicine 2013; 2(2): 1-60.
[http://dx.doi.org/10.4199/C00093ED1V01Y201309GMM004]
[8]
Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Incidence and prevalence of ALS in Ireland, 1995-1997: A population-based study. Neurology 1999; 52(3): 504-9.
[http://dx.doi.org/10.1212/WNL.52.3.504] [PMID: 10025778]
[9]
D’Aosta P. Incidence of ALS in Italy: Evidence for a uniform frequency in Western countries. Neurology 2001; 56(2): 239-44.
[10]
van Rheenen W, Shatunov A, Dekker AM, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet 2016; 48(9): 1043-8.
[http://dx.doi.org/10.1038/ng.3622] [PMID: 27455348]
[11]
Chiò A, Logroscino G, Hardiman O, et al. Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler 2009; 10(5-6): 310-23.
[http://dx.doi.org/10.3109/17482960802566824] [PMID: 19922118]
[12]
Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci 2017; 9: 68.
[13]
Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother 2017; 18(7): 735-8.
[http://dx.doi.org/10.1080/14656566.2017.1319937] [PMID: 28406335]
[14]
Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull 2016; 119(1): 87-98.
[http://dx.doi.org/10.1093/bmb/ldw026] [PMID: 27450455]
[15]
Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6(1): 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[16]
Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014; 23(8): 2220-31.
[http://dx.doi.org/10.1093/hmg/ddt587] [PMID: 24256812]
[17]
Waite AJ, Bäumer D, East S, et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging 2014; 35(7): 1779.e5-1779.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.016] [PMID: 24559645]
[18]
Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[19]
Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr Opin Neurol 2019; 32(5): 771-6.
[http://dx.doi.org/10.1097/WCO.0000000000000730] [PMID: 31361627]
[20]
Marin B, Boumédiene F, Logroscino G, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int J Epidemiol 2016; 46(1): dyw061.
[http://dx.doi.org/10.1093/ije/dyw061] [PMID: 27185810]
[21]
Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a database population Validation of a scoring system and a model for survival prediction. Brain 1995; 118(3): 707-19.
[http://dx.doi.org/10.1093/brain/118.3.707] [PMID: 7600088]
[22]
Worms PM. The epidemiology of motor neuron diseases: A review of recent studies. J Neurol Sci 2001; 191(1-2): 3-9.
[http://dx.doi.org/10.1016/S0022-510X(01)00630-X] [PMID: 11676986]
[23]
Mathis S, Goizet C, Soulages A, Vallat JM, Masson GL. Genetics of amyotrophic lateral sclerosis: A review. J Neurol Sci 2019; 399: 217-26.
[http://dx.doi.org/10.1016/j.jns.2019.02.030] [PMID: 30870681]
[24]
Mitsumoto H, Santella RM, Liu X, et al. Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 2008; 9(3): 177-83.
[http://dx.doi.org/10.1080/17482960801933942] [PMID: 18574762]
[25]
Foerster BR, Pomper MG, Callaghan BC, et al. An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy. JAMA Neurol 2013; 70(8): 1009-16.
[http://dx.doi.org/10.1001/jamaneurol.2013.234] [PMID: 23797905]
[26]
Webster CP, Smith EF, Bauer CS, et al. The C9orf72 protein interacts with Rab1a and the ULK 1 complex to regulate initiation of autophagy. EMBO J 2016; 35(15): 1656-76.
[http://dx.doi.org/10.15252/embj.201694401] [PMID: 27334615]
[27]
Cykowski MD, Dickson DW, Powell SZ, Arumanayagam AS, Rivera AL, Appel SH. Dipeptide Repeat (DPR) pathology in the skeletal muscle of ALS patients with C9ORF72 repeat expansion. Acta Neuropathol 2019; 138(4): 667-70.
[http://dx.doi.org/10.1007/s00401-019-02050-8] [PMID: 31375896]
[28]
Butti Z, Patten SA. RNA dysregulation in amyotrophic lateral sclerosis. Front Genet 2019; 9: 712.
[http://dx.doi.org/10.3389/fgene.2018.00712] [PMID: 30723494]
[29]
De vos KJ, Chapman AL, Tennant ME, et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007; 16(22): 2720-8.
[http://dx.doi.org/10.1093/hmg/ddm226]
[30]
Boillée S, Vande Velde C, Cleveland DW. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron 2006; 52(1): 39-59.
[http://dx.doi.org/10.1016/j.neuron.2006.09.018] [PMID: 17015226]
[31]
Saez-Atienzar S, Bandres-Ciga S, Langston R, et al. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci Adv 2021; 7(3): eabd9036.
[http://dx.doi.org/10.1101/2020.07.20.211276]
[32]
Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile Amyotrophic Lateral Sclerosis (ALS4). Am J Hum Genet 2004; 74(6): 1128-35.
[http://dx.doi.org/10.1086/421054] [PMID: 15106121]
[33]
Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2017; 88(7): 540-9.
[http://dx.doi.org/10.1136/jnnp-2016-315018] [PMID: 28057713]
[34]
Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[35]
Kwiatkowski TJ, Bosco DA, LeClerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323(5918): 1205-8.
[http://dx.doi.org/10.1126/science.1166066]
[36]
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72(2): 245-56.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[37]
Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72(2): 257-68.
[http://dx.doi.org/10.1016/j.neuron.2011.09.010] [PMID: 21944779]
[38]
Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010; 466(7310): 1069-75.
[http://dx.doi.org/10.1038/nature09320] [PMID: 20740007]
[39]
Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010; 465(7295): 223-6.
[http://dx.doi.org/10.1038/nature08971] [PMID: 20428114]
[40]
Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010; 68(5): 857-64.
[http://dx.doi.org/10.1016/j.neuron.2010.11.036] [PMID: 21145000]
[41]
Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012; 488(7412): 499-503.
[http://dx.doi.org/10.1038/nature11280] [PMID: 22801503]
[42]
Johnson JO, Pioro EP, Boehringer A, et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 2014; 17(5): 664-6.
[http://dx.doi.org/10.1038/nn.3688] [PMID: 24686783]
[43]
Hirano M, Quinzii CM, Mitsumoto H, et al. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011; 12(3): 223-7.
[http://dx.doi.org/10.3109/17482968.2010.545952] [PMID: 21190393]
[44]
Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011; 477(7363): 211-5.
[http://dx.doi.org/10.1038/nature10353] [PMID: 21857683]
[45]
Laaksovirta H, Peuralinna T, Schymick JC, et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: A genome-wide association study. Lancet Neurol 2010; 9(10): 978-85.
[http://dx.doi.org/10.1016/S1474-4422(10)70184-8] [PMID: 20801718]
[46]
Freischmidt A, Wieland T, Richter B, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 2015; 18(5): 631-6.
[http://dx.doi.org/10.1038/nn.4000] [PMID: 25803835]
[47]
Brenner D, Müller K, Wieland T, et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 2016; 139(5): e28.
[http://dx.doi.org/10.1093/brain/aww033] [PMID: 26945885]
[48]
Williams KL, Topp S, Yang S, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun 2016; 7(1): 11253.
[http://dx.doi.org/10.1038/ncomms11253] [PMID: 27080313]
[49]
Nicolas A, Kenna KP, Renton AE, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 2018; 97(6): 1268-1283.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.02.027] [PMID: 29566793]
[50]
Gelfman S, Dugger S, de Araujo Martins Moreno C, et al. A new approach for rare variation collapsing on functional protein domains implicates specific genic regions in ALS. Genome Res 2019; 29(5): 809-18.
[http://dx.doi.org/10.1101/gr.243592.118] [PMID: 30940688]
[51]
Cooper-Knock J, Moll T, Ramesh T, et al. Mutations in the glycosyltransferase domain of GLT8D1 are associated with familial amyotrophic lateral sclerosis. Cell Rep 2019; 26(9): 2298-2306.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.02.006] [PMID: 30811981]
[52]
Farhan SMK, Howrigan DP, Abbott LE, et al. Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nat Neurosci 2019; 22(12): 1966-74.
[http://dx.doi.org/10.1038/s41593-019-0530-0] [PMID: 31768050]
[53]
Smith BN, Ticozzi N, Fallini C, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 2014; 84(2): 324-31.
[http://dx.doi.org/10.1016/j.neuron.2014.09.027] [PMID: 25374358]
[54]
Smith BN, Topp SD, Fallini C, et al. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci Transl Med 2017; 9(388): eaad9157.
[http://dx.doi.org/10.1126/scitranslmed.aad9157]
[55]
Edens BM, Yan J, Miller N, Deng HX, Siddique T, Ma YC. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. eLife 2017; 6: e25453.
[http://dx.doi.org/10.7554/eLife.25453] [PMID: 28463112]
[56]
Woo JAA, Liu T, Trotter C, et al. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nat Commun 2017; 8(1): 15558.
[http://dx.doi.org/10.1038/ncomms15558] [PMID: 28585542]
[57]
Wroe R, Wai-Ling Butler A, Andersen PM, Powell JF, Al-Chalabi A. ALSOD: The amyotrophic lateral sclerosis online database. Amyotroph Lateral Scler 2008; 9(4): 249-50.
[http://dx.doi.org/10.1080/17482960802146106] [PMID: 18608099]
[58]
Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat 2012; 33(9): 1345-51.
[http://dx.doi.org/10.1002/humu.22157] [PMID: 22753137]
[59]
Van Rheenen W, Pulit SL, Dekker AM, et al. Project MinE: Study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur J Hum Genet 2018; 26(10): 1537-46.
[http://dx.doi.org/10.1038/s41431-018-0177-4] [PMID: 29955173]
[60]
Kenna KP, van Doormaal PTC, Dekker AM, et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat Genet 2016; 48(9): 1037-42.
[http://dx.doi.org/10.1038/ng.3626] [PMID: 27455347]
[61]
Yamashita S, Ando Y. Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener 2015; 4(1): 13.
[http://dx.doi.org/10.1186/s40035-015-0036-y] [PMID: 26213621]
[62]
Srinivasan E, Rajasekaran R. A systematic and comprehensive review on disease-causing genes in amyotrophic lateral sclerosis. J Mol Neurosci 2020; 70(11): 1742-70.
[http://dx.doi.org/10.1007/s12031-020-01569-w] [PMID: 32415434]
[63]
Hayashi Y, Homma K, Ichijo H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul 2016; 60: 95-104.
[http://dx.doi.org/10.1016/j.jbior.2015.10.006] [PMID: 26563614]
[64]
Nishitoh H, Kadowaki H, Nagai A, et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 2008; 22(11): 1451-64.
[http://dx.doi.org/10.1101/gad.1640108] [PMID: 18519638]
[65]
Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice. Nat Neurosci 2009; 12(5): 627-36.
[http://dx.doi.org/10.1038/nn.2297] [PMID: 19330001]
[66]
Fortier G, Butti Z, Patten SA. Modelling c9orf72-related amyotrophic lateral sclerosis in zebrafish. Biomedicine 2020; (8): 1-15.
[http://dx.doi.org/10.3390/biomedicines8100440]
[67]
Iyer S, Subramanian V, Acharya KR. C9orf72, a protein associated with Amyotrophic Lateral Sclerosis (ALS) is a guanine nucleotide exchange factor. PeerJ 2018; 6: e5815.
[http://dx.doi.org/10.7717/peerj.5815] [PMID: 30356970]
[68]
Farg MA, Sundaramoorthy V, Sultana JM, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 2014; 23(13): 3579-95.
[http://dx.doi.org/10.1093/hmg/ddu068] [PMID: 24549040]
[69]
Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: Multiple pathways to disease. Nat Rev Neurol 2018; 14(9): 544-58.
[http://dx.doi.org/10.1038/s41582-018-0047-2] [PMID: 30120348]
[70]
Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med Genetik 2018; 30(2): 252-8.
[http://dx.doi.org/10.1007/s11825-018-0185-3]
[71]
Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: Summary and update. Hum Mutat 2013; 34(6): 812-26.
[http://dx.doi.org/10.1002/humu.22319] [PMID: 23559573]
[72]
Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 2014; 10(6): 337-48.
[http://dx.doi.org/10.1038/nrneurol.2014.78] [PMID: 24840975]
[73]
Nakaya T, Maragkakis M. Amyotrophic lateral sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity. Sci Rep 2018; 8(1): 15575.
[http://dx.doi.org/10.1038/s41598-018-33964-0] [PMID: 30349096]
[74]
Ayala YM, De Conti L, Avendaño-Vázquez SE, et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 2011; 30(2): 277-88.
[http://dx.doi.org/10.1038/emboj.2010.310] [PMID: 21131904]
[75]
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 2019; 12: 25.
[http://dx.doi.org/10.3389/fnmol.2019.00025] [PMID: 30837838]
[76]
Pesiridis GS, Lee VMY, Trojanowski JQ. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 2009; 18(R2): R156-62.
[http://dx.doi.org/10.1093/hmg/ddp303] [PMID: 19808791]
[77]
Buratti E, Baralle FE. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 2010; 7(4): 420-9.
[http://dx.doi.org/10.4161/rna.7.4.12205] [PMID: 20639693]
[78]
Highley JR, Kirby J, Jansweijer JA, et al. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol 2014; 40(6): 670-85.
[http://dx.doi.org/10.1111/nan.12148] [PMID: 24750229]
[79]
Arnold ES, Ling SC, Huelga SC, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 2013; 110(8): E736-45.
[http://dx.doi.org/10.1073/pnas.1222809110] [PMID: 23382207]
[80]
Dewey CM, Cenik B, Sephton CF, et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 2011; 31(5): 1098-108.
[http://dx.doi.org/10.1128/MCB.01279-10] [PMID: 21173160]
[81]
McDonald KK, Aulas A, Destroismaisons L, et al. TAR DNA-binding Protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 2011; 20(7): 1400-10.
[http://dx.doi.org/10.1093/hmg/ddr021] [PMID: 21257637]
[82]
Wang W, Wang L, Lu J, et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med 2016; 22(8): 869-78.
[http://dx.doi.org/10.1038/nm.4130] [PMID: 27348499]
[83]
Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp Mol Med 2020; 52(10): 1652-62.
[http://dx.doi.org/10.1038/s12276-020-00513-7] [PMID: 33051572]
[84]
Ling SC, Albuquerque CP, Han JS, et al. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci USA 2010; 107(30): 13318-23.
[http://dx.doi.org/10.1073/pnas.1008227107] [PMID: 20624952]
[85]
Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015; 12(2): 352-63.
[http://dx.doi.org/10.1007/s13311-015-0338-x] [PMID: 25652699]
[86]
Wils H, Kleinberger G, Janssens J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 2010; 107(8): 3858-63.
[http://dx.doi.org/10.1073/pnas.0912417107] [PMID: 20133711]
[87]
Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human cu, zn superoxide dismutase mutation. Science 1994; 264(5166): 1772-5.
[88]
Duchen LW, Strich SJ. An hereditary motor neurone disease with progressive denervation of muscle in the mouse: The mutant ‘wobbler’. J Neurol Neurosurg Psychiatry 1968; 31(6): 535-42.
[http://dx.doi.org/10.1136/jnnp.31.6.535] [PMID: 5709840]
[89]
Pieri M, Caioli S, Canu N, Mercuri NB, Guatteo E, Zona C. Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis. Exp Neurol 2013; 247: 349-58.
[http://dx.doi.org/10.1016/j.expneurol.2012.11.002] [PMID: 23142186]
[90]
Yin HZ, Weiss JH. Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal degeneration in spinal cord slice cultures. Brain Res 2012; 1448: 153-62.
[http://dx.doi.org/10.1016/j.brainres.2012.02.005] [PMID: 22370146]
[91]
Hadzhieva M, Kirches E, Wilisch-Neumann A, et al. Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience 2013; 230: 94-101.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.021] [PMID: 23178912]
[92]
Morfini GA, Bosco DA, Brown H, et al. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 2013; 8(6): e65235.
[http://dx.doi.org/10.1371/journal.pone.0065235] [PMID: 23776455]
[93]
Ohta Y, Soucy G, Phaneuf D, et al. Sex-dependent effects of chromogranin B P413L allelic variant as disease modifier in amyotrophic lateral sclerosis. Hum Mol Genet 2016; 25(21): ddw304.
[http://dx.doi.org/10.1093/hmg/ddw304] [PMID: 28175304]
[94]
Gois AM, Mendonça DMF, Freire MAM, Santos JR. In vitro and in vivo models of amyotrophic lateral sclerosis: An updated overview. Brain Res Bull 2020; 159: 32-43.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.012] [PMID: 32247802]
[95]
Joyce PI, Mcgoldrick P, Saccon RA, et al. A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Hum Mol Genet 2015; 24(7): 1883-97.
[http://dx.doi.org/10.1093/hmg/ddu605] [PMID: 25468678]
[96]
Yoshii Y, Otomo A, Pan L, Ohtsuka M, Hadano S. Loss of glial fibrillary acidic protein marginally accelerates disease progression in a SOD1H46R transgenic mouse model of ALS. Neurosci Res 2011; 70(3): 321-9.
[http://dx.doi.org/10.1016/j.neures.2011.03.006] [PMID: 21453731]
[97]
Bruijn LI, Beal MF, Becher MW, et al. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout Amyotrophic Lateral Sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 1997; 94(14): 7606-11.
[http://dx.doi.org/10.1073/pnas.94.14.7606] [PMID: 9207139]
[98]
Wang L, Yi F, Fu L, et al. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 2017; 8(5): 365-78.
[http://dx.doi.org/10.1007/s13238-017-0397-3] [PMID: 28401346]
[99]
Bhinge A, Namboori SC, Zhang X, VanDongen AMJ, Stanton LW. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis. Stem Cell Reports 2017; 8(4): 856-69.
[http://dx.doi.org/10.1016/j.stemcr.2017.02.019] [PMID: 28366453]
[100]
Baskoylu SN, Yersak J, O’Hern P, et al. Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet 2018; 14(10): e1007682.
[http://dx.doi.org/10.1371/journal.pgen.1007682] [PMID: 30296255]
[101]
Howland DS, Liu J, She Y, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated Amyotrophic Lateral Sclerosis (ALS). Proc Natl Acad Sci USA 2002; 99(3): 1604-9.
[http://dx.doi.org/10.1073/pnas.032539299] [PMID: 11818550]
[102]
Nagai M, Aoki M, Miyoshi I, et al. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: Associated mutations develop motor neuron disease. J Neurosci 2001; 21(23): 9246-54.
[http://dx.doi.org/10.1523/JNEUROSCI.21-23-09246.2001] [PMID: 11717358]
[103]
Borel F, Gernoux G, Cardozo B, et al. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum Gene Ther 2016; 27(1): 19-31.
[http://dx.doi.org/10.1089/hum.2015.122] [PMID: 26710998]
[104]
Şahin A, Held A, Bredvik K, et al. Human SOD1 ALS mutations in a Drosophila knock-in model cause severe phenotypes and reveal dosage-sensitive gain- and loss-of-function components. Genetics 2017; 205(2): 707-23.
[http://dx.doi.org/10.1534/genetics.116.190850] [PMID: 27974499]
[105]
Bahadorani S, Mukai ST, Rabie J, Beckman JS, Phillips JP, Hilliker AJ. Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction. Neurobiol Aging 2013; 34(10): 2322-30.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.024] [PMID: 23601674]
[106]
Watson MR, Lagow RD, Xu K, Zhang B, Bonini NM. A Drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem 2008; 283(36): 24972-81.
[http://dx.doi.org/10.1074/jbc.M804817200] [PMID: 18596033]
[107]
Bastow EL, Peswani AR, Tarrant DSJ, et al. New links between SOD1 and metabolic dysfunction from a yeast model of Amyotrophic Lateral Sclerosis (ALS). J Cell Sci 2016; 129(21): jcs.190298.
[http://dx.doi.org/10.1242/jcs.190298] [PMID: 27656112]
[108]
Martins D, English AM. SOD1 oxidation and formation of soluble aggregates in yeast: Relevance to sporadic ALS development. Redox Biol 2014; 2: 632-9.
[http://dx.doi.org/10.1016/j.redox.2014.03.005] [PMID: 24936435]
[109]
Herranz-Martin S, Chandran J, Lewis K, et al. Viral delivery of C9ORF72 hexanucleotide repeat expansions in mice lead to repeat length dependent neuropathology and behavioral deficits. Dis Model Mech 2017; 10(7): dmm.029892.
[http://dx.doi.org/10.1242/dmm.029892] [PMID: 28550099]
[110]
Koppers M, Blokhuis AM, Westeneng HJ, et al. C 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 2015; 78(3): 426-38.
[http://dx.doi.org/10.1002/ana.24453] [PMID: 26044557]
[111]
Liu Y, Pattamatta A, Zu T, et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 2016; 90(3): 521-34.
[http://dx.doi.org/10.1016/j.neuron.2016.04.005] [PMID: 27112499]
[112]
Ababneh NA, Scaber J, Flynn R, et al. Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair. Hum Mol Genet 2020; 29(13): 2200-17.
[http://dx.doi.org/10.1093/hmg/ddaa106] [PMID: 32504093]
[113]
Piao X, Meng D, Zhang X, Song Q, Lv H, Jia Y. Dual-gRNA approach with limited off-target effect corrects C9ORF72 repeat expansion in vivo. Sci Rep 2022; 12(1): 5672.
[http://dx.doi.org/10.1038/s41598-022-07746-8] [PMID: 35383205]
[114]
Freibaum BD, Lu Y, Lopez-Gonzalez R, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015; 525(7567): 129-33.
[http://dx.doi.org/10.1038/nature14974] [PMID: 26308899]
[115]
Lopez-Gonzalez R, Yang D, Pribadi M, et al. Partial inhibition of the overactivated Ku80-dependent DNA repair pathway rescues neurodegeneration in C9ORF72 -ALS/FTD. Proc Natl Acad Sci USA 2019; 116(19): 9628-33.
[http://dx.doi.org/10.1073/pnas.1901313116] [PMID: 31019093]
[116]
Ciura S, Lattante S, Le Ber I, et al. Loss of function of C9orf72 causes motor deficits in a zebrafish 7.model of amyotrophic lateral sclerosis. Ann Neurol 2013; 74(2): 180-7.
[http://dx.doi.org/10.1002/ana.23946] [PMID: 23720273]
[117]
Zhang K, Donnelly CJ, Haeusler AR, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015; 525(7567): 56-61.
[http://dx.doi.org/10.1038/nature14973] [PMID: 26308891]
[118]
Mizielinska S, Grönke S, Niccoli T, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science (80- ) 2014.
[http://dx.doi.org/10.1126/science.1256800]
[119]
Zhang K, Coyne AN, Lloyd TE. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res 2018; 1693(Pt A): 109-20.
[http://dx.doi.org/10.1016/j.brainres.2018.04.043] [PMID: 29752901]
[120]
Therrien M, Rouleau GA, Dion PA, Parker JA. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 2013; 8(12): e83450.
[http://dx.doi.org/10.1371/journal.pone.0083450] [PMID: 24349511]
[121]
Corrionero A, Horvitz HRA. C9orf72 ALS/FTD ortholog acts in endolysosomal degradation and lysosomal homeostasis. Curr Biol 2018; 28(10): 1522-1535.e5.
[http://dx.doi.org/10.1016/j.cub.2018.03.063] [PMID: 29731301]
[122]
Lutz C. Mouse models of ALS: Past, present and future. Brain Res 2018; 1693(Pt A): 1-10.
[http://dx.doi.org/10.1016/j.brainres.2018.03.024] [PMID: 29577886]
[123]
Shaw CA, Morrice JR, Gregory-Evans CY. Animal models of amyotrophic lateral sclerosis: A comparison of model validity. Neural Regen Res 2018; 13(12): 2050-4.
[http://dx.doi.org/10.4103/1673-5374.241445] [PMID: 30323119]
[124]
White MA, Kim E, Duffy A, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci 2018; 21(4): 552-63.
[http://dx.doi.org/10.1038/s41593-018-0113-5] [PMID: 29556029]
[125]
Fratta P, Sivakumar P, Humphrey J, et al. Mice with endogenous TDP ‐43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J 2018; 37(11): 1-15.
[http://dx.doi.org/10.15252/embj.201798684] [PMID: 29764981]
[126]
Watanabe S, Oiwa K, Murata Y, et al. ALS-linked TDP-43M337V knock-in mice exhibit splicing deregulation without neurodegeneration. Mol Brain 2020; 13(1): 8.
[http://dx.doi.org/10.1186/s13041-020-0550-4] [PMID: 31959210]
[127]
Uchida A, Sasaguri H, Kimura N, et al. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 2012; 135(3): 833-46.
[http://dx.doi.org/10.1093/brain/awr348] [PMID: 22252998]
[128]
Dayton RD, Gitcho MA, Orchard EA, et al. Selective forelimb impairment in rats expressing a pathological TDP-43 25 kDa C-terminal fragment to mimic amyotrophic lateral sclerosis. Mol Ther 2013; 21(7): 1324-34.
[http://dx.doi.org/10.1038/mt.2013.88] [PMID: 23689600]
[129]
Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis 2016; 93: 78-95.
[http://dx.doi.org/10.1016/j.nbd.2016.04.009] [PMID: 27151771]
[130]
Cragnaz L, Klima R, De Conti L, et al. An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model. Neuroscience 2015; 311: 415-21.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.037] [PMID: 26518462]
[131]
Johnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 2008; 105(17): 6439-44.
[http://dx.doi.org/10.1073/pnas.0802082105] [PMID: 18434538]
[132]
Murakami T, Qamar S, Lin JQ, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 2015; 88(4): 678-90.
[133]
Hicks GG, Singh N, Nashabi A, et al. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 2000; 24(2): 175-9.
[http://dx.doi.org/10.1038/72842] [PMID: 10655065]
[134]
Kuroda M, Sok J, Webb L, et al. Male sterility and enhanced radiation sensitivity in TLS-/- mice. EMBO J 2000; 19(3): 453-62.
[http://dx.doi.org/10.1093/emboj/19.3.453] [PMID: 10654943]
[135]
Deĭkin A V, Kovrazhkina EA, Ovchinnikov RK, et al. A mice model of amyotrophic lateral sclerosis expressing mutant human FUS protein. Zhurnal Nevrol i psikhiatrii Im SS Korsakova 2014; (114): 62-9.
[136]
Sharma A, Varghese AM, Vijaylakshmi K, et al. Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces mitochondrial and lysosomal dysfunction. Neurochem Res 2016; 41(5): 965-84.
[http://dx.doi.org/10.1007/s11064-015-1779-7] [PMID: 26646005]
[137]
Soo KY, Halloran M, Sundaramoorthy V, et al. Rab1-dependent ER–Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol 2015; 130(5): 679-97.
[http://dx.doi.org/10.1007/s00401-015-1468-2] [PMID: 26298469]
[138]
Huang C, Zhou H, Tong J, et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet 2011; 7(3): e1002011.
[http://dx.doi.org/10.1371/journal.pgen.1002011] [PMID: 21408206]
[139]
Yun Y, Ha Y. CRISPR/Cas9-mediated gene correction to understand ALS. Int J Mol Sci 2020; 21(11): 3801.
[140]
Kankel MW, Sen A, Lu L, et al. Amyotrophic lateral sclerosis modifiers in drosophila reveal the phospholipase d pathway as a potential therapeutic target. Genetics 2020; 215(3): 747-66.
[http://dx.doi.org/10.1534/genetics.119.302985] [PMID: 32345615]
[141]
Bartoletti M, Bosco DA, Da Cruz S, et al. Phenotypic suppression of ALS/FTD-associated neurodegeneration highlights mechanisms of dysfunction. J Neurosci 2019; 39(42): 8217-24.
[http://dx.doi.org/10.1523/JNEUROSCI.1159-19.2019] [PMID: 31619490]
[142]
Tan RH, Ke YD, Ittner LM, Halliday GM. ALS/FTLD: Experimental models and reality. Acta Neuropathol 2017; 133(2): 177-96.
[http://dx.doi.org/10.1007/s00401-016-1666-6] [PMID: 28058507]
[143]
Liachko NF, Guthrie CR, Kraemer BC. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 2010; 30(48): 16208-19.
[http://dx.doi.org/10.1523/JNEUROSCI.2911-10.2010] [PMID: 21123567]
[144]
Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314(5796): 130-3.
[http://dx.doi.org/10.1126/science.1134108]
[145]
Couthouis J, Hart MP, Erion R, et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 2012; 21(13): 2899-911.
[http://dx.doi.org/10.1093/hmg/dds116] [PMID: 22454397]
[146]
Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci USA 2011; 108(52): 20881-90.
[http://dx.doi.org/10.1073/pnas.1109434108] [PMID: 22065782]
[147]
Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013; 495(7442): 467-73.
[http://dx.doi.org/10.1038/nature11922] [PMID: 23455423]
[148]
Mackenzie IR, Nicholson AM, Sarkar M, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 2017; 95(4): 808-816.e9.
[http://dx.doi.org/10.1016/j.neuron.2017.07.025] [PMID: 28817800]
[149]
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron 2019; 102(2): 294-320.
[http://dx.doi.org/10.1016/j.neuron.2019.03.014] [PMID: 30998900]
[150]
Klim JR, Williams LA, Limone F, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 2019; 22(2): 167-79.
[http://dx.doi.org/10.1038/s41593-018-0300-4] [PMID: 30643292]
[151]
Melamed Z, López-Erauskin J, Baughn MW, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 2019; 22(2): 180-90.
[http://dx.doi.org/10.1038/s41593-018-0293-z] [PMID: 30643298]
[152]
Shiga A, Ishihara T, Miyashita A, et al. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS One 2012; 7(8): e43120.
[http://dx.doi.org/10.1371/journal.pone.0043120] [PMID: 22900096]
[153]
Mason M, Lieberman AR, Grenningloh G, Anderson PN. Transcriptional upregulation of SCG10 and CAP-23 is correlated with regeneration of the axons of peripheral and central neurons in vivo. Mol Cell Neurosci 2002; 20(4): 595-615.
[http://dx.doi.org/10.1006/mcne.2002.1140] [PMID: 12213442]
[154]
Biever A, Donlin-Asp PG, Schuman EM. Local translation in neuronal processes. Curr Opin Neurobiol 2019; 57: 141-8.
[http://dx.doi.org/10.1016/j.conb.2019.02.008] [PMID: 30861464]
[155]
López-Erauskin J, Tadokoro T, Baughn MW, et al. ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS. Neuron 2018; 100(4): 816-830.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.09.044] [PMID: 30344044]
[156]
López-Erauskin J, Tadokoro T, Baughn MW, et al. ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS. Neuron 2020; 106(2): 354.
[http://dx.doi.org/10.1016/j.neuron.2020.04.006] [PMID: 32325059]
[157]
Kanekura K, Yagi T, Cammack AJ, et al. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum Mol Genet 2016; 25(9): 1803-13.
[http://dx.doi.org/10.1093/hmg/ddw052] [PMID: 26931465]
[158]
Cestra G, Rossi S, Di Salvio M, Cozzolino M. Control of mRNA translation in ALS proteinopathy. Front Mol Neurosci 2017; 10: 85.
[http://dx.doi.org/10.3389/fnmol.2017.00085] [PMID: 28386218]
[159]
Lehmkuhl EM, Zarnescu DC. Lost in translation: Evidence for protein synthesis deficits in ALS/FTD and related neurodegenerative diseases. Adv Neurobiol 2018; 20: 283-301.
[http://dx.doi.org/10.1007/978-3-319-89689-2_11] [PMID: 29916024]
[160]
Sprenkle NT, Sims SG, Sánchez CL, Meares GP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 2017; 12(1): 42.
[http://dx.doi.org/10.1186/s13024-017-0183-y] [PMID: 28545479]
[161]
Liu-Yesucevitz L, Bilgutay A, Zhang YJ, et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: Analysis of cultured cells and pathological brain tissue. PLoS One 2010; 5(10): e13250.
[http://dx.doi.org/10.1371/journal.pone.0013250] [PMID: 20948999]
[162]
Alexander EJ, Ghanbari Niaki A, Zhang T, et al. Ubiquilin 2 modulates ALS/FTD-linked FUS–RNA complex dynamics and stress granule formation. Proc Natl Acad Sci USA 2018; 115(49): E11485-94.
[http://dx.doi.org/10.1073/pnas.1811997115] [PMID: 30442662]
[163]
Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: A link to pathological inclusions in ALS? Front Cell Neurosci 2015; 9: 423.
[http://dx.doi.org/10.3389/fncel.2015.00423] [PMID: 26557057]
[164]
Fang MY, Markmiller S, Vu AQ, et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 2019; 103(5): 802-819.e11.
[http://dx.doi.org/10.1016/j.neuron.2019.05.048] [PMID: 31272829]
[165]
Anderson EN, Gochenaur L, Singh A, et al. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet 2018; 27(8): 1366-81.
[http://dx.doi.org/10.1093/hmg/ddy047] [PMID: 29432563]
[166]
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit dysfunction in SOD1-ALS model first detected in sensory feedback prior to motor neuron degeneration is alleviated by BMP signaling. J Neurosci 2019; 39(12): 2347-64.
[http://dx.doi.org/10.1523/JNEUROSCI.1771-18.2019] [PMID: 30659087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy