Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Roles of Natural Alkaloids and Polyphenols in Lipid Metabolism: Therapeutic Implications and Potential Targets in Metabolic Diseases

Author(s): Zeqiang Ma, Shengnan Wang, Weiwei Miao, Zhiwang Zhang, Lin Yu, Siqi Liu, Zupeng Luo, Huanjie Liang, Jingsu Yu, Tengda Huang, Mingming Li, Jiayi Gao, Songtao Su, Yixing Li and Lei Zhou*

Volume 30, Issue 32, 2023

Published on: 19 December, 2022

Page: [3649 - 3667] Pages: 19

DOI: 10.2174/0929867330666221107095646

Price: $65

conference banner
Abstract

The prevalence of obesity and its associated diseases has increased dramatically, and they are major threats to human health worldwide. A variety of approaches, such as physical training and drug therapy, can be used to reduce weight and reverse associated diseases; however, the efficacy and the prognosis are often unsatisfactory. It has been reported that natural food-based small molecules can prevent obesity and its associated diseases. Among them, alkaloids and polyphenols have been demonstrated to regulate lipid metabolism by enhancing energy metabolism, promoting lipid phagocytosis, inhibiting adipocyte proliferation and differentiation, and enhancing the intestinal microbial community to alleviate obesity. This review summarizes the regulatory mechanisms and metabolic pathways of these natural small molecules and reveals that the binding targets of most of these molecules are still undefined, which limits the study of their regulatory mechanisms and prevents their further application. In this review, we describe the use of Discovery Studio for the reverse docking of related small molecules and provide new insights for target protein prediction, scaffold hopping, and mechanistic studies in the future. These studies will provide a theoretical basis for the modernization of anti-obesity drugs and promote the discovery of novel drugs.

Keywords: Obesity, natural alkaloids, natural polyphenols, molecular mechanism, reverse docking, lipid metabolism.

[1]
Tsai, A.G.; Williamson, D.F.; Glick, H.A. Direct medical cost of overweight and obesity in the USA: A quantitative systematic review. Obes. Rev., 2011, 12(1), 50-61.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00708.x] [PMID: 20059703]
[2]
Kim, T.J.; von dem Knesebeck, O. Income and obesity: What is the direction of the relationship? A systematic review and meta-analysis. BMJ Open, 2018, 8(1), e019862.
[http://dx.doi.org/10.1136/bmjopen-2017-019862] [PMID: 29306894]
[3]
Weiss, E.C.; Galuska, D.A.; Kettel Khan, L.; Gillespie, C.; Serdula, M.K. Weight regain in U.S. adults who experienced substantial weight loss, 1999-2002. Am. J. Prev. Med., 2007, 33(1), 34-40.
[http://dx.doi.org/10.1016/j.amepre.2007.02.040] [PMID: 17572309]
[4]
Choi, H.; Kim, C.S.; Yu, R. Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation. J. Obes. Metab. Syndr., 2018, 27(2), 102-109.
[http://dx.doi.org/10.7570/jomes.2018.27.2.102] [PMID: 31089549]
[5]
Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem., 2013, 141(4), 3627-3635.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.028] [PMID: 23993530]
[6]
Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol., 2016, 173(15), 2369-2389.
[http://dx.doi.org/10.1111/bph.13514] [PMID: 27174467]
[7]
Zhang, X.; Zhao, Y.; Xu, J.; Xue, Z.; Zhang, M.; Pang, X.; Zhang, X.; Zhao, L. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep., 2015, 5(1), 14405.
[http://dx.doi.org/10.1038/srep14405] [PMID: 26396057]
[8]
Westerterp-Plantenga, M.S.; Smeets, A.; Lejeune, M.P.G. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int. J. Obes., 2005, 29(6), 682-688.
[http://dx.doi.org/10.1038/sj.ijo.0802862] [PMID: 15611784]
[9]
Kristam, R.; Gillet, V.J.; Lewis, R.A.; Thorner, D. Comparison of conformational analysis techniques to generate pharmacophore hypotheses using catalyst. J. Chem. Inf. Model., 2005, 45(2), 461-476.
[http://dx.doi.org/10.1021/ci049731z] [PMID: 15807512]
[10]
Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Zidek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]
[11]
Cordell, G.A.; Quinn-Beattie, M.L.; Farnsworth, N.R. The potential of alkaloids in drug discovery. Phytother. Res., 2001, 15(3), 183-205.
[http://dx.doi.org/10.1002/ptr.890] [PMID: 11351353]
[12]
Rohm, B.; Holik, A.K.; Kretschy, N.; Somoza, M.M.; Ley, J.P.; Widder, S.; Krammer, G.E.; Marko, D.; Somoza, V. Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. J. Cell. Biochem., 2015, 116(6), 1153-1163.
[http://dx.doi.org/10.1002/jcb.25052] [PMID: 25704235]
[13]
Xing, Y.; Yan, F.; Liu, Y.; Liu, Y.; Zhao, Y. Matrine inhibits 3T3-L1 preadipocyte differentiation associated with suppression of ERK1/2 phosphorylation. Biochem. Biophys. Res. Commun., 2010, 396(3), 691-695.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.163] [PMID: 20451501]
[14]
Huang, C.; Zhang, Y.; Gong, Z.; Sheng, X.; Li, Z.; Zhang, W.; Qin, Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochem. Biophys. Res. Commun., 2006, 348(2), 571-578.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.095] [PMID: 16890192]
[15]
Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; Xia, P.; Li, X.; Gao, X. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med., 2019, 141, 192-204.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.019] [PMID: 31226399]
[16]
Wang, L.; Ye, X.; Hua, Y.; Song, Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed. Pharmacother., 2018, 105, 121-129.
[http://dx.doi.org/10.1016/j.biopha.2018.05.110] [PMID: 29852389]
[17]
Ye, L.; Liang, S.; Guo, C.; Yu, X.; Zhao, J.; Zhang, H.; Shang, W. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance. Life Sci., 2016, 166, 82-91.
[http://dx.doi.org/10.1016/j.lfs.2016.09.025] [PMID: 27702567]
[18]
Wu, L.; Xia, M.; Duan, Y.; Zhang, L.; Jiang, H.; Hu, X.; Yan, H.; Zhang, Y.; Gu, Y.; Shi, H.; Li, J.; Gao, X.; Li, J. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis., 2019, 10(6), 468.
[http://dx.doi.org/10.1038/s41419-019-1706-y] [PMID: 31197160]
[19]
Smeets, A.J.; Janssens, P.L.H.R.; Plantenga, M.S. Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure. J. Nutr., 2013, 143(4), 442-447.
[http://dx.doi.org/10.3945/jn.112.170613] [PMID: 23406619]
[20]
Gannon, N.P.; Lambalot, E.L.; Vaughan, R.A. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types. Biofactors, 2016, 42(3), 229-246.
[http://dx.doi.org/10.1002/biof.1273] [PMID: 26945685]
[21]
Rui, L. Brain regulation of energy balance and body weight. Rev. Endocr. Metab. Disord., 2013, 14(4), 387-407.
[http://dx.doi.org/10.1007/s11154-013-9261-9] [PMID: 23990408]
[22]
Inoue, N.; Matsunaga, Y.; Satoh, H.; Takahashi, M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem., 2007, 71(2), 380-389.
[http://dx.doi.org/10.1271/bbb.60341] [PMID: 17284861]
[23]
Panchal, S.; Bliss, E.; Brown, L. Capsaicin in metabolic syndrome. Nutrients, 2018, 10(5), 630.
[http://dx.doi.org/10.3390/nu10050630] [PMID: 29772784]
[24]
Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; Mi, M. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 2017, 8(3), e00470-17.
[http://dx.doi.org/10.1128/mBio.00470-17] [PMID: 28536285]
[25]
Deminice, R.; da Silva, R.P.; Lamarre, S.G.; Kelly, K.B.; Jacobs, R.L.; Brosnan, M.E.; Brosnan, J.T. Betaine supplementation prevents fatty liver induced by a high-fat diet: Effects on one-carbon metabolism. Amino Acids, 2015, 47(4), 839-846.
[http://dx.doi.org/10.1007/s00726-014-1913-x] [PMID: 25577261]
[26]
Song, Z.; Deaciuc, I.; Zhou, Z.; Song, M.; Chen, T.; Hill, D.; McClain, C.J. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(4), G894-G902.
[http://dx.doi.org/10.1152/ajpgi.00133.2007] [PMID: 17702954]
[27]
Wang, Z.; Yao, T.; Pini, M.; Zhou, Z.; Fantuzzi, G.; Song, Z. Betaine improved adipose tissue function in mice fed a high-fat diet: A mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(5), G634-G642.
[http://dx.doi.org/10.1152/ajpgi.00249.2009] [PMID: 20203061]
[28]
Zhang, L.; Qi, Y.; ALuo, Z.; Liu, S.; Zhang, Z.; Zhou, L. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct., 2019, 10(1), 216-223.
[http://dx.doi.org/10.1039/C8FO02004C] [PMID: 30534761]
[29]
Wang, L.; Chen, L.; Tan, Y.; Wei, J.; Chang, Y.; Jin, T.; Zhu, H. Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter. Lipids Health Dis., 2013, 12(1), 34.
[http://dx.doi.org/10.1186/1476-511X-12-34] [PMID: 23497035]
[30]
Ge, C.X.; Yu, R.; Xu, M.X.; Li, P.Q.; Fan, C.Y.; Li, J.M.; Kong, L.D. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur. J. Pharmacol., 2016, 770, 154-164.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.043] [PMID: 26593707]
[31]
Seoane-Collazo, P.; Liñares-Pose, L.; Rial-Pensado, E.; Romero-Picó, A.; Moreno-Navarrete, J.M.; Martínez-Sánchez, N.; Garrido-Gil, P.; Iglesias-Rey, R.; Morgan, D.A.; Tomasini, N.; Malone, S.A.; Senra, A.; Folgueira, C.; Medina-Gomez, G.; Sobrino, T.; Labandeira-García, J.L.; Nogueiras, R.; Domingos, A.I.; Fernández-Real, J.M.; Rahmouni, K.; Diéguez, C.; López, M. Central nicotine induces browning through hypothalamic κ opioid receptor. Nat. Commun., 2019, 10(1), 4037.
[http://dx.doi.org/10.1038/s41467-019-12004-z] [PMID: 31492869]
[32]
Li, S.; Wang, H.; Wang, X.; Wang, Y.; Feng, J. Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig. J. Anim. Sci. Biotechnol., 2017, 8(1), 72.
[http://dx.doi.org/10.1186/s40104-017-0200-6] [PMID: 28883917]
[33]
Shi, L.; Shi, L.; Song, G.; Zhang, H.; Hu, Z.; Wang, C.; Zhang, D. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα). Eur. J. Pharmacol., 2013, 714(1-3), 89-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.013] [PMID: 23791610]
[34]
Gao, X.; Guo, S.; Zhang, S.; Liu, A.; Shi, L.; Zhang, Y. Matrine attenuates endoplasmic reticulum stress and mitochondrion dysfunction in nonalcoholic fatty liver disease by regulating SERCA pathway. J. Transl. Med., 2018, 16(1), 319.
[http://dx.doi.org/10.1186/s12967-018-1685-2] [PMID: 30458883]
[35]
Sun, K.; Yang, P.; Zhao, R.; Bai, Y.; Guo, Z. Matrine attenuates D-galactose-induced aging-related behavior in mice via inhibition of cellular senescence and oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 7108604.
[http://dx.doi.org/10.1155/2018/7108604] [PMID: 30598725]
[36]
Park, U.H.; Jeong, H.S.; Jo, E.Y.; Park, T.; Yoon, S.K.; Kim, E.J.; Jeong, J.C.; Um, S.J. Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J. Agric. Food Chem., 2012, 60(15), 3853-3860.
[http://dx.doi.org/10.1021/jf204514a] [PMID: 22463744]
[37]
Jwa, H.; Choi, Y.; Park, U.H.; Um, S.J.; Yoon, S.K.; Park, T. Piperine, an LXRα antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet. Biochem. Pharmacol., 2012, 84(11), 1501-1510.
[http://dx.doi.org/10.1016/j.bcp.2012.09.009] [PMID: 23000915]
[38]
Kim, K.J.; Lee, M.S.; Jo, K.; Hwang, J.K. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 411(1), 219-225.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.153] [PMID: 21741367]
[39]
BrahmaNaidu, P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact., 2014, 221, 42-51.
[http://dx.doi.org/10.1016/j.cbi.2014.07.008] [PMID: 25087745]
[40]
Kim, J.; Lee, K.P.; Lee, D.W.; Lim, K. Piperine enhances carbohydrate/fat metabolism in skeletal muscle during acute exercise in mice. Nutr. Metab., 2017, 14(1), 43.
[http://dx.doi.org/10.1186/s12986-017-0194-2] [PMID: 28680454]
[41]
Kim, N.; Nam, M.; Kang, M.S.; Lee, J.O.; Lee, Y.W.; Hwang, G.S.; Kim, H.S. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci. Rep., 2017, 7(1), 41066.
[http://dx.doi.org/10.1038/srep41066] [PMID: 28117414]
[42]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[43]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[44]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[45]
Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense. Phytomedicine, 2020, 69, 153209.
[http://dx.doi.org/10.1016/j.phymed.2020.153209] [PMID: 32240928]
[46]
Zheng, T.; Chen, H. Resveratrol ameliorates the glucose uptake and lipid metabolism in gestational diabetes mellitus mice and insulin-resistant adipocytes via miR-23a-3p/NOV axis. Mol. Immunol., 2021, 137, 163-173.
[http://dx.doi.org/10.1016/j.molimm.2021.06.011] [PMID: 34256324]
[47]
Zhao, X.; Gong, L.; Wang, C.; Liu, M.; Hu, N.; Dai, X.; Peng, C.; Li, Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. J. Ethnopharmacol., 2021, 268, 113569.
[http://dx.doi.org/10.1016/j.jep.2020.113569] [PMID: 33186701]
[48]
Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother., 2018, 105, 274-281.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135] [PMID: 29860219]
[49]
Lee, E.S.; Kwon, M.H.; Kim, H.M.; Woo, H.B.; Ahn, C.M.; Chung, C.H. Curcumin analog CUR5–8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism, 2020, 103, 154015.
[http://dx.doi.org/10.1016/j.metabol.2019.154015] [PMID: 31758951]
[50]
Okla, M.; Kim, J.; Koehler, K.; Chung, S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv. Nutr., 2017, 8(3), 473-483.
[http://dx.doi.org/10.3945/an.116.014332] [PMID: 28507012]
[51]
Kabirifar, R.; Ghoreshi, Z.; Rezaifar, A.; Binesh, F.; Bamdad, K.; Moradi, A. Curcumin, quercetin and atorvastatin protected against the hepatic fibrosis by activating AMP-activated protein kinase. J. Funct. Foods, 2018, 40, 341-348.
[http://dx.doi.org/10.1016/j.jff.2017.11.020]
[52]
Ejaz, A.; Wu, D.; Kwan, P.; Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr., 2009, 139(5), 919-925.
[http://dx.doi.org/10.3945/jn.108.100966] [PMID: 19297423]
[53]
Kong, D.; Zhang, Z.; Chen, L.; Huang, W.; Zhang, F.; Wang, L.; Wang, Y.; Cao, P.; Zheng, S. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol., 2020, 36, 101600.
[http://dx.doi.org/10.1016/j.redox.2020.101600] [PMID: 32526690]
[54]
Wang, L.; Zhang, B.; Huang, F.; Liu, B.; Xie, Y. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J. Lipid Res., 2016, 57(7), 1243-1255.
[http://dx.doi.org/10.1194/jlr.M067397] [PMID: 27220352]
[55]
Martín-Aragón, S.; Benedí, J.M.; Villar, A.M. Modifications on antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J. Pharm. Pharmacol., 2011, 49(1), 49-52.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06751.x] [PMID: 9120770]
[56]
Sreejayan; Rao, M.N.A. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol., 2011, 49(1), 105-107.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x] [PMID: 9120760]
[57]
Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008, 174(1), 27-37.
[http://dx.doi.org/10.1016/j.cbi.2008.05.003] [PMID: 18547552]
[58]
Zhao, D.; Pan, Y.; Yu, N.; Bai, Y.; Ma, R.; Mo, F.; Zuo, J.; Chen, B.; Jia, Q.; Zhang, D.; Liu, J.; Jiang, G.; Gao, S. Curcumin improves adipocytes browning and mitochondrial function in 3T3-L1 cells and obese rodent model. R. Soc. Open Sci., 2021, 8(3), 200974.
[http://dx.doi.org/10.1098/rsos.200974] [PMID: 33959308]
[59]
Lone, J.; Choi, J.H.; Kim, S.W.; Yun, J.W. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J. Nutr. Biochem., 2016, 27, 193-202.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.006] [PMID: 26456563]
[60]
Mitterberger, M.C.; Zwerschke, W. Mechanisms of resveratrol-induced inhibition of clonal expansion and terminal adipogenic differentiation in 3T3-L1 preadipocytes. J. Gerontol., 2013, 68(11), 1356-1376.
[http://dx.doi.org/10.1093/gerona/glt019] [PMID: 23525482]
[61]
Zhang, H.Y.; Du, Z.X.; Meng, X. Resveratrol prevents TNFα-induced suppression of adiponectin expression via PPARγ activation in 3T3-L1 adipocytes. Clin. Exp. Med., 2013, 13(3), 193-199.
[http://dx.doi.org/10.1007/s10238-012-0189-2] [PMID: 22584682]
[62]
Rayalam, S.; Yang, J.Y.; Ambati, S.; Della-Fera, M.A.; Baile, C.A. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res., 2008, 22(10), 1367-1371.
[http://dx.doi.org/10.1002/ptr.2503] [PMID: 18688788]
[63]
Pacholec, M.; Bleasdale, J.E.; Chrunyk, B.; Cunningham, D.; Flynn, D.; Garofalo, R.S.; Griffith, D.; Griffor, M.; Loulakis, P.; Pabst, B.; Qiu, X.; Stockman, B.; Thanabal, V.; Varghese, A.; Ward, J.; Withka, J.; Ahn, K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem., 2010, 285(11), 8340-8351.
[http://dx.doi.org/10.1074/jbc.M109.088682] [PMID: 20061378]
[64]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[65]
Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; Kim, M.K.; Beaven, M.A.; Burgin, A.B.; Manganiello, V.; Chung, J.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012, 148(3), 421-433.
[http://dx.doi.org/10.1016/j.cell.2012.01.017] [PMID: 22304913]
[66]
Shi, H.J.; Xu, C.; Liu, M.Y.; Wang, B.K.; Liu, W.B.; Chen, D.H.; Zhang, L.; Xu, C.Y.; Li, X.F. Resveratrol improves the energy sensing and glycolipid metabolism of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets by activating the AMPK–SIRT1– PGC-1α network. Front. Physiol., 2018, 9, 1258.
[http://dx.doi.org/10.3389/fphys.2018.01258] [PMID: 30254587]
[67]
Lin, J.K.; Lin-Shiau, S.Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res., 2006, 50(2), 211-217.
[http://dx.doi.org/10.1002/mnfr.200500138] [PMID: 16404708]
[68]
Kim, H.; Hiraishi, A.; Tsuchiya, K.; Sakamoto, K. (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology, 2010, 62(3), 245-255.
[http://dx.doi.org/10.1007/s10616-010-9285-x] [PMID: 20596890]
[69]
Wu, B.T.; Hung, P.F.; Chen, H.C.; Huang, R.N.; Chang, H.H.; Kao, Y.H. The apoptotic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the CDK2 pathway. J. Agric. Food Chem., 2005, 53(14), 5695-5701.
[http://dx.doi.org/10.1021/jf050045p] [PMID: 15998135]
[70]
Ding, H.; Li, Y.; Li, W.; Tao, H.; Liu, L.; Zhang, C.; Kong, T.; Feng, S.; Li, J.; Wang, X.; Wu, J. Epigallocatechin-3-gallate activates the AMP-activated protein kinase signaling pathway to reduce lipid accumulation in canine hepatocytes. J. Cell. Physiol., 2021, 236(1), 405-416.
[http://dx.doi.org/10.1002/jcp.29869] [PMID: 32572960]
[71]
Kim, J.J.Y.; Tan, Y.; Xiao, L.; Sun, Y.L.; Qu, X. Green tea polyphenol epigallocatechin-3-gallate enhance glycogen synthesis and inhibit lipogenesis in hepatocytes. BioMed Res. Int., 2013, 2013, 920128.
[http://dx.doi.org/10.1155/2013/920128] [PMID: 24066304]
[72]
Wu, D.; Liu, Z.; Wang, Y.; Zhang, Q.; Li, J.; Zhong, P.; Xie, Z.; Ji, A.; Li, Y. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway. Oxid. Med. Cell. Longev., 2021, 2021, 5599997.
[http://dx.doi.org/10.1155/2021/5599997] [PMID: 33953830]
[73]
Santamarina, A.B.; Carvalho-Silva, M.; Gomes, L.M.; Okuda, M.H.; Santana, A.A.; Streck, E.L.; Seelaender, M.; Oller do Nascimento, C.M.; Ribeiro, E.B.; Lira, F.S.; Oyama, L.M. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. J. Nutr. Biochem., 2015, 26(11), 1348-1356.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.002] [PMID: 26300331]
[74]
Grove, K.A.; Sae-Tan, S.; Kennett, M.J.; Lambert, J.D. (-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice. Obesity (Silver Spring), 2012, 20(11), 2311-2313.
[http://dx.doi.org/10.1038/oby.2011.139] [PMID: 21633405]
[75]
Bello, M.; Basilio-Antonio, L.; Fragoso-Vázquez, J.; Avalos-Soriano, A.; Correa-Basurto, J. Molecular recognition between pancreatic lipase and natural and synthetic inhibitors. Int. J. Biol. Macromol., 2017, 98, 855-868.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.150] [PMID: 28212930]
[76]
Liu, L.; Gao, C.; Yao, P.; Gong, Z. Quercetin alleviates high-fat diet-induced oxidized low-density lipoprotein accumulation in the liver: Implication for autophagy regulation. BioMed Res. Int., 2015, 2015, 607531.
[http://dx.doi.org/10.1155/2015/607531] [PMID: 26697490]
[77]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[78]
Kim, C.S.; Kwon, Y.; Choe, S.Y.; Hong, S.M.; Yoo, H.; Goto, T.; Kawada, T.; Choi, H.S.; Joe, Y.; Chung, H.T.; Yu, R. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab., 2015, 12
[http://dx.doi.org/10.1186/s12986-015-0030-5]
[79]
Ying, H.Z.; Liu, Y.H.; Yu, B.; Wang, Z.Y.; Zang, J.N.; Yu, C.H. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem. Toxicol., 2013, 52, 53-60.
[http://dx.doi.org/10.1016/j.fct.2012.10.030] [PMID: 23123425]
[80]
Hajduk, P.J.; Huth, J.R.; Tse, C. Predicting protein druggability. Drug Discov. Today, 2005, 10(23-24), 1675-1682.
[http://dx.doi.org/10.1016/S1359-6446(05)03624-X] [PMID: 16376828]
[81]
Bhattacharjee, B.; Vijayasarathy, S.; Karunakar, P.; Chatterjee, J. Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode. Asian Pac. J. Cancer Prev., 2012, 13(11), 5605-5611.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5605] [PMID: 23317225]
[82]
Kharkar, P.S.; Warrier, S.; Gaud, R.S. Reverse docking: A powerful tool for drug repositioning and drug rescue. Future Med. Chem., 2014, 6(3), 333-342.
[http://dx.doi.org/10.4155/fmc.13.207] [PMID: 24575968]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy