Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Natural Bioactive Compounds against Oxidative Stress: Dietary Polyphenols Strike Back

Author(s): Roberto Arrigoni, Francesco Cammarota, Rosa Porro, Stefania Cantore*, Mario Dioguardi, Angela Pia Cazzolla, Francesco De Leonardis, Lorenzo Polimeno, Nicoletta Zerman, Michele Di Cosola, Filiberto Mastrangelo, Luigi Santacroce and Andrea Ballini

Volume 23, Issue 6, 2023

Published on: 06 January, 2023

Page: [764 - 776] Pages: 13

DOI: 10.2174/1871530323666221107092553

Price: $65

Abstract

Oxidative stress is a major cellular and metabolic burden that can really alter cell life and become the base for disease onset and development. Many widespread pathologies can develop from an unresolved oxidative stress situation; thus, addressing this state is paramount for human health. Our antioxidant enzymes sometimes are not just enough. Fortifying our defense and the antioxidant and anti-inflammatory system can make a difference in our health: if this is attainable with our dietary habits, it could be a dream come true. Polyphenols are a fantastic tool indeed in the fight against oxidative stress: they are easy to obtain, with little cost, no side effects, and have a multitude of metabolic actions. This perspective review would shed light on polyphenol’s metabolic and molecular action regarding oxidative stress to help preserve our health.

Keywords: Polyphenols, oxidative stress, natural compounds, anti-inflammatory activity, reactive oxygen species (ROS), polyphenol therapeutic potential, clinical studies.

Graphical Abstract
[1]
Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: Generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085.
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[2]
Kim, G.; Lee, Y.E.K.; Kopelman, R. Hydrogen Peroxide (H2O2) detection with nanoprobes for biological applications: A mini-review. Methods Mol. Biol., 2013, 1028, 101-114.
[http://dx.doi.org/10.1007/978-1-62703-475-3_6] [PMID: 23740115]
[3]
Nakamura, S.; Ando, N.; Sato, M.; Ishihara, M. Ultraviolet irradiation enhances the microbicidal activity of silver nanoparticles by hydroxyl radicals. Int. J. Mol. Sci., 2020, 21(9), 3204.
[http://dx.doi.org/10.3390/ijms21093204] [PMID: 32366059]
[4]
Di Mascio, P.; Martinez, G.R.; Miyamoto, S.; Ronsein, G.E.; Medeiros, M.H.G.; Cadet, J. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev., 2019, 119(3), 2043-2086.
[http://dx.doi.org/10.1021/acs.chemrev.8b00554] [PMID: 30721030]
[5]
D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[6]
Korbecki, J.; Bobiński, R.; Dutka, M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res., 2019, 68(6), 443-458.
[http://dx.doi.org/10.1007/s00011-019-01231-1] [PMID: 30927048]
[7]
Kumar, S.; Pandey, K.A. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res., 2015, 7(6), 438-457.
[http://dx.doi.org/10.9734/BJMMR/2015/16284]
[8]
Deng, H.; Yang, W.; Zhou, Z.; Tian, R.; Lin, L.; Ma, Y.; Song, J.; Chen, X. Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat. Commun., 2020, 11(1), 4951.
[http://dx.doi.org/10.1038/s41467-020-18745-6] [PMID: 33009382]
[9]
Yan, F.; Mu, Y.; Yan, G.; Liu, J.; Shen, J.; Luo, G. Antioxidant enzyme mimics with synergism. Mini Rev. Med. Chem., 2010, 10(4), 342-356.
[http://dx.doi.org/10.2174/138955710791330972] [PMID: 20470248]
[10]
Arrigoni, R. The possible role of GPI-ceruloplasmin in hypoxia de novo creation and maintenance. Adv. Biochem., 2013, 1(2), 22-27.
[http://dx.doi.org/10.11648/j.ab.20130102.13]
[11]
Arrigoni, R.; Arrigoni, O. Multicopper oxidases: An innovative approach for oxygen management of aerobic organisms. Rend. Fis. Acc. Lincei, 2010, 21(1), 71-80.
[http://dx.doi.org/10.1007/s12210-009-0071-7]
[12]
Grandl, G.; Wolfrum, C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol., 2018, 40(2), 215-224.
[http://dx.doi.org/10.1007/s00281-017-0666-5] [PMID: 29209827]
[13]
Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci., 2020, 21(16), 5642.
[http://dx.doi.org/10.3390/ijms21165642] [PMID: 32781724]
[14]
García, N.; Zazueta, C.; Aguilera, A.L. Oxidative stress and inflammation in cardiovascular disease. Oxid. Med. Cell. Longev., 2017, 2017, 5853238.
[http://dx.doi.org/10.1155/2017/5853238] [PMID: 28536646]
[15]
Marchio, P.; Guerra, O.S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2019, 2019, 18563845.
[http://dx.doi.org/10.1155/2019/8563845] [PMID: 31354915]
[16]
Arts, I.C.W.; Van De Putte, B.; Hollman, P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem., 2000, 48(5), 1746-1751.
[http://dx.doi.org/10.1021/jf000025h] [PMID: 10820089]
[17]
Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
[18]
Cabello, V.C.; Simon, F.; Trollet, C.; Santibañez, J.F. Oxidative stress in disease and aging: Mechanisms and therapies 2016. Oxid. Med. Cell. Longev., 2017, 2017, 4310469.
[http://dx.doi.org/10.1155/2017/4310469] [PMID: 28246551]
[19]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[20]
Inchingolo, F.; Santacroce, L.; Cantore, S.; Ballini, A.; Del Prete, R.; Topi, S.; Saini, R.; Dipalma, G.; Arrigoni, R. Probiotics and EpiCor® in human health. J. Biol. Regul. Homeost. Agents, 2019, 33(6), 1973-1979.
[http://dx.doi.org/10.23812/19-543-L] [PMID: 31858774]
[21]
Signorini, L.; Ballini, A.; Arrigoni, R.; De Leonardis, F.; Saini, R.; Cantore, S.; De Vito, D.; Coscia, M.F.; Dipalma, G.; Santacroce, L.; Inchingolo, F. Evaluation of a nutraceutical product with probiotics, vitamin D, plus banaba leaf extracts (Lagerstroemia speciosa) in glycemic control. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(7), 1356-1365.
[http://dx.doi.org/10.2174/1871530320666201109115415] [PMID: 33167849]
[22]
Crocetto, F.; Boccellino, M.; Barone, B.; Di Zazzo, E.; Sciarra, A.; Galasso, G.; Settembre, G.; Quagliuolo, L.; Imbimbo, C.; Boffo, S.; Angelillo, I.F.; Di Domenico, M. The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay? Nutrients, 2020, 12(9), 2648.
[http://dx.doi.org/10.3390/nu12092648] [PMID: 32878054]
[23]
Zanza, C.; Thangathurai, J.; Audo, A.; Muir, H.A.; Candelli, M.; Pignataro, G.; Thangathurai, D.; Cicchinelli, S.; Racca, F.; Longhitano, Y.; Franceschi, F. Oxidative stress in critical care and vitamins supplement therapy: “A beneficial care enhancing”. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(17), 7703-7712.
[http://dx.doi.org/10.26355/eurrev_201909_18894] [PMID: 31539163]
[24]
Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in chronic kidney disease-Potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci., 2019, 21(1), 263.
[http://dx.doi.org/10.3390/ijms21010263] [PMID: 31906008]
[25]
Pérez, J.J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenolexplorer database. Eur. J. Clin. Nutr., 2010, 64(Suppl. 3), S112-S120.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[26]
Ballini, A.; Scacco, S.; Boccellino, M.; Santacroce, L.; Arrigoni, R. Microbiota and obesity: Where are we now? Biology, 2020, 9(12), 415.
[http://dx.doi.org/10.3390/biology9120415] [PMID: 33255588]
[27]
Saberi, K.M.; Katsiki, N.; Caraglia, M.; Boccellino, M.; Majeed, M.; Sahebkar, A. Vascular endothelial growth factor: An important molecular target of curcumin. Crit. Rev. Food Sci. Nutr., 2019, 59(2), 299-312.
[http://dx.doi.org/10.1080/10408398.2017.1366892] [PMID: 28853916]
[28]
Ricci, S.; Pinto, F.; Auletta, A.; Giordano, A.; Giovane, A.; Settembre, G.; Boccellino, M.; Boffo, S.; Di Carlo, A.; Di Domenico, M. The enigmatic role of matrix metalloproteinases in epithelial‐to‐mesenchymal transition of oral squamous cell carcinoma: Implications and nutraceutical aspects. J. Cell. Biochem., 2019, 120(5), 6813-6819.
[http://dx.doi.org/10.1002/jcb.26905] [PMID: 30714188]
[29]
Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Crit. Rev. Food Sci. Nutr., 2019, 59(20), 3371-3379.
[http://dx.doi.org/10.1080/10408398.2018.1492900] [PMID: 29993262]
[30]
Arranz, S.; Chiva, B.G.; Valderas, M.P.; Medina, R.A.; Lamuela, R.R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients, 2012, 4(7), 759-781.
[http://dx.doi.org/10.3390/nu4070759] [PMID: 22852062]
[31]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
[32]
Dellino, M.; Cascardi, E.; Vinciguerra, M.; Lamanna, B.; Malvasi, A.; Scacco, S.; Acquaviva, S.; Pinto, V.; Di Vagno, G.; Cormio, G.; De Luca, R.; Lafranceschina, M.; Cazzato, G.; Ingravallo, G.; Maiorano, E.; Resta, L.; Daniele, A.; La Forgia, D. Nutrition as personalized medicine against SARS-CoV-2 infections: Clinical and oncological options with a specific female groups overview. Int. J. Mol. Sci., 2022, 23(16), 9136.
[http://dx.doi.org/10.3390/ijms23169136] [PMID: 36012402]
[33]
Isacco, C.G.; Ballini, A.; De Vito, D.; Nguyen, K.C.D.; Cantore, S.; Bottalico, L.; Quagliuolo, L.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Arrigoni, R.; Dipalma, G.; Inchingolo, F. Rebalancing the oral microbiota as an efficient tool in endocrine, metabolic and immune disorders. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(5), 777-784.
[http://dx.doi.org/10.2174/1871530320666200729142504] [PMID: 32727337]
[34]
Arrigoni, R.; Ballini, A.; Santacroce, L.; Cantore, S.; Inchingolo, A.; Inchingolo, F.; Di Domenico, M.; Quagliuolo, L.; Boccellino, M. Another look at dietary polyphenols: Challenges in cancer prevention and treatment. Curr. Med. Chem., 2022, 29(6), 1061-1082.
[http://dx.doi.org/10.2174/0929867328666210810154732] [PMID: 34375181]
[35]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[36]
Di Domenico, M.; Feola, A.; Ambrosio, P.; Pinto, F.; Galasso, G.; Zarrelli, A.; Di Fabio, G.; Porcelli, M.; Scacco, S.; Inchingolo, F.; Quagliuolo, L.; Ballini, A.; Boccellino, M. Antioxidant effect of beer polyphenols and their bioavailability in dental-derived stem cells (D-dSCs) and human intestinal epithelial lines (Caco-2) cells. Stem Cells Int., 2020, 2020, 8835813.
[http://dx.doi.org/10.1155/2020/8835813] [PMID: 33101420]
[37]
Zhang, J.; Sun, X. Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry, 2021, 181, 112588.
[http://dx.doi.org/10.1016/j.phytochem.2020.112588] [PMID: 33232863]
[38]
Mateos, R.; Madrona, A.; Pereira, C.G.; Domínguez, V.; Cert, R.M.; Parrado, J.; Sarriá, B.; Bravo, L.; Espartero, J.L. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: Structure–activity relationship. Food Chem., 2015, 173, 313-320.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.036] [PMID: 25466028]
[39]
Arts, I.C.W.; Van De Putte, B.; Hollman, P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J. Agric. Food Chem., 2000, 48(5), 1752-1757.
[http://dx.doi.org/10.1021/jf000026+] [PMID: 10820090]
[40]
Roupe, K.; Remsberg, C.; Yáñez, J.; Davies, N. Pharmacometrics of stilbenes: Seguing towards the clinic. Curr. Clin. Pharmacol., 2006, 1(1), 81-101.
[http://dx.doi.org/10.2174/157488406775268246] [PMID: 18666380]
[41]
National Center for Biotechnology Information. PubChem Compound Summary for CID 82755, Hydroxytyrosol, 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxytyrosol [Accessed on: December 28, 2021].
[42]
Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother., 2002, 56(6), 276-282.
[http://dx.doi.org/10.1016/S0753-3322(02)00205-6]
[43]
Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem., 2018, 82(4), 600-610.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
[44]
Cerdá, B.; Tomás, B.F.A.; Espín, J.C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agric. Food Chem., 2005, 53(2), 227-235.
[http://dx.doi.org/10.1021/jf049144d] [PMID: 15656654]
[45]
Zamora, R.R.; Touillaud, M.; Rothwell, J.A.; Romieu, I.; Scalbert, A. Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: Current tools and applications and their limits. Am. J. Clin. Nutr., 2014, 100(1), 11-26.
[http://dx.doi.org/10.3945/ajcn.113.077743] [PMID: 24787490]
[46]
Hao, J.; Shen, W.; Yu, G.; Jia, H.; Li, X.; Feng, Z.; Wang, Y.; Weber, P.; Wertz, K.; Sharman, E.; Liu, J. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. J. Nutr. Biochem., 2010, 21(7), 634-644.
[http://dx.doi.org/10.1016/j.jnutbio.2009.03.012] [PMID: 19576748]
[47]
Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci., 2007, 8(9), 950-988.
[http://dx.doi.org/10.3390/i8090950]
[48]
Reis, A.; Perez, G.R.; Mateus, N.; De Freitas, V. Interactions of dietary polyphenols with epithelial lipids: Advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3007-3030.
[http://dx.doi.org/10.1080/10408398.2020.1791794] [PMID: 32654502]
[49]
Blázovics, A.; Lugasi, A.; Kemény, T.; Hagymási, K.; Kéry, Á. Membrane stabilising effects of natural polyphenols and flavonoids from Sempervivum tectorum on hepatic microsomal mixed-function oxidase system in hyperlipidemic rats. J. Ethnopharmacol., 2000, 73(3), 479-485.
[http://dx.doi.org/10.1016/S0378-8741(00)00333-0] [PMID: 11091002]
[50]
Forte, M.; Conti, V.; Damato, A.; Ambrosio, M.; Puca, A.A.; Sciarretta, S.; Frati, G.; Vecchione, C.; Carrizzo, A. Targeting nitric oxide with natural derived compounds as a therapeutic strategy in vascular diseases. Oxid. Med. Cell. Longev., 2016, 2016, 7364138.
[http://dx.doi.org/10.1155/2016/7364138] [PMID: 27651855]
[51]
Plattner, C.; Hackl, H. Modeling therapy resistance via the EGFR signaling pathway. FEBS J., 2019, 286(7), 1284-1286.
[http://dx.doi.org/10.1111/febs.14809] [PMID: 30892828]
[52]
Hui, O.; Hou, K.; Peng, W.; Liu, Z.; Deng, H. Antioxidant and xanthine oxidase inhibitory activities of total polyphenols from onion. Saudi J. Biol. Sci., 2018, 25(7), 1509-1513.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.005]
[53]
Nile, S.H.; Park, S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod., 2015, 70, 238-244.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.033]
[54]
Franchini, A.M.; Hunt, D.; Melendez, J.A.; Drake, J.R. FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J. Biol. Chem., 2013, 288(35), 25098-25108.
[http://dx.doi.org/10.1074/jbc.M113.474106] [PMID: 23857584]
[55]
Yu, T.; Dohl, J.; Wang, L.; Chen, Y.; Gasier, H.G.; Deuster, P.A. Curcumin ameliorates heat-induced injury through NADPH oxidase–dependent redox signaling and mitochondrial preservation in C2C12 myoblasts and mouse skeletal muscle. J. Nutr., 2020, 150(9), 2257-2267.
[http://dx.doi.org/10.1093/jn/nxaa201] [PMID: 32692359]
[56]
Boccellino, M.; Ambrosio, P.; Ballini, A.; De Vito, D.; Scacco, S.; Cantore, S.; Feola, A.; Di Donato, M.; Quagliuolo, L.; Sciarra, A.; Galasso, G.; Crocetto, F.; Imbimbo, C.; Boffo, S.; Di Zazzo, E.; Di Domenico, M. The role of curcumin in prostate cancer cells and derived spheroids. Cancers, 2022, 14(14), 3348.
[http://dx.doi.org/10.3390/cancers14143348] [PMID: 35884410]
[57]
Hanhineva, K.; Törrönen, R.; Bondia, P.I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[58]
Lu, W.J.; Li, J.Y.; Chen, R.J.; Huang, L.T.; Lee, T.Y.; Lin, K.H. VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC. Sci. Rep., 2019, 9(1), 18852.
[http://dx.doi.org/10.1038/s41598-019-55189-5] [PMID: 31827142]
[59]
Elbarbry, F.; Abdelkawy, K.; Moshirian, N.; Abdel, M.A.M. The antihypertensive effect of quercetin in young spontaneously hypertensive rats; Role of arachidonic acid metabolism. Int. J. Mol. Sci., 2020, 21(18), 6554.
[http://dx.doi.org/10.3390/ijms21186554] [PMID: 32911626]
[60]
Hong, J.; Bose, M.; Ju, J.; Ryu, J.H.; Chen, X.; Sang, S.; Lee, M.J.; Yang, C.S. Modulation of arachidonic acid metabolism by curcumin and related -diketone derivatives: Effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis, 2004, 25(9), 1671-1679.
[http://dx.doi.org/10.1093/carcin/bgh165] [PMID: 15073046]
[61]
Chervona, Y.; Costa, M. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic. Biol. Med., 2012, 53(5), 1041-1047.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.020] [PMID: 22841757]
[62]
Auti, A.; Alessio, N.; Ballini, A.; Dioguardi, M.; Cantore, S.; Scacco, S.; Vitiello, A.; Quagliuolo, L.; Rinaldi, B.; Santacroce, L.; Di Domenico, M.; Boccellino, M. Protective Effect of resveratrol against hypoxia-induced neural oxidative stress. J. Pers. Med., 2022, 12(8), 1202.
[http://dx.doi.org/10.3390/jpm12081202] [PMID: 35893296]
[63]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[64]
Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med., 1997, 29(2), 95-120.
[http://dx.doi.org/10.3109/07853899709113696] [PMID: 9187225]
[65]
Rodríguez, G.C.; Sánchez, Q.C.; Toledo, E.; Delgado, R.M.; Gaforio, J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules, 2019, 24(5), 917.
[http://dx.doi.org/10.3390/molecules24050917] [PMID: 30845651]
[66]
Weng, M.S.; Chang, J.H.; Hung, W.Y.; Yang, Y.C.; Chien, M.H. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res., 2018, 37(1), 61.
[http://dx.doi.org/10.1186/s13046-018-0728-0] [PMID: 29548337]
[67]
Oz, H.S.; Chen, T.; De Villiers, W.J.S. Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front. Immunol., 2013, 4, 132.
[http://dx.doi.org/10.3389/fimmu.2013.00132] [PMID: 23761791]
[68]
Oliviero, F.; Scanu, A.; Zamudio, C.Y.; Punzi, L.; Spinella, P. Anti-inflammatory effects of polyphenols in arthritis. J. Sci. Food Agric., 2018, 98(5), 1653-1659.
[http://dx.doi.org/10.1002/jsfa.8664] [PMID: 28886220]
[69]
Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 351.
[http://dx.doi.org/10.3390/ijms20020351] [PMID: 30654461]
[70]
Shaikh, S.B.; Prabhu, A.; Bhandary, Y.P. Curcumin suppresses Epithelial Growth Factor Receptor (EGFR) and Proliferative Protein (Ki 67) in acute lung injury and lung fibrosis in vitro and in vivo. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 558-563.
[http://dx.doi.org/10.2174/1871530319666190823160230] [PMID: 31441735]
[71]
Cai, X.Z.; Wang, J.; Xiao, D.L.; Wang, G.L.; Liu, F.N.; Cheng, M.S.; Li, F. Curcumin suppresses proliferation and invasion in human gastric cancer cells by down-regulation of PAK1 activity and cyclin D1 expression. Cancer Biol. Ther., 2009, 8(14), 1360-1368.
[http://dx.doi.org/10.4161/cbt.8.14.8720] [PMID: 19448398]
[72]
Sethi, G.; Sung, B.; Aggarwal, B.B. Nuclear factor-kappaB activation: From bench to bedside. Exp. Biol. Med., 2008, 233(1), 21-31.
[http://dx.doi.org/10.3181/0707-MR-196] [PMID: 18156302]
[73]
Tamma, R.; Limongelli, L.; Maiorano, E.; Pastore, D.; Cascardi, E.; Tempesta, A.; Carluccio, P.; Mastropasqua, M.G.; Capodiferro, S.; Covelli, C.; Pentenero, M.; Annese, T.; Favia, G.; Specchia, G.; Ribatti, D. Vascular density and inflammatory infiltrate in primary oral squamous cell carcinoma and after allogeneic hematopoietic stem cell transplantation. Ann. Hematol., 2019, 98(4), 979-986.
[http://dx.doi.org/10.1007/s00277-018-3575-3] [PMID: 30519712]
[74]
Chen, T.; Zhang, X.; Zhu, G.; Liu, H.; Chen, J.; Wang, Y.; He, X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine, 2020, 99(38), e22241.
[http://dx.doi.org/10.1097/MD.0000000000022241] [PMID: 32957369]
[75]
Peti, W.; Page, R. Molecular basis of MAP kinase regulation. Protein Sci., 2013, 22(12), 1698-1710.
[http://dx.doi.org/10.1002/pro.2374] [PMID: 24115095]
[76]
Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 7591840.
[http://dx.doi.org/10.1155/2019/7591840] [PMID: 31885814]
[77]
Toufektchan, E.; Toledo, F. The guardian of the genome revisited: p53 Downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers, 2018, 10(5), 135.
[http://dx.doi.org/10.3390/cancers10050135]
[78]
Tyner, S.D.; Venkatachalam, S.; Choi, J.; Jones, S.; Ghebranious, N.; Igelmann, H.; Lu, X.; Soron, G.; Cooper, B.; Brayton, C.; Hee Park, S.; Thompson, T.; Karsenty, G.; Bradley, A.; Donehower, L.A. p53 mutant mice that display early ageing-associated phenotypes. Nature, 2002, 415(6867), 45-53.
[http://dx.doi.org/10.1038/415045a] [PMID: 11780111]
[79]
Verginelli, F.; Pisacane, A.; Gambardella, G.; D’Ambrosio, A.; Candiello, E.; Ferrio, M.; Panero, M.; Casorzo, L.; Benvenuti, S.; Cascardi, E.; Senetta, R.; Geuna, E.; Ballabio, A.; Montemurro, F.; Sapino, A.; Comoglio, P.M.; Boccaccio, C. Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nat. Commun., 2021, 12(1), 2498.
[http://dx.doi.org/10.1038/s41467-021-22643-w] [PMID: 33941777]
[80]
Zhang, Y.; Xia, G.; Zhang, Y.; Liu, J.; Liu, X.; Li, W.; Lv, Y.; Wei, S.; Liu, J.; Quan, J. Palmitate induces VSMC apoptosis via Toll Like Receptor (TLR) 4/ROS/p53 pathway. Atherosclerosis, 2017, 263, 74-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.06.002] [PMID: 28609685]
[81]
Most, J.; Goossens, G.H.; Jocken, J.W.E.; Blaak, E.E. Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects. Int. J. Obes., 2014, 38(5), 698-706.
[http://dx.doi.org/10.1038/ijo.2013.231] [PMID: 24317366]
[82]
Li, L.; Pan, R.; Li, R.; Niemann, B.; Aurich, A.C.; Chen, Y.; Rohrbach, S. Mitochondrial biogenesis and peroxisome Proliferator-Activated Receptor-Γ Coactivator-1α (PGC-1α) deacetylation by physical activity: Intact adipocytokine signaling is required. Diabetes, 2011, 60(1), 157-167.
[http://dx.doi.org/10.2337/db10-0331] [PMID: 20929977]
[83]
Li, H.; Chen, A.; Zhao, L.; Bhagavathula, A.S.; Amirthalingam, P.; Rahmani, J.; Salehisahlabadi, A.; Abdulazeem, H.M.; Adebayo, O.; Yin, X. Effect of tomato consumption on fasting blood glucose and lipid profiles: A systematic review and meta‐analysis of randomized controlled trials. Phytother. Res., 2020, 34(8), 1956-1965.
[http://dx.doi.org/10.1002/ptr.6660] [PMID: 32243013]
[84]
Pugliese, D.; Melfa, F.; Guarino, E.; Cascardi, E.; Maggi, M.; Ferrari, E.; Maiorano, E. Histopathological features of tissue alterations induced by cryolipolysis on human adipose tissue. Aesthet. Surg. J., 2020, 40(7), 761-766.
[http://dx.doi.org/10.1093/asj/sjaa035] [PMID: 32240286]
[85]
Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin, M.A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; Hubbard, B.P.; Varela, A.T.; Davis, J.G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A.P.; Coppari, R.; Palmeira, C.M.; De Cabo, R.; Baur, J.A.; Sinclair, D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab., 2012, 15(5), 675-690.
[http://dx.doi.org/10.1016/j.cmet.2012.04.003] [PMID: 22560220]
[86]
Dellino, M.; Cascardi, E.; Leoni, C.; Fortunato, F.; Fusco, A.; Tinelli, R.; Cazzato, G.; Scacco, S.; Gnoni, A.; Scilimati, A.; Loizzi, V.; Malvasi, A.; Sapino, A.; Pinto, V.; Cicinelli, E.; Di Vagno, G.; Cormio, G.; Chiantera, V.; Laganà, A.S. Effects of oral supplementation with myo-inositol and d-chiro-inositol on ovarian functions in female long-term survivors of lymphoma: Results from a prospective case–control analysis. J. Pers. Med., 2022, 12(9), 1536.
[http://dx.doi.org/10.3390/jpm12091536] [PMID: 36143320]
[87]
Dioguardi, M.; Spirito, F.; Sovereto, D.; Ballini, A.; Alovisi, M.; Lo Muzio, L. Application of the extracts of Uncaria tomentosa in endodontics and oral medicine: Scoping review. J. Clin. Med., 2022, 11(17), 5024.
[http://dx.doi.org/10.3390/jcm11175024] [PMID: 36078953]
[88]
Peter, M.E. Apoptosis meets necrosis. Nature, 2011, 471(7338), 310-312.
[http://dx.doi.org/10.1038/471310a] [PMID: 21412328]
[89]
Zhang, C.H.; Wang, J.X.; Cai, M.L.; Shao, R.; Liu, H.; Zhao, W.L. The roles and mechanisms of G3BP1 in tumour promotion. J. Drug Target., 2019, 27(3), 300-305.
[http://dx.doi.org/10.1080/1061186X.2018.1523415] [PMID: 30207743]
[90]
Casaburi, I.; Puoci, F.; Chimento, A.; Sirianni, R.; Ruggiero, C.; Avena, P.; Pezzi, V. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies. Mol. Nutr. Food Res., 2013, 57(1), 71-83.
[http://dx.doi.org/10.1002/mnfr.201200503] [PMID: 23193056]
[91]
Rigacci, S.; Stefani, M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int. J. Mol. Sci., 2016, 17(6), 843.
[http://dx.doi.org/10.3390/ijms17060843] [PMID: 27258251]
[92]
Watson, J.L.; Greenshields, A.; Hill, R.; Hilchie, A.; Lee, P.W.; Giacomantonio, C.A.; Hoskin, D.W. Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol. Carcinog., 2010, 49(1), 13-24.
[http://dx.doi.org/10.1002/mc.20571] [PMID: 19676105]
[93]
Mertens, T.S.U.; Bomser, J.A.; Romero, C.; Talcott, S.T.; Percival, S.S. Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J. Nutr., 2005, 135(3), 609-614.
[http://dx.doi.org/10.1093/jn/135.3.609] [PMID: 15735102]
[94]
Cascardi, E.; Cazzato, G.; Daniele, A.; Silvestris, E.; Cormio, G.; Di Vagno, G.; Malvasi, A.; Loizzi, V.; Scacco, S.; Pinto, V.; Cicinelli, E.; Maiorano, E.; Ingravallo, G.; Resta, L.; Minoia, C.; Dellino, M. Association between cervical microbiota and HPV: Could this be the key to complete cervical cancer eradication? Biology, 2022, 11(8), 1114.
[http://dx.doi.org/10.3390/biology11081114] [PMID: 35892970]
[95]
Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients, 2020, 12(3), 761.
[http://dx.doi.org/10.3390/nu12030761] [PMID: 32183060]
[96]
Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev., 2005, 15(5), 563-568.
[http://dx.doi.org/10.1016/j.gde.2005.08.005] [PMID: 16099643]
[97]
Ahmed, F.; Ijaz, B.; Ahmad, Z.; Farooq, N.; Sarwar, M.B.; Husnain, T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. Phytomedicine, 2020, 68, 153168.
[http://dx.doi.org/10.1016/j.phymed.2020.153168] [PMID: 31982837]
[98]
Esquela, K.A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[99]
Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K.R.; Harris, D.H.; Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther., 2008, 7(3), 464-473.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2272] [PMID: 18347134]
[100]
Kura, B.; Szeiffova, B.B.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative stress-responsive microRNAs in heart injury. Int. J. Mol. Sci., 2020, 21(1), 358.
[http://dx.doi.org/10.3390/ijms21010358] [PMID: 31948131]
[101]
Ebrahimi, S.O.; Reiisi, S.; Shareef, S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J. Cell. Physiol., 2020, 235(11), 8812-8825.
[http://dx.doi.org/10.1002/jcp.29724] [PMID: 32394436]
[103]
Allen, R.G.; Tresini, M. Oxidative stress and gene regulation. Free Radic. Biol. Med., 2000, 28(3), 463-499.
[http://dx.doi.org/10.1016/S0891-5849(99)00242-7] [PMID: 10699758]
[104]
Hoggard, N.; Cruickshank, M.; Moar, K.M.; Bestwick, C.; Holst, J.J.; Russell, W.; Horgan, G. A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. J. Nutr. Sci., 2013, 2, e22.
[http://dx.doi.org/10.1017/jns.2013.16] [PMID: 25191571]
[105]
Sardo, C.L.; Kitzmiller, J.P.; Apseloff, G.; Harris, R.B.; Roe, D.J.; Stoner, G.D.; Jacobs, E.T. An open-label randomized crossover trial of lyophilized black raspberries on postprandial inflammation in older overweight males. Am. J. Ther., 2016, 23(1), e86-e91.
[http://dx.doi.org/10.1097/MJT.0b013e3182a40bf8] [PMID: 23982695]
[106]
Castro, A.M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem., 2016, 38, 154-161.
[http://dx.doi.org/10.1016/j.jnutbio.2016.09.002] [PMID: 27764725]
[107]
Vendrame, S.; Guglielmetti, S.; Riso, P.; Arioli, S.; Klimis, Z.D.; Porrini, M. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J. Agric. Food Chem., 2011, 59(24), 12815-12820.
[http://dx.doi.org/10.1021/jf2028686] [PMID: 22060186]
[108]
Fisher, N.D.L.; Hollenberg, N.K. Aging and vascular responses to flavanol-rich cocoa. J. Hypertens., 2006, 24(8), 1575-1580.
[http://dx.doi.org/10.1097/01.hjh.0000239293.40507.2a] [PMID: 16877960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy