Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity

Author(s): Ashish Ranjan Dwivedi, Suraj Singh Rawat, Vijay Kumar, Naveen Kumar, Vinay Kumar, Ravi Prakash Yadav, Somesh Baranwal, Amit Prasad* and Vinod Kumar*

Volume 23, Issue 4, 2023

Published on: 24 November, 2022

Page: [278 - 292] Pages: 15

DOI: 10.2174/1568009623666221028121906

Price: $65

Abstract

Aims: Development of anticancer agents targeting tubulin protein.

Background: Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase.

Objective: Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents.

Methods: A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays.

Results: ARV-2 with IC50 values of 3.16 μM, 5.31 μM, 10.6 μM against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis.

Conclusion: The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents.

Keywords: 2-Phenylquinazolines, anticancer, antiproliferative, tubulin polymerization inhibitors, cell cycle, HeLa cells.

Graphical Abstract
[1]
Preti, D.; Romagnoli, R.; Rondanin, R.; Cacciari, B.; Hamel, E.; Balzarini, J.; Liekens, S.; Schols, D.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F. Design, synthesis, in vitro antiproliferative activity and apoptosis-inducing studies of 1-(3′,4′,5′-trimethoxyphenyl)-3-(2-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1225-1238.
[http://dx.doi.org/10.1080/14756366.2018.1493473] [PMID: 30141353]
[2]
Akhmanova, A.; Steinmetz, M.O. Control of microtubule organization and dynamics: Two ends in the limelight. Nat. Rev. Mol. Cell Biol., 2015, 16(12), 711-726.
[http://dx.doi.org/10.1038/nrm4084] [PMID: 26562752]
[3]
Brouhard, G.J.; Rice, L.M. Microtubule dynamics: An interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol., 2018, 19(7), 451-463.
[http://dx.doi.org/10.1038/s41580-018-0009-y] [PMID: 29674711]
[4]
Goodson, H.V.; Jonasson, E.M. Microtubules and microtubuleassociated proteins. Cold Spring Harb. Perspect. Biol., 2018, 10(6), a022608.
[http://dx.doi.org/10.1101/cshperspect.a022608] [PMID: 29858272]
[5]
Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol., 2018, 28(10), 776-792.
[http://dx.doi.org/10.1016/j.tcb.2018.05.001] [PMID: 29871823]
[6]
Guo, H.; Li, X.; Guo, Y.; Zhen, L. An overview of tubulin modulators deposited in protein data bank. Med. Chem. Res., 2019, 28(7), 927-937.
[http://dx.doi.org/10.1007/s00044-019-02352-2]
[7]
Vicente, J.J.; Wordeman, L. Mitosis, microtubule dynamics and the evolution of kinesins. Exp. Cell Res., 2015, 334(1), 61-69.
[http://dx.doi.org/10.1016/j.yexcr.2015.02.010] [PMID: 25708751]
[8]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[9]
Kumar, B.; Kumar, R.; Skvortsova, I.; Kumar, V. Mechanisms of tubulin binding ligands to target cancer cells: Updates on their therapeutic potential and clinical trials. Curr. Cancer Drug Targets, 2017, 17(4), 357-375.
[http://dx.doi.org/10.2174/1568009616666160928110818] [PMID: 27697026]
[10]
Tangutur, A.D.; Kumar, D.; Krishna, K.V.; Kantevari, S. Microtubule targeting agents as cancer chemotherapeutics: An overview of molecular hybrids as stabilizing and destabilizing agents. Curr. Top. Med. Chem., 2017, 17(22), 2523-2537.
[PMID: 28056738]
[11]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[12]
McLoughlin, E.C.; O’Boyle, N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals (Basel), 2020, 13(1), 8.
[http://dx.doi.org/10.3390/ph13010008] [PMID: 31947889]
[13]
Ji, Y.T.; Liu, Y.N.; Liu, Z.P. Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr. Med. Chem., 2015, 22(11), 1348-1360.
[http://dx.doi.org/10.2174/0929867322666150114163732] [PMID: 25620094]
[14]
Bates, D.; Eastman, A. Microtubule destabilising agents: Far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol., 2017, 83(2), 255-268.
[http://dx.doi.org/10.1111/bcp.13126] [PMID: 27620987]
[15]
Liu, Y.N.; Wang, J.J.; Ji, Y.T.; Zhao, G.D.; Tang, L.Q.; Zhang, C.M.; Guo, X.L.; Liu, Z.P. Design, synthesis, and biological evaluation of 1-methyl-1, 4-dihydroindeno [1, 2-c] pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J. Med. Chem., 2016, 59(11), 5341-5355.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00071] [PMID: 27172319]
[16]
Wang, Q.; Arnst, K.E.; Wang, Y.; Kumar, G.; Ma, D.; White, S.W.; Miller, D.D.; Li, W.; Li, W. Structure-guided design, synthesis, and biological evaluation of (2-(1 H-indol-3-yl)-1 H-imidazol-4-yl)(3, 4, 5-trimethoxyphenyl) methanone (ABI-231) analogues targeting the colchicine binding site in tubulin. J. Med. Chem., 2019, 62(14), 6734-6750.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00706] [PMID: 31251599]
[17]
Mangiatordi, G.F.; Trisciuzzi, D.; Alberga, D.; Denora, N.; Iacobazzi, R.M.; Gadaleta, D.; Catto, M.; Nicolotti, O. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur. J. Med. Chem., 2017, 139, 792-803.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.037] [PMID: 28863359]
[18]
Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: More than just vascular targeting agents? J. Pharmacol. Exp. Ther., 2015, 355(2), 212-227.
[http://dx.doi.org/10.1124/jpet.115.226225] [PMID: 26354991]
[19]
Nepali, K.; Ojha, R.; Lee, H.Y.; Liou, J.P. Early investigational tubulin inhibitors as novel cancer therapeutics. Expert Opin. Investig. Drugs, 2016, 25(8), 917-936.
[http://dx.doi.org/10.1080/13543784.2016.1189901] [PMID: 27186892]
[20]
Čermák, V.; Dostál, V.; Jelínek, M.; Libusová, L.; Kovář, J.; Rösel, D.; Brábek, J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol., 2020, 99(4), 151075.
[http://dx.doi.org/10.1016/j.ejcb.2020.151075] [PMID: 32414588]
[21]
Kasibhatla, S.; Baichwal, V.; Cai, S.X.; Roth, B.; Skvortsova, I.; Skvortsov, S.; Lukas, P.; English, N.M.; Sirisoma, N.; Drewe, J.; Pervin, A.; Tseng, B.; Carlson, R.O.; Pleiman, C.M. MPC-6827: A small-molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps. Cancer Res., 2007, 67(12), 5865-5871.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0127] [PMID: 17575155]
[22]
Marzaro, G.; Coluccia, A.; Ferrarese, A.; Brun, P.; Castagliuolo, I.; Conconi, M.T.; La Regina, G.; Bai, R.; Silvestri, R.; Hamel, E.; Chilin, A. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. J. Med. Chem., 2014, 57(11), 4598-4605.
[http://dx.doi.org/10.1021/jm500034j] [PMID: 24801610]
[23]
Li, W.; Yin, Y.; Shuai, W.; Xu, F.; Yao, H.; Liu, J.; Cheng, K.; Xu, J.; Zhu, Z.; Xu, S. Discovery of novel quinazolines as potential anti-tubulin agents occupying three zones of colchicine domain. Bioorg. Chem., 2019, 83, 380-390.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.027] [PMID: 30408650]
[24]
Cui, M.T.; Jiang, L.; Goto, M.; Hsu, P.L.; Li, L.; Zhang, Q.; Wei, L.; Yuan, S.J.; Hamel, E.; Morris-Natschke, S.L.; Lee, K.H.; Xie, L. In vivo and mechanistic studies on antitumor lead 7-methoxy-4-(2-methylquinazolin-4-yl)-3, 4-dihydroquinoxalin-2 (1 H)-one and its modification as a novel class of tubulin-binding tumor-vascular disrupting agents. J. Med. Chem., 2017, 60(13), 5586-5598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00273] [PMID: 28653846]
[25]
Kaur, R.; Ranjan Dwivedi, A.; Kumar, B.; Kumar, V. Recent developments on 1, 2, 4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[26]
Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.027] [PMID: 29554587]
[27]
Dwivedi, A.R.; Kumar, V.; Yadav, R.P.; Kumar, N.; Jangid, K.; Anand, P.; Sharma, D.K.; Barnawal, S.; Kumar, V. Design, synthesis and evaluation of 4-phenyl-1,2,3-triazole substituted pyrimidine derivatives as antiproliferative and tubulin polymerization inhibitors. J. Mol. Struct., 2022, 1267, 133592.
[http://dx.doi.org/10.1016/j.molstruc.2022.133592]
[28]
Ranjan Dwivedi, A.; Kumar, V.; Kaur, H.; Kumar, N.; Prakash Yadav, R.; Poduri, R.; Baranwal, S.; Kumar, V. Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines. Bioorg. Med. Chem. Lett., 2020, 30(20), 127468.
[http://dx.doi.org/10.1016/j.bmcl.2020.127468] [PMID: 32768647]
[29]
Bansal, R.; Malhotra, A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur. J. Med. Chem., 2021, 211, 113016.
[http://dx.doi.org/10.1016/j.ejmech.2020.113016] [PMID: 33243532]
[30]
Majcher, U.; Klejborowska, G.; Kaik, M.; Maj, E.; Wietrzyk, J.; Moshari, M.; Preto, J.; Tuszynski, J. Huczyński, A. Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells, 2018, 7(11), 216.
[http://dx.doi.org/10.3390/cells7110216] [PMID: 30463236]
[31]
Negi, A.S.; Gautam, Y.; Alam, S.; Chanda, D.; Luqman, S.; Sarkar, J.; Khan, F.; Konwar, R. Natural antitubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment. Bioorg. Med. Chem., 2015, 23(3), 373-389.
[http://dx.doi.org/10.1016/j.bmc.2014.12.027] [PMID: 25564377]
[32]
Oliveira, C.R.; Spindola, D.G.; Garcia, D.M.; Erustes, A.; Bechara, A.; Palmeira-dos-Santos, C.; Smaili, S.S.; Pereira, G.J.S.; Hinsberger, A.; Viriato, E.P.; Cristina Marcucci, M.; Sawaya, A.C.H.F.; Tomaz, S.L.; Rodrigues, E.G.; Bincoletto, C. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. J. Integr. Med., 2019, 17(2), 132-140.
[http://dx.doi.org/10.1016/j.joim.2019.02.001] [PMID: 30799248]
[33]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Srinivas, C.; Pushpavalli, S.N.C.V.L.; Pal, D.; Pal-Bhadra, M. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 2010, 5(11), 1937-1947.
[http://dx.doi.org/10.1002/cmdc.201000346] [PMID: 20836120]
[34]
Sun, Y; Guo, W; Ren, T; Liang, W; Zhou, W; Lu, Q Gli1 inhibition suppressed cell growth and cell cycle progression and induced apoptosis as well as autophagy depending on ERK1/2 activity in human chondrosarcoma cells. Cell Death Dis., 2014, 5(1), e979-e.
[35]
Punganuru, S.R.; Madala, H.R.; Venugopal, S.N.; Samala, R.; Mikelis, C.; Srivenugopal, K.S. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur. J. Med. Chem., 2016, 107, 233-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.052] [PMID: 26599530]
[36]
Maestro-Desmond Interoperability Tools. Desmond Molecular Dynamics System, DE Shaw Research, Schrödinger, New York, NY , 2019.
[37]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[38]
Caroppi, P.; Sinibaldi, F.; Fiorucci, L.; Santucci, R. Apoptosis and human diseases: Mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr. Med. Chem., 2009, 16(31), 4058-4065.
[http://dx.doi.org/10.2174/092986709789378206] [PMID: 19754424]
[39]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and B-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6(1), 25387.
[http://dx.doi.org/10.1038/srep25387] [PMID: 27138035]
[40]
Xiong, S.; Mu, T.; Wang, G.; Jiang, X. Mitochondria-mediated apoptosis in mammals. Protein Cell, 2014, 5(10), 737-749.
[http://dx.doi.org/10.1007/s13238-014-0089-1] [PMID: 25073422]
[41]
Jadala, C.; Sathish, M.; Anchi, P.; Tokala, R.; Lakshmi, U.J.; Reddy, V.G.; Shankaraiah, N.; Godugu, C.; Kamal, A. Synthesis of combretastatin‐a4 carboxamidest that mimic sulfonyl piperazines by a molecular hybridization approach: In vitro cytotoxicity evaluation and inhibition of tubulin polymerization. ChemMedChem, 2019, 14(24), 2052-2060.
[http://dx.doi.org/10.1002/cmdc.201900541] [PMID: 31674147]
[42]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: Inhibitors, antibody- drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[43]
Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J., 2016, 283(1), 102-111.
[http://dx.doi.org/10.1111/febs.13555] [PMID: 26462166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy