Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Review Article

Organoselenium Compounds as Potential Therapeutic Agents for Treating Brain Disorders

Author(s): Varsha Sarode, Lata Kothapalli*, Asha Thomas and Ritesh Bhole

Volume 1, 2023

Published on: 13 January, 2023

Article ID: e271022210428 Pages: 13

DOI: 10.2174/2210299X02666221027151154

open_access

Open Access Journals Promotions 2
Abstract

Among the inorganic elements, selenium is one of the essential entities required in trace amounts. Selenium (Se) has a vital role to play in brain physiology. It is well demonstrated that an abnormal level of selenium is the cause of the pathogenesis of various neurodegenerative diseases. As selenium levels are age-dependent, deficiency of Se is well correlated with cognitive disability with aging, which further correlates with Alzheimer’s disease. Organoselenium compounds are considered an essential therapeutic class of compounds as they have gained a wide spectrum of applications in biotransformation and are well-studied by several researchers. In recent years, a detailed analysis of the effectiveness of organoselenium compounds in attenuating disease are done. A literature search on PubMed, Embase, and Scopus databases was done using the keywords “organoselenium compounds, brain disorder, Alzheimer's, Parkinson's' disease, and neurodegenerative disorders. The introduction of selenium as a functional group in aryl and heteroaryl compounds has given the lead for treating various brain ailments including Alzheimer's disease, depression, anxiety, Parkinson’s disease, etc. The organoselenium compounds are also potent antioxidants and are promising chemical entities for further studies.

Keywords: Selenium, Organoselenium compound, Brain disorder, Neurodegenerative disorders, Anti-Alzheimer activity, Antioxidant activity, Antidepressant activity, Anticonvulsant activity.

[1]
Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255(23-24), 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009]
[2]
Stadtman, T.C. Selenoproteins-tracing the role of a trace element in protein function. PLoS Biol., 2005, 3(12), e421.
[http://dx.doi.org/10.1371/journal.pbio.0030421] [PMID: 16336050]
[3]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[4]
Böck, A.; Forchhammer, K.; Heider, J.; Leinfelder, W.; Sawers, G.; Veprek, B.; Zinoni, F. Selenocysteine: The 21st amino acid. Mol. Microbiol., 1991, 5(3), 515-520.
[http://dx.doi.org/10.1111/j.1365-2958.1991.tb00722.x] [PMID: 1828528]
[5]
Narajji, C.; Karvekar, M.D.; Das, A.K. Biological importance of organoselenium-compounds Indian. J. Pharm. Sci., 2007, 69(3), 344.
[6]
Mukherjee, A.J.; Zade, S.S.; Singh, H.B.; Sunoj, R.B. Organoselenium chemistry: Role of intramolecular interactions. Chem. Rev., 2010, 110(7), 4357-4416.
[http://dx.doi.org/10.1021/cr900352j] [PMID: 20384363]
[7]
Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2018, 1, CD005195.
[PMID: 29376219]
[8]
Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med., 2018, 127, 80-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.001] [PMID: 29746900]
[9]
Hatfield, D.L.; Berry, M.J.; Gladyshev, V.N., Eds.; Selenium: its molecular biology and role in human health; Springer Science & Business Media, 2011.
[10]
Cardoso, BR; Hare, DJ; Bush, AI The Role of Selenium in Neurodegenerative Diseases. In: Biometals in Neurodegenerative Diseases: Mechanisms and Therapeutics; , 2017; pp. 35-49.
[http://dx.doi.org/10.1016/B978-0-12-804562-6.00003-8]
[11]
Hassan, W.S.; Oliveira, C.; Noreen, H.P.; Kamdem, J.; Nogueira, C.; Rocha, J. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr. Org. Chem., 2016, 20(2), 218-231.
[http://dx.doi.org/10.2174/1385272819666150810222632]
[12]
Chen, J.; Berry, M.J. Selenium and selenoproteins in the brain and brain diseases. J. Neurochem., 2003, 86(1), 1-12.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01854.x] [PMID: 12807419]
[13]
Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics, 2014, 6(1), 25-54.
[http://dx.doi.org/10.1039/C3MT00185G] [PMID: 24185753]
[14]
Sanmartín, C.; Plano, D.; Font, M.; Palop, J.A. Selenium and clinical trials: New therapeutic evidence for multiple diseases. Curr. Med. Chem., 2011, 18(30), 4635-4650.
[http://dx.doi.org/10.2174/092986711797379249] [PMID: 21864284]
[15]
Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol., 2013, 86(9), 1248-1253.
[http://dx.doi.org/10.1016/j.bcp.2013.08.028] [PMID: 24012716]
[16]
Dominiak, A.; Wilkaniec, A.; Wroczyński, P.; Adamczyk, A. Selenium in the therapy of neurological diseases. Where is it going? Curr. Neuropharmacol., 2016, 14(3), 282-299.
[http://dx.doi.org/10.2174/1570159X14666151223100011] [PMID: 26549649]
[17]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[18]
Girek, M.; Szymański, P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: Influence of chemical structures on biological activities. Chem. Pap., 2019, 73(2), 269-289.
[http://dx.doi.org/10.1007/s11696-018-0590-8]
[19]
Du, X.; Wang, C.; Liu, Q. Potential roles of selenium and selenoproteins in the prevention of Alzheimer’s disease. Curr. Top. Med. Chem., 2015, 16(8), 835-848.
[http://dx.doi.org/10.2174/1568026615666150827094936] [PMID: 26311427]
[20]
Di Leo, I.; Sancineto, L.; Messina, F.; Santi, C. Organoselenium compounds, an overview on the biological activities beyond antioxidant properties. Proceedings of The 20th International Electronic Conference on Synthetic Organic Chemistry, November 01-30, 2016MDPI: Basel, Switzerland
[http://dx.doi.org/10.3390/ecsoc-20-b018]
[21]
Zhang, Z.H.; Song, G.L. Roles of selenoproteins in brain function and the potential mechanism of selenium in Alzheimer’s disease. Front. Neurosci., 2021, 15, 646518.
[http://dx.doi.org/10.3389/fnins.2021.646518] [PMID: 33762907]
[22]
Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases. Metallomics, 2015, 7(8), 1213-1228.
[http://dx.doi.org/10.1039/C5MT00075K] [PMID: 25996565]
[23]
Sun, X; Chen, WD; Wang, YD β-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease. Front Pharmacol., 2015, 6, 221.
[http://dx.doi.org/10.3389/fphar.2015.00221]
[24]
Haratake, M.; Yoshida, S.; Mandai, M.; Fuchigami, T.; Nakayama, M. Elevated amyloid-β plaque deposition in dietary selenium-deficient Tg2576 transgenic mice. Metallomics, 2013, 5(5), 479-483.
[http://dx.doi.org/10.1039/c3mt00035d] [PMID: 23456036]
[25]
Luo, Z.; Liang, L.; Sheng, J.; Pang, Y.; Li, J.; Huang, L.; Li, X. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem., 2014, 22(4), 1355-1361.
[http://dx.doi.org/10.1016/j.bmc.2013.12.066] [PMID: 24461494]
[26]
Martini, F.; Pesarico, A.P.; Brüning, C.A.; Zeni, G.; Nogueira, C.W. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine‐induced amnesia in mice. J. Cell. Biochem., 2018, 119(7), 5598-5608.
[http://dx.doi.org/10.1002/jcb.26731] [PMID: 29405440]
[27]
Martini, F.; Rosa, S.G.; Klann, I.P.; Fulco, B.C.W.; Carvalho, F.B.; Rahmeier, F.L.; Fernandes, M.C.; Nogueira, C.W. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J. Psychiatr. Res., 2019, 109, 107-117.
[http://dx.doi.org/10.1016/j.jpsychires.2018.11.021] [PMID: 30521994]
[28]
Wang, Z.; Wang, Y.; Li, W.; Mao, F.; Sun, Y.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(10), 952-962.
[http://dx.doi.org/10.1021/cn500119g] [PMID: 25121395]
[29]
Wang, Z.; Li, W.; Wang, Y.; Li, X.; Huang, L.; Li, X. Design, synthesis and evaluation of clioquinol–ebselen hybrids as multi-target-directed ligands against Alzheimer’s disease. RSC Advances, 2016, 6(9), 7139-7158.
[http://dx.doi.org/10.1039/C5RA26797H]
[30]
Tin, G; Mohamed, T; Gondora, N; Beazely, MA; Rao, PP Tricyclic phenothiazine and phenoselenazine derivatives as potential multi-targeting agents to treat Alzheimer's disease. Med. Chem Comm., 2015, 6(11), 1930-1941.
[http://dx.doi.org/10.1039/C5MD00274E]
[31]
Barbosa, F.A.R.; Canto, R.F.S.; Saba, S.; Rafique, J.; Braga, A.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(22), 5762-5770.
[http://dx.doi.org/10.1016/j.bmc.2016.09.031] [PMID: 27681239]
[32]
Peglow, T.J.; Schumacher, R.F.; Cargnelutti, R.; Reis, A.S.; Luchese, C.; Wilhelm, E.A.; Perin, G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett., 2017, 58(38), 3734-3738.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.030]
[33]
Meinerz, D.F.; de Paula, M.T.; Comparsi, B.; Silva, M.U.; Schmitz, A.E.; Braga, H.C.; Taube, P.S.; Braga, A.L.; Rocha, J.B.T.; Dafre, A.L.; Farina, M.; Franco, J.L.; Posser, T. Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions. Braz. J. Med. Biol. Res., 2011, 44(11), 1156-1163.
[http://dx.doi.org/10.1590/S0100-879X2011007500136] [PMID: 22002094]
[34]
Pinton, S.; da Rocha, J.T.; Zeni, G.; Nogueira, C.W. Organoselenium improves memory decline in mice: Involvement of acetylcholinesterase activity. Neurosci. Lett., 2010, 472(1), 56-60.
[http://dx.doi.org/10.1016/j.neulet.2010.01.057] [PMID: 20122991]
[35]
Pinton, S.; Souza, A.C.; Sari, M.H.M.; Ramalho, R.M.; Rodrigues, C.M.P.; Nogueira, C.W. p,p′-Methoxyl-diphenyl diselenide protects against amyloid-β induced cytotoxicity in vitro and improves memory deficits in vivo. Behav. Brain Res., 2013, 247, 241-247.
[http://dx.doi.org/10.1016/j.bbr.2013.03.034] [PMID: 23557695]
[36]
Duarte, L.F.B.; Oliveira, R.L.; Rodrigues, K.C.; Voss, G.T.; Godoi, B.; Schumacher, R.F.; Perin, G.; Wilhelm, E.A.; Luchese, C.; Alves, D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg. Med. Chem., 2017, 25(24), 6718-6723.
[http://dx.doi.org/10.1016/j.bmc.2017.11.019] [PMID: 29157728]
[37]
Pinz, M.P.; dos Reis, A.S.; Vogt, A.G.; Krüger, R.; Alves, D.; Jesse, C.R.; Roman, S.S.; Soares, M.P.; Wilhelm, E.A.; Luchese, C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed. Pharmacother., 2018, 105, 1006-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.06.049] [PMID: 30021335]
[38]
van Eersel, J.; Ke, Y.D.; Liu, X.; Delerue, F.; Kril, J.J.; Götz, J.; Ittner, L.M. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl. Acad. Sci., 2010, 107(31), 13888-13893.
[http://dx.doi.org/10.1073/pnas.1009038107] [PMID: 20643941]
[39]
Chiapinotto Spiazzi, C.; Bucco Soares, M.; Pinto Izaguirry, A.; Musacchio Vargas, L.; Zanchi, M.M.; Frasson Pavin, N.; Ferreira Affeldt, R.; Seibert Lüdtke, D.; Prigol, M.; Santos, F.W. Selenofuranoside ameliorates memory loss in Alzheimer-like sporadic dementia: AChE activity, oxidative stress, and inflammation involvement. Oxid. Med. Cell. Longev., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/976908]
[40]
Xie, Y.; Liu, Q.; Zheng, L.; Wang, B.; Qu, X.; Ni, J.; Zhang, Y.; Du, X. Se‐methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Mol. Nutr. Food Res., 2018, 62(12), 1800107.
[http://dx.doi.org/10.1002/mnfr.201800107] [PMID: 29688618]
[41]
Zamberlan, D.C.; Arantes, L.P.; Machado, M.L.; Golombieski, R.; Soares, F.A.A. Diphenyl-diselenide suppresses amyloid-β peptide in Caenorhabditis elegans model of Alzheimer’s disease. Neuroscience, 2014, 278, 40-50.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.068] [PMID: 25130558]
[42]
Yan, J.; Pang, Y.; Zhuang, J.; Lin, H.; Zhang, Q.; Han, L.; Ke, P.; Zhuang, J.; Huang, X. Selenepezil, a selenium-containing compound, exerts neuroprotective effect via modulation of the Keap1–Nrf2–ARE pathway and attenuates Aβ-induced cognitive impairment in vivo. ACS Chem. Neurosci., 2019, 10(6), 2903-2914.
[http://dx.doi.org/10.1021/acschemneuro.9b00106] [PMID: 31035749]
[43]
Mao, F.; Chen, J.; Zhou, Q.; Luo, Z.; Huang, L.; Li, X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett., 2013, 23(24), 6737-6742.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.034] [PMID: 24220172]
[44]
de Freitas, A.S.; Funck, V.R.; Rotta, M.S.; Bohrer, D.; Mörschbächer, V.; Puntel, R.L.; Nogueira, C.W.; Farina, M.; Aschner, M.; Rocha, J.B.T. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res. Bull., 2009, 79(1), 77-84.
[http://dx.doi.org/10.1016/j.brainresbull.2008.11.001] [PMID: 19047014]
[45]
Luchese, C.; Pinton, S.; Nogueira, C.W. Brain and lungs of rats are differently affected by cigarette smoke exposure: Antioxidant effect of an organoselenium compound. Pharmacol. Res., 2009, 59(3), 194-201.
[http://dx.doi.org/10.1016/j.phrs.2008.11.006] [PMID: 19095064]
[46]
Quispe, R.L.; Jaramillo, M.L.; Galant, L.S.; Engel, D.; Dafre, A.L.; Teixeira da Rocha, J.B.; Radi, R.; Farina, M.; de Bem, A.F. Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol., 2019, 20, 118-129.
[http://dx.doi.org/10.1016/j.redox.2018.09.014] [PMID: 30308475]
[47]
Gai, B.M.; Bortolatto, C.F.; Heck, S.O.; Stein, A.L.; Duarte, M.M.M.F.; Zeni, G.; Nogueira, C.W. An organoselenium compound improves behavioral, endocrinal and neurochemical changes induced by corticosterone in mice. Psychopharmacology, 2014, 231(10), 2119-2130.
[http://dx.doi.org/10.1007/s00213-013-3361-9] [PMID: 24306280]
[48]
Victoria, F.N.; Anversa, R.; Penteado, F.; Castro, M.; Lenardão, E.J.; Savegnago, L. Antioxidant and antidepressant-like activities of semi-synthetic α-phenylseleno citronellal. Eur. J. Pharmacol., 2014, 742, 131-138.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.005] [PMID: 25218989]
[49]
Birmann, P.T.; Casaril, A.M.; Hartwig, D.; Jacob, R.G.; Seixas, F.K.; Collares, T.; Savegnago, L. A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res., 2020, 1741, 146880.
[http://dx.doi.org/10.1016/j.brainres.2020.146880] [PMID: 32417177]
[50]
Birmann, P.T.; Domingues, M.; Casaril, A.M.; Smaniotto, T.Â.; Hartwig, D.; Jacob, R.G.; Savegnago, L. A pyrazole-containing selenium compound modulates neuroendocrine, oxidative stress, and behavioral responses to acute restraint stress in mice. Behav. Brain Res., 2021, 396, 112874.
[http://dx.doi.org/10.1016/j.bbr.2020.112874] [PMID: 32835778]
[51]
Zborowski, V.A.; Heck, S.O.; Vencato, M.; Pinton, S.; Marques, L.S.; Nogueira, C.W. Keap1/Nrf2/HO-1 signaling pathway contributes to p-chlorodiphenyl diselenide antidepressant-like action in diabetic mice. Psychopharmacology, 2020, 237(2), 363-374.
[http://dx.doi.org/10.1007/s00213-019-05372-3] [PMID: 31828396]
[52]
Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull., 2020, 161, 158-165.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.008] [PMID: 32470357]
[53]
Posser, T.; Kaster, M.P.; Baraúna, S.C.; Rocha, J.B.T.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of the organoselenium compound ebselen in mice: Evidence for the involvement of the monoaminergic system. Eur. J. Pharmacol., 2009, 602(1), 85-91.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.055] [PMID: 19026628]
[54]
Bortolatto, C.F.; Wilhelm, E.A.; Chagas, P.M.; Nogueira, C.W. p-Chloro-diphenyl diselenide, an organoselenium compound, with antidepressant-like and memory enhancer actions in aging male rats. Biogerontology, 2012, 13(3), 237-249.
[http://dx.doi.org/10.1007/s10522-011-9369-9] [PMID: 22143824]
[55]
Brüning, C.A.; Souza, A.C.G.; Gai, B.M.; Zeni, G.; Nogueira, C.W. Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems. Eur. J. Pharmacol., 2011, 658(2-3), 145-149.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.039] [PMID: 21371464]
[56]
Gerzson, M.F.B.; Victoria, F.N.; Radatz, C.S.; de Gomes, M.G.; Boeira, S.P.; Jacob, R.G.; Alves, D.; Jesse, C.R.; Savegnago, L. In vitro antioxidant activity and in vivo antidepressant-like effect of α-(phenylselanyl) acetophenone in mice. Pharmacol. Biochem. Behav., 2012, 102(1), 21-29.
[http://dx.doi.org/10.1016/j.pbb.2012.03.016] [PMID: 22484161]
[57]
Sousa, F.S.S.; Birmann, P.T.; Baldinotti, R.; Fronza, M.G.; Balaguez, R.; Alves, D.; Brüning, C.A.; Savegnago, L. α- (phenylselanyl) acetophenone mitigates reserpine-induced pain–depression dyad: Behavioral, biochemical and molecular docking evidences. Brain Res. Bull., 2018, 142, 129-137.
[http://dx.doi.org/10.1016/j.brainresbull.2018.07.007] [PMID: 30016730]
[58]
Besckow, E.M.; Nonemacher, N.T.; Garcia, C.S.; da Silva Espíndola, C.N.; Balbom, É.B.; Gritzenco, F.; Savegnago, L.; Godoi, B.; Bortolatto, C.F.; Brüning, C.A. Antidepressant-like effect of a selenopropargylic benzamide in mice: Involvement of the serotonergic system. Psychopharmacology, 2020, 237(10), 3149-3159.
[http://dx.doi.org/10.1007/s00213-020-05600-1] [PMID: 32617647]
[59]
Casaril, A.M.; Domingues, M.; Bampi, S.R.; de Andrade Lourenço, D.; Padilha, N.B.; Lenardão, E.J.; Sonego, M.; Seixas, F.K.; Collares, T.; Nogueira, C.W.; Dantzer, R.; Savegnago, L. The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology, 2019, 236(10), 2867-2880.
[http://dx.doi.org/10.1007/s00213-018-5151-x] [PMID: 30610349]
[60]
Wilhelm, E.A.; Jesse, C.R.; Roman, S.S.; Bortolatto, C.F.; Nogueira, C.W. Anticonvulsant effect of (E)-2-benzylidene-4-phenyl-1,3-diselenole in a pilocarpine model in mice. Life Sci., 2010, 87(19-22), 620-627.
[http://dx.doi.org/10.1016/j.lfs.2010.09.022] [PMID: 20888349]
[61]
Wilhelm, E.A.; Gai, B.M.; Souza, A.C.G.; Bortolatto, C.F.; Roehrs, J.A.; Nogueira, C.W. Involvement of GABAergic and glutamatergic systems in the anticonvulsant activity of 3-alkynyl selenophene in 21 day-old rats. Mol. Cell. Biochem., 2012, 365(1-2), 175-180.
[http://dx.doi.org/10.1007/s11010-012-1257-3] [PMID: 22350757]
[62]
Łączkowski, KZ; Biernasiuk, A; Baranowska-Łączkowska, A; Zielińska, S; Sałat, K; Furgała, A; Misiura, K; Malm, A Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2 H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem, 2016, 31(S2), 24-39.
[http://dx.doi.org/10.1080/14756366.2016.1186020]
[63]
Torres, DJ; Alfulaij, N; Berry, MJ Stress and the brain: An emerging role for selenium. Front Neurosci., 2021, 15, 666601.
[http://dx.doi.org/10.3389/fnins.2021.666601]
[64]
Ibrahim, M.; Mussulini, B.H.M.; Moro, L.; de Assis, A.M.; Rosemberg, D.B.; de Oliveira, D.L.; Rocha, J.B.T.; Schwab, R.S.; Schneider, P.H.; Souza, D.O.; Rico, E.P. Anxiolytic effects of diphenyl diselenide on adult zebrafish in a novelty paradigm. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 54, 187-194.
[http://dx.doi.org/10.1016/j.pnpbp.2014.06.002] [PMID: 24936773]
[65]
Domingues, M.; Casaril, A.M.; Birmann, P.T.; Bampi, S.R.; Lourenço, D.A.; Vieira, B.M.; Dapper, L.H.; Lenardão, E.J.; Sonego, M.; Collares, T.; Seixas, F.K.; Brüning, C.A.; Savegnago, L. Effects of a selanylimidazopyridine on the acute restraint stress-induced depressive- and anxiety-like behaviors and biological changes in mice. Behav. Brain Res., 2019, 366, 96-107.
[http://dx.doi.org/10.1016/j.bbr.2019.03.021] [PMID: 30877027]
[66]
Reis, A.S.; Pinz, M.; Duarte, L.F.B.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J. Psychiatr. Res., 2017, 84, 191-199.
[http://dx.doi.org/10.1016/j.jpsychires.2016.10.007] [PMID: 27756019]
[67]
Sampaio, T.B.; Pinton, S.; da Rocha, J.T.; Gai, B.M.; Nogueira, C.W. BDNF/TrkB signaling involvement in the effect of diphenyl diselenide on motor function in a Parkinson’s disease rat model. Eur. J. Pharmacol., 2017, 795, 28-35.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.054] [PMID: 27915043]
[68]
Moussaoui, S.; Obinu, M.C.; Daniel, N.; Reibaud, M.; Blanchard, V.; Imperato, A. The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson’s disease. Exp. Neurol., 2000, 166(2), 235-245.
[http://dx.doi.org/10.1006/exnr.2000.7516] [PMID: 11085889]
[69]
Xu, J.H.; Hu, H.T.; Liu, Y.; Qian, Y.H.; Liu, Z.H.; Tan, Q.R.; Zhang, Z.J. Neuroprotective effects of ebselen are associated with the regulation of Bcl-2 and Bax proteins in cultured mouse cortical neurons. Neurosci. Lett., 2006, 399(3), 210-214.
[http://dx.doi.org/10.1016/j.neulet.2006.02.024] [PMID: 16513270]
[70]
Elshaflu, H.; Todorović, T.R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J.M.; García-Sosa, A.T.; Djordjević, I.S.; Grubišić, S.; Stark, H.; Filipović, N.R. Selenazolyl-hydrazones as novel selective MAO inhibitors with antiproliferative and antioxidant activities: Experimental and in silico studies. Front Chem., 2018, 6, 247.
[http://dx.doi.org/10.3389/fchem.2018.00247] [PMID: 30018949]
[71]
Shayganfard, M. Are essential trace elements effective in modulation of mental disorders? update and perspectives. Biol Trace Elem Res., 2021, 200(3), 1032-1059.
[http://dx.doi.org/10.1007/s12011-021-02733-y]
[72]
Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol., 2021, 95(4), 1179-1226.
[http://dx.doi.org/10.1007/s00204-021-03003-5] [PMID: 33792762]

© 2024 Bentham Science Publishers | Privacy Policy