Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Healthy Diet, Grape Phytochemicals, and Vitamin D: Preventing Chronic Inflammation and Keeping Good Microbiota

Author(s): Kazuki Santa*

Volume 23, Issue 6, 2023

Published on: 30 December, 2022

Page: [777 - 800] Pages: 24

DOI: 10.2174/1871530323666221017151705

Price: $65

Abstract

Background: Since the discovery of penicillin, natural antibiotics have protected humans from malicious microbes. A breakthrough, however, is needed to tackle problems like antimicrobial resistance (AMR). This review introduces one of the new approaches for the prevention of several diseases through a healthy diet, grape phytochemicals, and vitamin D, which nurture the growth of beneficial bacteria, including gut microbiota, suppressing chronic inflammation and up-regulating immunity. Antibiotics provide protection against infectious diseases by preventing the growth of pathogenic microbes. However, inappropriate use of antibiotics increases antimicrobial resistance to bacteria and limits the benefits of antibiotics. In addition, it is well known that antibiotics kill not only pathogenic microbes but also beneficial ones that reside in healthy individuals. As a result, the excess use of antibiotics increases the threat of diseases caused by antibiotic-resistant bacteria. We can reduce the risk of several diseases, including infectious diseases, in the future by nurturing the good microbes that live in the human body, thereby preventing chronic inflammation induced by the proinflammatory cytokine TNF-α, improving predisposition, and up-regulating immunity. Along with human evolution, residing bacteria in the skin, digestive system, and other areas have changed. They defend their hosts from malicious microbes in the surrounding environment. With the progress of medicine, science, and technology, the quality of life and environmental public health have improved over the years. Under these circumstances, it is necessary to reduce the risk of illness and keep ourselves healthy by nurturing the good resident microbiota in our bodies and preventing chronic inflammation through the diet and the intake of phytochemicals and vitamin D. This new approach is important, along with the traditional method for preventing emerging infectious diseases in the future.

Keywords: Phytochemicals, vitamin D, prebiotic, probiotics, ARM, microbiota, TNF-α.

Graphical Abstract
[1]
Mohr, K.I. History of antibiotics research. Curr. Top. Microbiol. Immunol., 2016, 398, 237-272.
[http://dx.doi.org/10.1007/82_2016_499] [PMID: 27738915]
[2]
Alharbi, S.A.; Wainwright, M.; Alahmadi, T.A.; Salleeh, H.B.; Faden, A.A.; Chinnathambi, A. What if Fleming had not discovered penicillin? Saudi J. Biol. Sci., 2014, 21(4), 289-293.
[http://dx.doi.org/10.1016/j.sjbs.2013.12.007] [PMID: 25183937]
[3]
Comroe, J.H., Jr Pay dirt: The story of streptomycin. Part I. From waksman to waksman. Am. Rev. Respir. Dis., 1978, 117(4), 773-781.
[PMID: 417651]
[4]
Thomas, A.H. Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. J. Antimicrob. Chemother., 1986, 17(3), 269-279.
[http://dx.doi.org/10.1093/jac/17.3.269] [PMID: 3516967]
[5]
Laing, R.; Gillan, V.; Devaney, E. Ivermectin – Old drug, new tricks? Trends Parasitol., 2017, 33(6), 463-472.
[http://dx.doi.org/10.1016/j.pt.2017.02.004] [PMID: 28285851]
[6]
Waksman, S.A.; Katz, E.; Vining, L.C. Nomenclature of the actinomycins. Proc. Natl. Acad. Sci., 1958, 44(6), 602-612.
[http://dx.doi.org/10.1073/pnas.44.6.602] [PMID: 16590249]
[7]
Blagosklonny, M.V. Rapamycin for longevity: Opinion article. Aging, 2019, 11(19), 8048-8067.
[http://dx.doi.org/10.18632/aging.102355] [PMID: 31586989]
[8]
Inoue, H. Strategic approach for combating Antimicrobial Resistance (AMR). Glob. Health Med., 2019, 1(2), 61-64.
[http://dx.doi.org/10.35772/ghm.2019.01026] [PMID: 33330756]
[9]
Solomon, S.L.; Oliver, K.B. Antibiotic resistance threats in the United States: Stepping back from the brink. Am. Fam. Physician, 2014, 89(12), 938-941.
[PMID: 25162160]
[10]
Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1), 121-141.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[11]
Sato, F.T.; Yap, Y.A.; Crisma, A.R.; Portovedo, M.; Murata, G.M.; Hirabara, S.M.; Ribeiro, W.R.; Marcantonio, F.C.; Cruz, M.M.; Pereira, J.N.B.; Payolla, T.B.; Guima, S.E.S.; Thomas, A.M.; Setubal, J.C.; Alonso, V.M.I.C.; Santos, M.F.; Curi, R.; Marino, E.; Vinolo, M.A.R. Tributyrin attenuates metabolic and inflammatory changes associated with obesity through a GPR109A-dependent mechanism. Cells, 2020, 9(9), 2007.
[http://dx.doi.org/10.3390/cells9092007] [PMID: 32882837]
[12]
Huebinger, R.M.; Smith, A.D.; Zhang, Y.; Monson, N.L.; Ireland, S.J.; Barber, R.C.; Kubasiak, J.C.; Minshall, C.T.; Minei, J.P.; Wolf, S.E.; Allen, M.S. Variations of the lung microbiome and immune response in mechanically ventilated surgical patients. PLoS One, 2018, 13(10), e0205788.
[http://dx.doi.org/10.1371/journal.pone.0205788] [PMID: 30356313]
[13]
Schäbitz, A.; Eyerich, K.; Garzorz, S.N. So close, and yet so far away: The dichotomy of the specific immune response and inflammation in psoriasis and atopic dermatitis. J. Intern. Med., 2021, 290(1), 27-39.
[http://dx.doi.org/10.1111/joim.13235] [PMID: 33428274]
[14]
LeBlanc, J.F.; Segal, J.P.; De Campos, B.L.M.; Hart, A.L. The microbiome as a therapy in pouchitis and ulcerative colitis. Nutrients, 2021, 13(6), 1780.
[http://dx.doi.org/10.3390/nu13061780] [PMID: 34071065]
[15]
Chang, S.W.; Lee, H.C. Vitamin D and health - The missing vitamin in humans. Pediatr. Neonatol., 2019, 60(3), 237-244.
[http://dx.doi.org/10.1016/j.pedneo.2019.04.007] [PMID: 31101452]
[16]
Bottomley, A. The cancer patient and quality of life. Oncologist, 2002, 7(2), 120-125.
[http://dx.doi.org/10.1634/theoncologist.7-2-120] [PMID: 11961195]
[17]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2005, 307(5717), 1915-1920.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[18]
Dominguez-Bello, M.G.; Godoy, V.F.; Knight, R.; Blaser, M.J. Role of the microbiome in human development. Gut, 2019, 68(6), 1108-1114.
[http://dx.doi.org/10.1136/gutjnl-2018-317503] [PMID: 30670574]
[19]
Lloyd, P.J.; Abu, A.G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13073-016-0307-y] [PMID: 27122046]
[20]
Mitsuoka, T. Establishment of intestinal bacteriology. Biosci. Microbiota Food Health, 2014, 33(3), 99-116.
[http://dx.doi.org/10.12938/bmfh.33.99] [PMID: 25032084]
[21]
Mitra, S.; Förster, F.K.; Damms, M.A.; Scheurenbrand, T.; Biskup, S.; Huson, DH.; Bischoff, SC. Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and solid shotgun sequencing. BMC Genomics, 2013, 14(Suppl. 5), S16.
[22]
Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado, P.S.; Arboleya, M.S.; Mancabelli, L.; Lugli, G.A.; Rodriguez, J.M.; Bode, L.; De Vos, W.; Gueimonde, M.; Margolles, A.; Van Sinderen, D.; Ventura, M. The first microbial colonizers of the human Gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev., 2017, 81(4), e00036-17.
[http://dx.doi.org/10.1128/MMBR.00036-17] [PMID: 29118049]
[23]
Jiao, Y.; Wu, L.; Huntington, N.D.; Zhang, X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front. Immunol., 2020, 11, 282.
[http://dx.doi.org/10.3389/fimmu.2020.00282] [PMID: 32153586]
[24]
Almeida, A.; Mitchell, A.L.; Boland, M.; Forster, S.C.; Gloor, G.B.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A new genomic blueprint of the human gut microbiota. Nature, 2019, 568(7753), 499-504.
[http://dx.doi.org/10.1038/s41586-019-0965-1] [PMID: 30745586]
[25]
Ianiro, G.; Tilg, H.; Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 2016, 65(11), 1906-1915.
[http://dx.doi.org/10.1136/gutjnl-2016-312297] [PMID: 27531828]
[26]
Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; Sineok, L.; Lushchak, O.; Vaiserman, A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol., 2017, 17(1), 120.
[http://dx.doi.org/10.1186/s12866-017-1027-1] [PMID: 28532414]
[27]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[28]
Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; Wells, S.D.; Arent, S.M.; Kreider, R.B.; Campbell, B.I.; Bannock, L.; Scheiman, J.; Wissent, C.J.; Pane, M.; Kalman, D.S.; Pugh, J.N.; Ortega, S.C.P.; Ter Haar, J.A.; Arciero, P.J.; Antonio, J. The athletic gut microbiota. J. Int. Soc. Sports Nutr., 2020, 17(1), 24.
[http://dx.doi.org/10.1186/s12970-020-00353-w] [PMID: 32398103]
[29]
Seong, C.N.; Kang, J.W.; Lee, J.H.; Seo, S.Y.; Woo, J.J.; Park, C.; Bae, K.S.; Kim, M.S. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. J. Microbiol., 2018, 56(1), 1-10.
[http://dx.doi.org/10.1007/s12275-018-7318-x] [PMID: 29299839]
[30]
Lapébie, P.; Lombard, V.; Drula, E.; Terrapon, N.; Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun., 2019, 10(1), 2043.
[http://dx.doi.org/10.1038/s41467-019-10068-5] [PMID: 31053724]
[31]
Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci., 2017, 18(12), 2645.
[http://dx.doi.org/10.3390/ijms18122645] [PMID: 29215589]
[32]
Lopez, S.M.; Duncan, S.H.; Garcia, G.L.J.; Martinez, M.M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J., 2017, 11(4), 841-852.
[http://dx.doi.org/10.1038/ismej.2016.176] [PMID: 28045459]
[33]
Scott, K.P.; Martin, J.C.; Duncan, S.H.; Flint, H.J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol. Ecol., 2014, 87(1), 30-40.
[http://dx.doi.org/10.1111/1574-6941.12186] [PMID: 23909466]
[34]
Hagi, T.; Belzer, C. The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl. Microbiol. Biotechnol., 2021, 105(12), 4833-4841.
[http://dx.doi.org/10.1007/s00253-021-11362-3] [PMID: 34125276]
[35]
Shabbir, U.; Rubab, M.; Daliri, E.B.; Chelliah, R.; Javed, A.; Oh, DH. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients, 2021, 13(1), 206.
[36]
Tousen, Y.; Abe, F.; Ishida, T.; Uehara, M.; Ishimi, Y. Resistant starch promotes equol production and inhibits tibial bone loss in ovariectomized mice treated with daidzein. Metabolism, 2011, 60(10), 1425-1432.
[http://dx.doi.org/10.1016/j.metabol.2011.02.009] [PMID: 21550090]
[37]
Morais, L.H.; Schreiber, H.L., IV; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol., 2021, 19(4), 241-255.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[38]
Cukrowska, B.; Bierła, J.B.; Zakrzewska, M.; Klukowski, M.; Maciorkowska, E. The relationship between the infant gut microbiota and allergy. the role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life. Nutrients, 2020, 12(4), 946.
[http://dx.doi.org/10.3390/nu12040946] [PMID: 32235348]
[39]
Milosevic, I.; Vujovic, A.; Barac, A.; Djelic, M.; Korac, M.; Radovanovic, S.A.; Gmizic, I.; Stevanovic, O.; Djordjevic, V.; Lekic, N.; Russo, E.; Amedei, A. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int. J. Mol. Sci., 2019, 20(2), 395.
[http://dx.doi.org/10.3390/ijms20020395] [PMID: 30658519]
[40]
Amoroso, C.; Perillo, F.; Strati, F.; Fantini, M.; Caprioli, F.; Facciotti, F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells, 2020, 9(5), 1234.
[http://dx.doi.org/10.3390/cells9051234] [PMID: 32429359]
[41]
Kinashi, Y.; Hase, K. Partners in leaky gut syndrome: Intestinal dysbiosis and autoimmunity. Front. Immunol., 2021, 12, 673708.
[http://dx.doi.org/10.3389/fimmu.2021.673708] [PMID: 33968085]
[42]
Cani, P.D.; De Vos, W.M. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front. Microbiol., 2017, 8, 1765.
[http://dx.doi.org/10.3389/fmicb.2017.01765] [PMID: 29018410]
[43]
Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.; Honda, K.; Ishikawa, Y.; Hara, E.; Ohtani, N. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 2013, 499(7456), 97-101.
[http://dx.doi.org/10.1038/nature12347] [PMID: 23803760]
[44]
Chen, P.Y.; Li, S.; Koh, Y.C.; Wu, J.C.; Yang, M.J.; Ho, C.T.; Pan, M.H. Oolong tea extract and citrus peel polymethoxyflavones reduce transformation of L-carnitine to trimethylamine- N -oxide and decrease vascular inflammation in L -carnitine feeding mice. J. Agric. Food Chem., 2019, 67(28), 7869-7879.
[http://dx.doi.org/10.1021/acs.jafc.9b03092] [PMID: 31287296]
[45]
Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and vascular effect of the mediterranean diet. Int. J. Mol. Sci., 2019, 20(19), 4716.
[http://dx.doi.org/10.3390/ijms20194716] [PMID: 31547615]
[46]
Santa, K.; Kumazawa, Y.; Nagaoka, I. The potential use of grape phytochemicals for preventing the development of intestine-related and subsequent inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 794-802.
[http://dx.doi.org/10.2174/1871530319666190529105226] [PMID: 31142251]
[47]
Xu, Q.; Fu, Q.; Li, Z.; Liu, H.; Wang, Y.; Lin, X.; He, R.; Zhang, X.; Ju, Z.; Campisi, J.; Kirkland, J.L.; Sun, Y. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab., 2021, 3(12), 1706-1726.
[http://dx.doi.org/10.1038/s42255-021-00491-8] [PMID: 34873338]
[48]
Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol., 2017, 27(21), R1147-R1151.
[http://dx.doi.org/10.1016/j.cub.2017.09.019] [PMID: 29112863]
[49]
Barth, C.A. Regulation and interaction of cholesterol, bile salt and lipoprotein synthesis in liver. Klin. Wochenschr., 1983, 61(23), 1163-1170.
[http://dx.doi.org/10.1007/BF01537427] [PMID: 6361370]
[50]
Campana, L.; Esser, H.; Huch, M.; Forbes, S. Liver regeneration and inflammation: From fundamental science to clinical applications. Nat. Rev. Mol. Cell Biol., 2021, 22(9), 608-624.
[http://dx.doi.org/10.1038/s41580-021-00373-7] [PMID: 34079104]
[51]
Molgora, M.; Bonavita, E.; Ponzetta, A.; Riva, F.; Barbagallo, M.; Jaillon, S.; Popović, B.; Bernardini, G.; Magrini, E.; Gianni, F.; Zelenay, S.; Jonjić, S.; Santoni, A.; Garlanda, C.; Mantovani, A. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature, 2017, 551(7678), 110-114.
[http://dx.doi.org/10.1038/nature24293] [PMID: 29072292]
[52]
Puche, J.E.; Saiman, Y.; Friedman, S.L. Hepatic stellate cells and liver fibrosis. Compr. Physiol., 2013, 3(4), 1473-1492.
[http://dx.doi.org/10.1002/cphy.c120035] [PMID: 24265236]
[53]
Calle, E.E.; Rodriguez, C.; Walker, T.K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med., 2003, 348(17), 1625-1638.
[http://dx.doi.org/10.1056/NEJMoa021423] [PMID: 12711737]
[54]
Roeb, E.; Geier, A. Nonalcoholic Steatohepatitis (NASH) – Current treatment recommendations and future developments. Z. Gastroenterol., 2019, 57(4), 508-517.
[http://dx.doi.org/10.1055/a-0784-8827] [PMID: 30965381]
[55]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[56]
Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66.
[http://dx.doi.org/10.1038/emm.2013.97] [PMID: 24310172]
[57]
Okina, Y.; Sato, M.M.; Matsubara, T.; Daikoku, A.; Longato, L.; Rombouts, K.; Thanh, T.L.T.; Ichikawa, H.; Minamiyama, Y.; Kadota, M.; Fujii, H.; Enomoto, M.; Ikeda, K.; Yoshizato, K.; Pinzani, M.; Kawada, N. TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis. J. Hepatol., 2020, 73(4), 882-895.
[http://dx.doi.org/10.1016/j.jhep.2020.03.051] [PMID: 32330605]
[58]
Koda, Y.; Teratani, T.; Chu, P.S.; Hagihara, Y.; Mikami, Y.; Harada, Y.; Tsujikawa, H.; Miyamoto, K.; Suzuki, T.; Taniki, N.; Sujino, T.; Sakamoto, M.; Kanai, T.; Nakamoto, N. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat. Commun., 2021, 12(1), 4474.
[http://dx.doi.org/10.1038/s41467-021-24734-0] [PMID: 34294714]
[59]
Ding, L.; Yang, L.; Wang, Z.; Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B, 2015, 5(2), 135-144.
[http://dx.doi.org/10.1016/j.apsb.2015.01.004] [PMID: 26579439]
[60]
Sato, Y.; Atarashi, K.; Plichta, D.R.; Arai, Y.; Sasajima, S.; Kearney, S.M.; Suda, W.; Takeshita, K.; Sasaki, T.; Okamoto, S.; Skelly, A.N.; Okamura, Y.; Vlamakis, H.; Li, Y.; Tanoue, T.; Takei, H.; Nittono, H.; Narushima, S.; Irie, J.; Itoh, H.; Moriya, K.; Sugiura, Y.; Suematsu, M.; Moritoki, N.; Shibata, S.; Littman, D.R.; Fischbach, M.A.; Uwamino, Y.; Inoue, T.; Honda, A.; Hattori, M.; Murai, T.; Xavier, R.J.; Hirose, N.; Honda, K. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599(7885), 458-464.
[http://dx.doi.org/10.1038/s41586-021-03832-5] [PMID: 34325466]
[61]
Steed, A.L.; Christophi, G.P.; Kaiko, G.E.; Sun, L.; Goodwin, V.M.; Jain, U.; Esaulova, E.; Artyomov, M.N.; Morales, D.J.; Holtzman, M.J.; Boon, A.C.M.; Lenschow, D.J.; Stappenbeck, T.S. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 2017, 357(6350), 498-502.
[http://dx.doi.org/10.1126/science.aam5336] [PMID: 28774928]
[62]
Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem., 2018, 82(4), 600-610.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
[63]
Bae, M.; Park, Y.K.; Lee, J.Y. Food components with antifibrotic activity and implications in prevention of liver disease. J. Nutr. Biochem., 2018, 55, 1-11.
[http://dx.doi.org/10.1016/j.jnutbio.2017.11.003] [PMID: 29268106]
[64]
Wu, L.; Zhang, Q.; Mo, W.; Feng, J.; Li, S.; Li, J.; Liu, T.; Xu, S.; Wang, W.; Lu, X.; Yu, Q.; Chen, K.; Xia, Y.; Lu, J.; Xu, L.; Zhou, Y.; Fan, X.; Guo, C. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci. Rep., 2017, 7(1), 9289.
[http://dx.doi.org/10.1038/s41598-017-09673-5] [PMID: 28839277]
[65]
Hernández, O.L.D.; Alcántar, D.B.E.; Ruiz, C.L.A.; Sandoval, R.A.; Bueno, T.M.; Armendariz, B.J.; Salazar, M.A.M. Quercetin improves hepatic fibrosis reducing hepatic stellate cells and regulating pro-fibrogenic/anti-fibrogenic molecules balance. J. Gastroenterol. Hepatol., 2012, 27(12), 1865-1872.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07262.x] [PMID: 22989100]
[66]
Ying, H.Z.; Liu, Y.H.; Yu, B.; Wang, Z.Y.; Zang, J.N.; Yu, C.H. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem. Toxicol., 2013, 52, 53-60.
[http://dx.doi.org/10.1016/j.fct.2012.10.030] [PMID: 23123425]
[67]
Marcolin, E.; San, M.B.; Vallejo, D.; Tieppo, J.; Marroni, N.; González, G.J.; Tuñón, M.J. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J. Nutr., 2012, 142(10), 1821-1828.
[http://dx.doi.org/10.3945/jn.112.165274] [PMID: 22915297]
[68]
Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and mediterranean diet: A review. Nutrients, 2019, 11(9), 2059.
[http://dx.doi.org/10.3390/nu11092059] [PMID: 31480794]
[69]
Eguchi, Y.; Hyogo, H.; Ono, M.; Mizuta, T.; Ono, N.; Fujimoto, K.; Chayama, K.; Saibara, T. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: A multicenter large retrospective study. J. Gastroenterol., 2012, 47(5), 586-595.
[http://dx.doi.org/10.1007/s00535-012-0533-z] [PMID: 22328022]
[70]
Wang, Y.; Zhou, X.; Zhao, D.; Wang, X.; Gurley, E.C.; Liu, R.; Li, X.; Hylemon, P.B.; Chen, W.; Zhou, H. Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One, 2020, 15(5), e0232630.
[http://dx.doi.org/10.1371/journal.pone.0232630] [PMID: 32357187]
[71]
Montanari, T.; Pošćić, N.; Colitti, M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: A review. Obes. Rev., 2017, 18(5), 495-513.
[http://dx.doi.org/10.1111/obr.12520] [PMID: 28187240]
[72]
Inagaki, T.; Sakai, J.; Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol., 2016, 17(8), 480-495.
[http://dx.doi.org/10.1038/nrm.2016.62] [PMID: 27251423]
[73]
Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; Van Marken, L.W.D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012, 150(2), 366-376.
[http://dx.doi.org/10.1016/j.cell.2012.05.016] [PMID: 22796012]
[74]
Summer, S.S.; Brehm, B.J.; Benoit, S.C.; D’Alessio, D.A. Adiponectin changes in relation to the macronutrient composition of a weight-loss diet. Obesity (Silver Spring), 2011, 19(11), 2198-2204.
[http://dx.doi.org/10.1038/oby.2011.60] [PMID: 21455123]
[75]
Halle, M.; Berg, A.; Northoff, H.; Keul, J. Importance of TNF-alpha and leptin in obesity and insulin resistance: a hypothesis on the impact of physical exercise. Exerc. Immunol. Rev., 1998, 4, 77-94.
[PMID: 9644096]
[76]
Nitin, S. HbA1c and factors other than diabetes mellitus affecting it. Singapore Med. J., 2010, 51(8), 616-622.
[PMID: 20848057]
[77]
Zhang, R.; Fan, Y.; Xue, Y.; Feng, Y.; Dong, C.; Wang, Y.; Kou, P.; Li, G.; Ma, A.; Wang, T. The LDL/HDL ratio predicts long-term risk of coronary revascularization in ST-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention: A cohort study. Braz. J. Med. Biol. Res., 2022, 55, e11850.
[http://dx.doi.org/10.1590/1414-431x2021e11850] [PMID: 35137855]
[78]
Yoshiko, A.; Tomita, A.; Ando, R.; Ogawa, M.; Kondo, S.; Saito, A.; Tanaka, N.I.; Koike, T.; Oshida, Y.; Akima, H. Effects of 10-week walking and walking with home-based resistance training on muscle quality, muscle size, and physical functional tests in healthy older individuals. Eur. Rev. Aging Phys. Act., 2018, 15(1), 13.
[http://dx.doi.org/10.1186/s11556-018-0201-2] [PMID: 30473735]
[79]
Ishisaka, A.; Kawabata, K.; Miki, S.; Shiba, Y.; Minekawa, S.; Nishikawa, T.; Mukai, R.; Terao, J.; Kawai, Y. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS One, 2013, 8(11), e80843.
[http://dx.doi.org/10.1371/journal.pone.0080843] [PMID: 24260490]
[80]
Tominaga, T.; Kawaguchi, K.; Kanesaka, M.; Kawauchi, H.; Jirillo, E.; Kumazawa, Y. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum. Immunopharmacol. Immunotoxicol., 2010, 32(4), 593-599.
[http://dx.doi.org/10.3109/08923971003604786] [PMID: 20136581]
[81]
Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des., 2014, 20(6), 857-863.
[http://dx.doi.org/10.2174/138161282006140220120344] [PMID: 23701564]
[82]
Kawaguchi, K.; Matsumoto, T.; Kumazawa, Y. Effects of antioxidant polyphenols on TNF-alpha-related diseases. Curr. Top. Med. Chem., 2011, 11(14), 1767-1779.
[http://dx.doi.org/10.2174/156802611796235152] [PMID: 21506932]
[83]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1078-1089.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[84]
Ninomiya, T. Japanese legacy cohort studies: The hisayama study. J. Epidemiol., 2018, 28(11), 444-451.
[http://dx.doi.org/10.2188/jea.JE20180150] [PMID: 30298863]
[85]
Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement., 2015, 11(9), 1007-1014.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[86]
Juraschek, S.P.; Miller, E.R., III; Weaver, C.M.; Appel, L.J. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J. Am. Coll. Cardiol., 2017, 70(23), 2841-2848.
[http://dx.doi.org/10.1016/j.jacc.2017.10.011] [PMID: 29141784]
[87]
Hu, N.; Yu, J.T.; Tan, L.; Wang, Y.L.; Sun, L.; Tan, L. Nutrition and the risk of Alzheimer’s disease. BioMed Res. Int., 2013, 2013, 524820.
[http://dx.doi.org/10.1155/2013/524820] [PMID: 23865055]
[88]
Lakhan, S.E.; Kirchgessner, A. The emerging role of dietary fructose in obesity and cognitive decline. Nutr. J., 2013, 12(1), 114.
[http://dx.doi.org/10.1186/1475-2891-12-114] [PMID: 23924506]
[89]
Hsu, T.M.; Konanur, V.R.; Taing, L.; Usui, R.; Kayser, B.D.; Goran, M.I.; Kanoski, S.E. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus, 2015, 25(2), 227-239.
[http://dx.doi.org/10.1002/hipo.22368] [PMID: 25242636]
[90]
Saji, N.; Saito, Y.; Yamashita, T.; Murotani, K.; Tsuduki, T.; Hisada, T.; Sugimoto, T.; Niida, S.; Toba, K.; Sakurai, T. Relationship between plasma lipopolysaccharides, gut microbiota, and dementia: A cross-sectional study. J. Alzheimers Dis., 2022, 86(4), 1947-1957.
[http://dx.doi.org/10.3233/JAD-215653] [PMID: 35213381]
[91]
Gracie, D.J.; Hamlin, P.J.; Ford, A.C. The influence of the brain–gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol. Hepatol., 2019, 4(8), 632-642.
[http://dx.doi.org/10.1016/S2468-1253(19)30089-5] [PMID: 31122802]
[92]
Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res., 2018, 1639(Pt B), 128.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015]
[93]
Harvard report on cancer prevention. Causes of human cancer. Radiation. Cancer Causes Control, 1996, 7(Suppl. 1), S41-S43.
[PMID: 8932934]
[94]
Cantiello, F.; Cicione, A.; Salonia, A.; Autorino, R.; De Nunzio, C.; Briganti, A.; Gandaglia, G.; Dell’Oglio, P.; Capogrosso, P.; Damiano, R. Association between metabolic syndrome, obesity, diabetes mellitus and oncological outcomes of bladder cancer: A systematic review. Int. J. Urol., 2015, 22(1), 22-32.
[http://dx.doi.org/10.1111/iju.12644] [PMID: 25345683]
[95]
Kiraly, O.; Gong, G.; Olipitz, W.; Muthupalani, S.; Engelward, B.P. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet., 2015, 11(2), e1004901.
[http://dx.doi.org/10.1371/journal.pgen.1004901] [PMID: 25647331]
[96]
Holczbauer, Á.; Wangensteen, K.J.; Shin, S. Cellular origins of regenerating liver and hepatocellular carcinoma. JHEP Reports, 2022, 4(4), 100416.
[http://dx.doi.org/10.1016/j.jhepr.2021.100416] [PMID: 35243280]
[97]
Poto, R.; Cristinziano, L.; Modestino, L.; De Paulis, A.; Marone, G.; Loffredo, S.; Galdiero, M.R.; Varricchi, G. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines, 2022, 10(2), 431.
[http://dx.doi.org/10.3390/biomedicines10020431] [PMID: 35203640]
[98]
Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 1997, 3(7), 730-737.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[99]
Braden, A.; Stankowski, R.; Engel, J.; Onitilo, A. Breast cancer biomarkers: Risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence. Curr. Pharm. Des., 2014, 20(30), 4879-4898.
[http://dx.doi.org/10.2174/1381612819666131125145517] [PMID: 24283956]
[100]
Sijbesma, E.; Somsen, B.A.; Miley, G.P.; Van De Gevel, L.I.A.; Brunsveld, L.; Arkin, M.R.; Ottmann, C. Fluorescence anisotropy-based tethering for discovery of protein–protein interaction stabilizers. ACS Chem. Biol., 2020, 15(12), 3143-3148.
[http://dx.doi.org/10.1021/acschembio.0c00646] [PMID: 33196173]
[101]
Coussens, L.; Yang, F.T.L.; Liao, Y.C.; Chen, E.; Gray, A.; McGrath, J.; Seeburg, P.H.; Libermann, T.A.; Schlessinger, J.; Francke, U.; Levinson, A.; Ullrich, A. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science, 1985, 230(4730), 1132-1139.
[http://dx.doi.org/10.1126/science.2999974] [PMID: 2999974]
[102]
Filipović, B.; Šošić, J.B.; Ajdžanović, V.; Brkić, D.; Manojlović, S.M.; Milošević, V.; Sekulić, M. Daidzein administration positively affects thyroid C cells and bone structure in orchidectomized middle-aged rats. Osteoporos. Int., 2010, 21(9), 1609-1616.
[http://dx.doi.org/10.1007/s00198-009-1092-x] [PMID: 19859640]
[103]
Mirshahi, F.; Aqbi, H.F.; Isbell, M.; Manjili, S.H.; Guo, C.; Saneshaw, M.; Bandyopadhyay, D.; Dozmorov, M.; Khosla, A.; Wack, K.; Carrasco, Z.O.M.; Idowu, M.O.; Wang, X.Y.; Sanyal, A.J.; Manjili, M.H. Distinct hepatic immunological patterns are associated with the progression or inhibition of hepatocellular carcinoma. Cell Rep., 2022, 38(9), 110454.
[http://dx.doi.org/10.1016/j.celrep.2022.110454] [PMID: 35235789]
[104]
Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Invest., 2003, 111(12), 1805-1812.
[http://dx.doi.org/10.1172/JCI200318921] [PMID: 12813013]
[105]
Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar, Z.K.; Lochs, H.; Mantovani, G.; Marks, D.; Mitch, W.E.; Muscaritoli, M.; Najand, A.; Ponikowski, P.; Rossi, F.F.; Schambelan, M.; Schols, A.; Schuster, M.; Thomas, D.; Wolfe, R.; Anker, S.D. Cachexia: A new definition. Clin. Nutr., 2008, 27(6), 793-799.
[http://dx.doi.org/10.1016/j.clnu.2008.06.013] [PMID: 18718696]
[106]
Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[107]
Yan, B.; Lu, M.S.; Wang, L.; Mo, X.F.; Luo, W.P.; Du, Y.F.; Zhang, C.X. Specific serum carotenoids are inversely associated with breast cancer risk among Chinese women: A case–control study. Br. J. Nutr., 2016, 115(1), 129-137.
[http://dx.doi.org/10.1017/S000711451500416X] [PMID: 26482064]
[108]
Ono, M.; Takeshima, M.; Nakano, S. Mechanism of the anticancer effect of lycopene (tetraterpenoids). Enzymes, 2015, 37, 139-166.
[http://dx.doi.org/10.1016/bs.enz.2015.06.002] [PMID: 26298459]
[109]
Wang, Y.; Gapstur, S.M.; Gaudet, M.M.; Furtado, J.D.; Campos, H.; McCullough, M.L. Plasma carotenoids and breast cancer risk in the cancer prevention study II nutrition cohort. Cancer Causes Control, 2015, 26(9), 1233-1244.
[http://dx.doi.org/10.1007/s10552-015-0614-4] [PMID: 26081425]
[110]
Eliassen, A.H.; Liao, X.; Rosner, B.; Tamimi, R.M.; Tworoger, S.S.; Hankinson, S.E. Plasma carotenoids and risk of breast cancer over 20 y of follow-up. Am. J. Clin. Nutr., 2015, 101(6), 1197-1205.
[http://dx.doi.org/10.3945/ajcn.114.105080] [PMID: 25877493]
[111]
Fernandes, I.; Faria, A.; Azevedo, J.; Soares, S.; Calhau, C.; De Freitas, V.; Mateus, N. Influence of anthocyanins, derivative pigments and other catechol and pyrogallol-type phenolics on breast cancer cell proliferation. J. Agric. Food Chem., 2010, 58(6), 3785-3792.
[http://dx.doi.org/10.1021/jf903714z] [PMID: 20170107]
[112]
Feng, Q.; Zhang, H.; Dong, Z.; Zhou, Y.; Ma, J. Circulating 25-hydroxyvitamin D and lung cancer risk and survival. Medicine, 2017, 96(45), e8613.
[http://dx.doi.org/10.1097/MD.0000000000008613] [PMID: 29137092]
[113]
Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol., 2020, 39(7), 2085-2094.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[114]
Cunha, B.A. Pneumonia in the elderly. Clin. Microbiol. Infect., 2001, 7(11), 581-588.
[http://dx.doi.org/10.1046/j.1198-743x.2001.00328.x] [PMID: 11737082]
[115]
Bhalla, M.; Heinzinger, L.R.; Morenikeji, O.B.; Marzullo, B.; Thomas, B.N.; Bou Ghanem, E.N. Transcriptome profiling reveals CD73 and age-driven changes in neutrophil responses against Streptococcus pneumoniae. Infect. Immun., 2021, 89(11), e00258-21.
[http://dx.doi.org/10.1128/IAI.00258-21] [PMID: 34310891]
[116]
Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, 13(3), 159-175.
[http://dx.doi.org/10.1038/nri3399] [PMID: 23435331]
[117]
Kaur, R.; Chupp, G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J. Allergy Clin. Immunol., 2019, 144(1), 1-12.
[http://dx.doi.org/10.1016/j.jaci.2019.05.031] [PMID: 31277742]
[118]
Luo, Y.; Jin, M.; Lou, L.; Yang, S.; Li, C.; Li, X.; Zhou, M.; Cai, C. Role of arachidonic acid lipoxygenase pathway in asthma. Prostaglandins Other Lipid Mediat., 2022, 158, 106609.
[http://dx.doi.org/10.1016/j.prostaglandins.2021.106609] [PMID: 34954219]
[119]
Alwarith, J.; Kahleova, H.; Crosby, L.; Brooks, A.; Brandon, L.; Levin, S.M.; Barnard, N.D. The role of nutrition in asthma prevention and treatment. Nutr. Rev., 2020, 78(11), 928-938.
[http://dx.doi.org/10.1093/nutrit/nuaa005] [PMID: 32167552]
[120]
Chanda, D.; Otoupalova, E.; Smith, S.R.; Volckaert, T.; De Langhe, S.P.; Thannickal, V.J. Developmental pathways in the pathogenesis of lung fibrosis. Mol. Aspects Med., 2019, 65, 56-69.
[http://dx.doi.org/10.1016/j.mam.2018.08.004] [PMID: 30130563]
[121]
Zheng, P.; Liu, X.; Huang, H.; Guo, Z.; Wu, G.; Hu, H.; Cai, C.; Luo, W.; Wei, N.; Han, Q.; Sun, B. Diagnostic value of KL-6 in idiopathic interstitial pneumonia. J. Thorac. Dis., 2018, 10(8), 4724-4732.
[http://dx.doi.org/10.21037/jtd.2018.07.54] [PMID: 30233844]
[122]
Raherison, C.; Girodet, P-O. Epidemiology of COPD. Eur. Respir. Rev., 2009, 18(114), 213-221.
[http://dx.doi.org/10.1183/09059180.00003609] [PMID: 20956146]
[123]
Ahmad, S.; Arora, S.; Khan, S.; Mohsin, M.; Mohan, A.; Manda, K.; Syed, M.A. Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem., 2021, 90, 108571.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108571] [PMID: 33388351]
[124]
Kawaguchi, K.; Kaneko, M.; Miyake, R.; Takimoto, H.; Kumazawa, Y. Potent inhibitory effects of quercetin on inflammatory responses of collagen-induced arthritis in mice. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 308-315.
[http://dx.doi.org/10.2174/1871530319666190206225034] [PMID: 30727927]
[125]
Bartley, J. Vitamin D: Emerging roles in infection and immunity. Expert Rev. Anti Infect. Ther., 2010, 8(12), 1359-1369.
[http://dx.doi.org/10.1586/eri.10.102] [PMID: 21133662]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy