Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases

Author(s): Zao-Shang Chang, Zhi-Ming He and Jing-Bo Xia*

Volume 23, Issue 10, 2023

Published on: 31 October, 2022

Page: [991 - 1006] Pages: 16

DOI: 10.2174/1566524023666221014140817

Price: $65

conference banner
Abstract

Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.

Keywords: Aging, FoxO3, longevity, aging-related diseases, neurodegenerative diseases, cardiovascular diseases.

[1]
Herman L, Todeschini AL, Veitia RA. Forkhead transcription factors in health and disease. Trends Genet 2021; 37(5): 460-75.
[http://dx.doi.org/10.1016/j.tig.2020.11.003] [PMID: 33303287]
[2]
Salih DAM, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 2008; 20(2): 126-36.
[http://dx.doi.org/10.1016/j.ceb.2008.02.005] [PMID: 18394876]
[3]
Kim CG, Lee H, Gupta N, et al. Role of forkhead box class O proteins in cancer progression and metastasis. Semin Cancer Biol 2018; 50: 142-51.
[http://dx.doi.org/10.1016/j.semcancer.2017.07.007] [PMID: 28774834]
[4]
Webb AE, Brunet A. FOXO transcription factors: Key regulators of cellular quality control. Trends Biochem Sci 2014; 39(4): 159-69.
[http://dx.doi.org/10.1016/j.tibs.2014.02.003] [PMID: 24630600]
[5]
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021; 20(1): 21-38.
[http://dx.doi.org/10.1038/s41573-020-0088-2] [PMID: 33173189]
[6]
Andrade J, Shi C, Costa ASH, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol 2021; 23(4): 413-23.
[http://dx.doi.org/10.1038/s41556-021-00637-6] [PMID: 33795871]
[7]
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017; 169(1): 132-47.
[http://dx.doi.org/10.1016/j.cell.2017.02.031] [PMID: 28340339]
[8]
Emery A, Hardwick BS, Crooks AT, et al. Target identification for small-molecule discovery in the FOXO3a tumor-suppressor pathway using a biodiverse peptide library. Cell Chem Biol 2021; 28(11): 1602-15.
[http://dx.doi.org/10.1016/j.chembiol.2021.05.009] [PMID: 34111400]
[9]
Lin XX, Sen I, Janssens GE, et al. DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun 2018; 9(1): 4400.
[http://dx.doi.org/10.1038/s41467-018-06624-0] [PMID: 30353013]
[10]
Hornsveld M, Feringa FM, Krenning L, et al. A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Rep 2021; 34(4): 108675.
[http://dx.doi.org/10.1016/j.celrep.2020.108675] [PMID: 33503422]
[11]
Homan EP, Brandão BB, Softic S, et al. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. J Clin Invest 2021; 131(19): e143328.
[http://dx.doi.org/10.1172/JCI143328] [PMID: 34428182]
[12]
Du S, Jin F, Maneix L, et al. FoxO3 deficiency in cortical astrocytes leads to impaired lipid metabolism and aggravated amyloid pathology. Aging Cell 2021; 20(8): e13432.
[http://dx.doi.org/10.1111/acel.13432] [PMID: 34247441]
[13]
Shin HJR, Kim H, Oh S, et al. AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 2016; 534(7608): 553-7.
[http://dx.doi.org/10.1038/nature18014] [PMID: 27309807]
[14]
Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303(5666): 2011-5.
[http://dx.doi.org/10.1126/science.1094637] [PMID: 14976264]
[15]
Hwang I, Uchida H, Dai Z, et al. Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin post-translational modification. Nat Commun 2021; 12(1): 640.
[http://dx.doi.org/10.1038/s41467-020-20839-0] [PMID: 33510167]
[16]
Zhao Y, Liu YS. Longevity factor FOXO3: A key regulator in aging-related vascular diseases. Front Cardiovasc Med 2021; 8: 778674.
[http://dx.doi.org/10.3389/fcvm.2021.778674] [PMID: 35004893]
[17]
Fafián-Labora JA, Rodríguez-Navarro JA, O’Loghlen A. Small extracellular vesicles have GST activity and ameliorate senes-cence-related tissue damage. Cell Metab 2020; 32(1): 71-86.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.06.004] [PMID: 32574561]
[18]
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019; 571(7764): 183-92.
[http://dx.doi.org/10.1038/s41586-019-1365-2] [PMID: 31292558]
[19]
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M. A senescence-centric view of aging: Implications for longevity and disease. Trends Cell Biol 2020; 30(10): 777-91.
[http://dx.doi.org/10.1016/j.tcb.2020.07.002] [PMID: 32800659]
[20]
Timmers PRHJ, Wilson JF, Joshi PK, Deelen J. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat Commun 2020; 11(1): 3570.
[http://dx.doi.org/10.1038/s41467-020-17312-3] [PMID: 32678081]
[21]
Li Y, Wang WJ, Cao H, et al. Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 2009; 18(24): 4897-904.
[http://dx.doi.org/10.1093/hmg/ddp459] [PMID: 19793722]
[22]
Flachsbart F, Caliebe A, Kleindorp R, et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci 2009; 106(8): 2700-5.
[http://dx.doi.org/10.1073/pnas.0809594106] [PMID: 19196970]
[23]
Anselmi CV, Malovini A, Roncarati R, et al. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 2009; 12(2): 95-104.
[http://dx.doi.org/10.1089/rej.2008.0827] [PMID: 19415983]
[24]
Klinpudtan N, Allsopp RC, Kabayama M, et al. The association between longevity associated FOXO3 allele and heart disease in Septuagenarians and Octogenarians: The SONIC study. J Gerontol A Biol Sci Med Sci 2021; 77(8): 1542-8.
[http://dx.doi.org/10.1093/gerona/glab204] [PMID: 34254639]
[25]
Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: A vertebrate perspective. Cell 2019; 177(1): 200-20.
[http://dx.doi.org/10.1016/j.cell.2019.02.038] [PMID: 30901541]
[26]
Shi D, Xia X, Cui A, et al. The precursor of PI(3,4,5)P3 alleviates aging by activating daf-18(Pten) and independent of daf-16. Nat Commun 2020; 11(1): 4496.
[http://dx.doi.org/10.1038/s41467-020-18280-4] [PMID: 32901024]
[27]
Hwangbo DS, Gersham B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004; 429(6991): 562-6.
[http://dx.doi.org/10.1038/nature02549] [PMID: 15175753]
[28]
Park S, Artan M, Jeong DE, et al. Diacetyl odor shortens longevity conferred by food deprivation in C. elegans via downregulation of DAF‐16/FOXO. Aging Cell 2021; 20(1): e13300.
[http://dx.doi.org/10.1111/acel.13300] [PMID: 33382195]
[29]
McIntyre RL, Denis SW, Kamble R, et al. Inhibition of the neuromuscular acetylcholine receptor with atracurium activates FOXO/DAF‐16‐induced longevity. Aging Cell 2021; 20(8): e13381.
[http://dx.doi.org/10.1111/acel.13381] [PMID: 34227219]
[30]
Piccolo P, Ferriero R, Barbato A, et al. Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proc Natl Acad Sci 2021; 118(10): e2025242118.
[http://dx.doi.org/10.1073/pnas.2025242118] [PMID: 33649241]
[31]
Li Z, Meng Y, Liu C, et al. Kcnh2 mediates FAK/AKT‐FOXO3A pathway to attenuate sepsis‐induced cardiac dysfunction. Cell Prolif 2021; 54(2): e12962.
[http://dx.doi.org/10.1111/cpr.12962] [PMID: 33263944]
[32]
Qi H, Tian D, Li M, et al. Foxo3 promotes the differentiation and function of follicular helper T cells. Cell Rep 2020; 31(6): 107621.
[http://dx.doi.org/10.1016/j.celrep.2020.107621] [PMID: 32402289]
[33]
Imai Y, Takahashi A, Hanyu A, et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep 2014; 7(1): 194-207.
[http://dx.doi.org/10.1016/j.celrep.2014.03.006] [PMID: 24703840]
[34]
Lin Z, Niu Y, Wan A, et al. RNA m6 A methylation regulates sorafenib resistance in liver cancer through FOXO 3‐mediated autophagy. EMBO J 2020; 39(12): e103181.
[http://dx.doi.org/10.15252/embj.2019103181] [PMID: 32368828]
[35]
Shimokawa I, Komatsu T, Hayashi N, et al. The life‐extending effect of dietary restriction requires F oxo3 in mice. Aging Cell 2015; 14(4): 707-9.
[http://dx.doi.org/10.1111/acel.12340] [PMID: 25808402]
[36]
Joseph J, Ametepe ES, Haribabu N, et al. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium. Nat Commun 2016; 7(1): 12748.
[http://dx.doi.org/10.1038/ncomms12748] [PMID: 27599659]
[37]
Yan P, Li Q, Wang L, et al. FOXO3-engineered human esc-derived vascular cells promote vascular protection and regeneration. Cell Stem Cell 2019; 24(3): 447-61.
[http://dx.doi.org/10.1016/j.stem.2018.12.002] [PMID: 30661960]
[38]
Renault VM, Rafalski VA, Morgan AA, et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 2009; 5(5): 527-39.
[http://dx.doi.org/10.1016/j.stem.2009.09.014] [PMID: 19896443]
[39]
Willcox BJ, Donlon TA, He Q, et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci 2008; 105(37): 13987-92.
[http://dx.doi.org/10.1073/pnas.0801030105] [PMID: 18765803]
[40]
Zhao SC, Chen Q, Zhu HL, et al. Association between FOXO3A gene polymorphisms and human longevity: A meta-analysis. Asian J Androl 2014; 16(3): 446-52.
[http://dx.doi.org/10.4103/1008-682X.123673] [PMID: 24589462]
[41]
Willcox BJ, Tranah GJ, Chen R, et al. The FoxO3 gene and cause‐specific mortality. Aging Cell 2016; 15(4): 617-24.
[http://dx.doi.org/10.1111/acel.12452] [PMID: 27071935]
[42]
Grossi V, Forte G, Sanese P, et al. The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. Nucleic Acids Res 2018; 46(11): 5587-600.
[http://dx.doi.org/10.1093/nar/gky331] [PMID: 29733381]
[43]
Flachsbart F, Dose J, Gentschew L, et al. Identification and characterization of two functional variants in the human longevity gene FOXO3. Nat Commun 2017; 8(1): 2063.
[http://dx.doi.org/10.1038/s41467-017-02183-y] [PMID: 29234056]
[44]
Soerensen M, Dato S, Christensen K, et al. Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell 2010; 9(6): 1010-7.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00627.x] [PMID: 20849522]
[45]
Morris BJ, Willcox DC, Donlon TA, Willcox BJ. bi_FOXO3 a major gene for human longevity - a mini-review. Gerontology 2015; 61(6): 515-25.
[http://dx.doi.org/10.1159/000375235] [PMID: 25832544]
[46]
Liu L, Yin H, Hao X, et al. Down-Regulation of miR-301a-3p Reduces Burn-Induced Vascular Endothelial Apoptosis by potentiating hMSC-Secreted IGF-1 and PI3K/Akt/FOXO3a Pathway. iScience 2020; 23(8): 101383.
[http://dx.doi.org/10.1016/j.isci.2020.101383] [PMID: 32745988]
[47]
Allen JE, Krigsfeld G, Mayes PA, et al. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 2013; 5(171): 171ra17.
[http://dx.doi.org/10.1126/scitranslmed.3004828] [PMID: 23390247]
[48]
Lee HK, Cha HS, Nam MJ, et al. Broussochalcone A induces apoptosis in human renal cancer cells via ROS level elevation and activation of FOXO3 signaling pathway. Oxid Med Cell Longev 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/2800706] [PMID: 34745413]
[49]
Natarajan SK, Ingham SA, Mohr AM, et al. Saturated free fatty acids induce cholangiocyte lipoapoptosis. Hepatology 2014; 60(6): 1942-56.
[http://dx.doi.org/10.1002/hep.27175] [PMID: 24753158]
[50]
Güllülü Ö, Hehlgans S, Mayer BE, et al. A spatial and functional interaction of a heterotetramer survivin–DNA-PKcs complex in DNA damage response. Cancer Res 2021; 81(9): 2304-17.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2931] [PMID: 33408118]
[51]
Lee CM, Lee J, Jang SN, et al. 6,8-diprenylorobol induces apoptosis in human hepatocellular carcinoma cells via activation of FOXO3 and inhibition of CYP2J2. Oxid Med Cell Longev 2020; 2020: 1-19.
[http://dx.doi.org/10.1155/2020/8887251] [PMID: 33312341]
[52]
Guo J, Gertsberg Z, Ozgen N, Steinberg SF. p66Shc links alpha1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res 2009; 104(5): 660-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.186288] [PMID: 19168439]
[53]
Ni YG, Berenji K, Wang N, et al. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 2006; 114(11): 1159-68.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.637124] [PMID: 16952979]
[54]
Stienne C, Michieletto MF, Benamar M, et al. Foxo3 transcription factor drives pathogenic T helper 1 differentiation by inducing the expression of eomes. Immunity 2016; 45(4): 774-87.
[http://dx.doi.org/10.1016/j.immuni.2016.09.010] [PMID: 27742544]
[55]
Seoane J, Le HV, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004; 117(2): 211-23.
[http://dx.doi.org/10.1016/S0092-8674(04)00298-3] [PMID: 15084259]
[56]
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018; 28(6): 436-53.
[http://dx.doi.org/10.1016/j.tcb.2018.02.001] [PMID: 29477613]
[57]
Medema RH, Kops GJPL, Bos JL, Burgering BMT. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404(6779): 782-7.
[http://dx.doi.org/10.1038/35008115] [PMID: 10783894]
[58]
Tudzarova S, Trotter MWB, Wollenschlaeger A, et al. Molecular architecture of the DNA replication origin activation check-point. EMBO J 2010; 29(19): 3381-94.
[http://dx.doi.org/10.1038/emboj.2010.201] [PMID: 20729811]
[59]
Bouchard C, Marquardt J, Brás A, Medema RH, Eilers M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J 2004; 23(14): 2830-40.
[http://dx.doi.org/10.1038/sj.emboj.7600279] [PMID: 15241468]
[60]
Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002; 296(5567): 530-4.
[http://dx.doi.org/10.1126/science.1068712] [PMID: 11964479]
[61]
Dall’Acqua A, Sonego M, Pellizzari I, et al. CDK6 protects epithelial ovarian cancer from platinum‐induced death via FOXO3 regulation. EMBO Mol Med 2017; 9(10): 1415-33.
[http://dx.doi.org/10.15252/emmm.201607012] [PMID: 28778953]
[62]
Chung YM, Park SH, Tsai WB, et al. FOXO3 signalling links ATM to the p53 apoptotic pathway following DNA damage. Nat Commun 2012; 3(1): 1000.
[http://dx.doi.org/10.1038/ncomms2008] [PMID: 22893124]
[63]
Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MCT. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol 2008; 10(4): 460-7.
[http://dx.doi.org/10.1038/ncb1709] [PMID: 18344987]
[64]
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[65]
Murdoch JD, Rostosky CM, Gowrisankaran S, et al. Endophilin-A deficiency induces the Foxo3a-Fbxo32 network in the brain and causes dysregulation of autophagy and the ubiquitin-proteasome system. Cell Rep 2016; 17(4): 1071-86.
[http://dx.doi.org/10.1016/j.celrep.2016.09.058] [PMID: 27720640]
[66]
Gu X, Raman A, Susztak K. Going from acute to chronic kidney injury with FoxO3. J Clin Invest 2019; 129(6): 2192-4.
[http://dx.doi.org/10.1172/JCI128985] [PMID: 31063992]
[67]
Choi S, Jeong HJ, Kim H, et al. Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy 2019; 15(6): 1069-81.
[http://dx.doi.org/10.1080/15548627.2019.1569931] [PMID: 30653406]
[68]
Schips TG, Wietelmann A, Höhn K, et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc Res 2011; 91(4): 587-97.
[http://dx.doi.org/10.1093/cvr/cvr144] [PMID: 21628326]
[69]
Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6(6): 458-71.
[http://dx.doi.org/10.1016/j.cmet.2007.11.001] [PMID: 18054315]
[70]
Lee JW, Nam H, Kim LE, et al. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy 2019; 15(5): 753-70.
[http://dx.doi.org/10.1080/15548627.2018.1556946] [PMID: 30523761]
[71]
Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010; 120(4): 1043-55.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[72]
Li L, Zviti R, Ha C, Wang ZV, Hill JA, Lin F. Forkhead box O3 (FoxO3) regulates kidney tubular autophagy following urinary tract obstruction. J Biol Chem 2017; 292(33): 13774-83.
[http://dx.doi.org/10.1074/jbc.M117.791483] [PMID: 28705935]
[73]
Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 2016; 17(6): 677-86.
[http://dx.doi.org/10.1038/ni.3434] [PMID: 27089382]
[74]
Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem 2009; 284(41): 28319-31.
[http://dx.doi.org/10.1074/jbc.M109.024406] [PMID: 19696026]
[75]
Loebel M, Holzhauser L, Hartwig JA, et al. The forkhead transcription factor Foxo3 negatively regulates natural killer cell function and viral clearance in myocarditis. Eur Heart J 2018; 39(10): 876-87.
[http://dx.doi.org/10.1093/eurheartj/ehx624] [PMID: 29136142]
[76]
Becker L, Nguyen L, Gill J, Kulkarni S, Pasricha PJ, Habtezion A. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 2018; 67(5): 827-36.
[http://dx.doi.org/10.1136/gutjnl-2016-312940] [PMID: 28228489]
[77]
Chang RL, Stanley JA, Robinson MC, et al. Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation‐induced damage. EMBO J 2020; 39(23): e104523.
[http://dx.doi.org/10.15252/embj.2020104523] [PMID: 33073387]
[78]
Dikalova A, Mayorov V, Xiao L, et al. Mitochondrial isolevuglandins contribute to vascular oxidative stress and mitochondria-targeted scavenger of isolevuglandins reduces mitochondrial dysfunction and hypertension. Hypertension 2020; 76(6): 1980-91.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15236] [PMID: 33012204]
[79]
Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat Rev Nephrol 2021; 17(10): 639-54.
[http://dx.doi.org/10.1038/s41581-021-00430-6] [PMID: 34127835]
[80]
Marinkovic D, Zhang X, Yalcin S, et al. FOXO3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 2007; 117(8): 2133-44.
[http://dx.doi.org/10.1172/JCI31807] [PMID: 17671650]
[81]
Zou D, Mou Z, Wu W, Liu H. TRIM33 protects osteoblasts from oxidative stress‐induced apoptosis in osteoporosis by inhibiting FOXO3a ubiquitylation and degradation. Aging Cell 2021; 20(7): e13367.
[http://dx.doi.org/10.1111/acel.13367] [PMID: 34101965]
[82]
Kops GJPL, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002; 419(6904): 316-21.
[http://dx.doi.org/10.1038/nature01036] [PMID: 12239572]
[83]
Chang ZS, Xia JB, Wu HY, et al. Forkhead box O3 protects the heart against paraquat‐induced aging‐associated phenotypes by upregulating the expression of antioxidant enzymes. Aging Cell 2019; 18(5): e12990.
[http://dx.doi.org/10.1111/acel.12990] [PMID: 31264342]
[84]
Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev 2010; 24(15): 1620-33.
[http://dx.doi.org/10.1101/gad.1942110] [PMID: 20679398]
[85]
Lim HM, Lee J, Nam MJ, Park SH. Acetylshikonin induces apoptosis in human colorectal cancer HCT-15 and LoVo cells via nuclear translocation of FOXO3 and ROS level elevation. Oxid Med Cell Longev 2021; 2021: 1-19.
[http://dx.doi.org/10.1155/2021/6647107] [PMID: 33953834]
[86]
Kim DH, Jang JH, Kwon OS, et al. Nuclear factor erythroid-derived 2-like 2-induced reductive stress favors self-renewal of breast cancer stem-like cells via the FoxO3a-Bmi-1 axis. Antioxid Redox Signal 2020; 32(18): 1313-29.
[http://dx.doi.org/10.1089/ars.2019.7730] [PMID: 31672029]
[87]
Liu C, Zhao Y, Wang J, et al. FoxO3 reverses 5-fluorouracil resistance in human colorectal cancer cells by inhibiting the Nrf2/TR1 signaling pathway. Cancer Lett 2020; 470: 29-42.
[http://dx.doi.org/10.1016/j.canlet.2019.11.042] [PMID: 31811910]
[88]
Minhas PS, Latif-Hernandez A, McReynolds MR, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 2021; 590(7844): 122-8.
[http://dx.doi.org/10.1038/s41586-020-03160-0] [PMID: 33473210]
[89]
Haeusler RA, Kaestner KH, Accili D. FoxOs function synergistically to promote glucose production. J Biol Chem 2010; 285(46): 35245-8.
[http://dx.doi.org/10.1074/jbc.C110.175851] [PMID: 20880840]
[90]
Yeo H, Lyssiotis CA, Zhang Y, et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J 2013; 32(19): 2589-602.
[http://dx.doi.org/10.1038/emboj.2013.186] [PMID: 24013118]
[91]
Chaves I, van der Horst GTJ, Schellevis R, et al. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol 2014; 24(11): 1248-55.
[http://dx.doi.org/10.1016/j.cub.2014.04.018] [PMID: 24856209]
[92]
Rimmelé P, Liang R, Bigarella CL, et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO 3. EMBO Rep 2015; 16(9): 1164-76.
[http://dx.doi.org/10.15252/embr.201439704] [PMID: 26209246]
[93]
Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24(50): 7410-25.
[http://dx.doi.org/10.1038/sj.onc.1209086] [PMID: 16288288]
[94]
Luo L, Zhang Z, Qiu N, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat Commun 2021; 12(1): 2699.
[http://dx.doi.org/10.1038/s41467-021-23052-9] [PMID: 33976188]
[95]
Tsuji T, Maeda Y, Kita K, et al. FOXO3 is a latent tumor suppressor for FOXO3-positive and cytoplasmic-type gastric cancer cells. Oncogene 2021; 40(17): 3072-86.
[http://dx.doi.org/10.1038/s41388-021-01757-x] [PMID: 33795838]
[96]
Cai J, Li R, Xu X, et al. CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat Cell Biol 2018; 20(4): 465-78.
[http://dx.doi.org/10.1038/s41556-018-0065-8] [PMID: 29593330]
[97]
Mercken EM, Crosby SD, Lamming DW, et al. Calorie restriction in humans inhibits the PI 3 K/AKT pathway and induces a younger transcription profile. Aging Cell 2013; 12(4): 645-51.
[http://dx.doi.org/10.1111/acel.12088] [PMID: 23601134]
[98]
Schunk SJ, Floege J, Fliser D, Speer T. WNT–β-catenin signalling — a versatile player in kidney injury and repair. Nat Rev Nephrol 2021; 17(3): 172-84.
[http://dx.doi.org/10.1038/s41581-020-00343-w] [PMID: 32989282]
[99]
Essers MAG, de Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, Korswagen HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 2005; 308(5725): 1181-4.
[http://dx.doi.org/10.1126/science.1109083] [PMID: 15905404]
[100]
Nlandu-Khodo S, Osaki Y, Scarfe L, et al. Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 2020; 5(10): e135454.
[http://dx.doi.org/10.1172/jci.insight.135454] [PMID: 32369448]
[101]
Tenbaum SP, Ordóñez-Morán P, Puig I, et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012; 18(6): 892-901.
[http://dx.doi.org/10.1038/nm.2772] [PMID: 22610277]
[102]
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: Three pathways is a magic number. Nucleic Acids Res 2020; 48(19): 10648-61.
[http://dx.doi.org/10.1093/nar/gkaa757] [PMID: 32941609]
[103]
Dong J, Viswanathan S, Adami E, et al. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat Commun 2021; 12(1): 66.
[http://dx.doi.org/10.1038/s41467-020-20303-z] [PMID: 33397952]
[104]
Yu F, Wei J, Cui X, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res 2021; 49(10): 5779-97.
[http://dx.doi.org/10.1093/nar/gkab415] [PMID: 34048572]
[105]
Essers MAG, Weijzen S, de Vries-Smits AMM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 2004; 23(24): 4802-12.
[http://dx.doi.org/10.1038/sj.emboj.7600476] [PMID: 15538382]
[106]
Tikhanovich I, Kuravi S, Campbell RV, et al. Regulation of FOXO3 by phosphorylation and methylation in hepatitis C virus infection and alcohol exposure. Hepatology 2014; 59(1): 58-70.
[http://dx.doi.org/10.1002/hep.26618] [PMID: 23857333]
[107]
Sykes SM, Lane SW, Bullinger L, et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 2011; 146(5): 697-708.
[http://dx.doi.org/10.1016/j.cell.2011.07.032] [PMID: 21884932]
[108]
Posternak G, Tang X, Maisonneuve P, et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat Chem Biol 2020; 16(11): 1170-8.
[http://dx.doi.org/10.1038/s41589-020-0609-7] [PMID: 32778845]
[109]
Yang JY, Zong CS, Xia W, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008; 10(2): 138-48.
[http://dx.doi.org/10.1038/ncb1676] [PMID: 18204439]
[110]
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2020; 67(Pt 2): 102-16.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.023] [PMID: 31899247]
[111]
Naka K, Hoshii T, Muraguchi T, et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463(7281): 676-80.
[http://dx.doi.org/10.1038/nature08734] [PMID: 20130650]
[112]
Zhao X, Liu Y, Du L, et al. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells. Protein Cell 2015; 6(2): 127-38.
[http://dx.doi.org/10.1007/s13238-014-0121-5] [PMID: 25503443]
[113]
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124(3): 471-84.
[http://dx.doi.org/10.1016/j.cell.2006.01.016] [PMID: 16469695]
[114]
Packer M. Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: Implications for understanding the effects of current and future treatments for heart failure. Eur Heart J 2020; 41(39): 3856-61.
[http://dx.doi.org/10.1093/eurheartj/ehaa360] [PMID: 32460327]
[115]
Masui K, Tanaka K, Akhavan D, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 2013; 18(5): 726-39.
[http://dx.doi.org/10.1016/j.cmet.2013.09.013] [PMID: 24140020]
[116]
Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCα, but Not S6K1. Dev Cell 2006; 11(6): 859-71.
[http://dx.doi.org/10.1016/j.devcel.2006.10.007] [PMID: 17141160]
[117]
Yan Y, Mukherjee S, Harikumar KG, et al. Structure of an AMPK complex in an inactive, ATP-bound state. Science 2021; 373(6553): 413-9.
[http://dx.doi.org/10.1126/science.abe7565] [PMID: 34437114]
[118]
Hardie DG, Ross FA, Hawley SA. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13(4): 251-62.
[http://dx.doi.org/10.1038/nrm3311] [PMID: 22436748]
[119]
Davila D, Connolly NMC, Bonner H, et al. Two-step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate. Cell Death Differ 2012; 19(10): 1677-88.
[http://dx.doi.org/10.1038/cdd.2012.49] [PMID: 22539004]
[120]
Segatto M, Fittipaldi R, Pin F, et al. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat Commun 2017; 8(1): 1707.
[http://dx.doi.org/10.1038/s41467-017-01645-7] [PMID: 29167426]
[121]
Li PL, Liu H, Chen GP, et al. STEAP3 (six-transmembrane epithelial antigen of prostate 3) inhibits pathological cardiac hypertrophy. Hypertension 2020; 76(4): 1219-30.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14752] [PMID: 32862709]
[122]
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119(9): 2758-71.
[http://dx.doi.org/10.1172/JCI39162] [PMID: 19652361]
[123]
Lei J, Wang S, Kang W, et al. FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein Cell 2021; 12(2): 145-51.
[http://dx.doi.org/10.1007/s13238-020-00779-7] [PMID: 32809106]
[124]
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3(1): 1078.
[http://dx.doi.org/10.1038/ncomms2090] [PMID: 23011132]
[125]
Wang XX, Wang XL, Tong M, et al. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Res Cardiol 2016; 111(2): 13.
[http://dx.doi.org/10.1007/s00395-016-0531-z] [PMID: 26786260]
[126]
Chaanine AH, Joyce LD, Stulak JM, et al. Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease With Preserved or Reduced Ejection Fraction. Circ Heart Fail 2019; 12(2): e005131.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.118.005131] [PMID: 30744415]
[127]
Alagpulinsa DA, Szalat RE, Poznansky MC, Shmookler Reis RJ. Genomic Instability in Multiple Myeloma. Trends Cancer 2020; 6(10): 858-73.
[http://dx.doi.org/10.1016/j.trecan.2020.05.006] [PMID: 32487486]
[128]
Zhang L, Cai M, Gong Z, et al. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. J Clin Invest 2017; 127(6): 2159-75.
[http://dx.doi.org/10.1172/JCI90077] [PMID: 28436938]
[129]
Hu MCT, Lee DF, Xia W, et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117(2): 225-37.
[http://dx.doi.org/10.1016/S0092-8674(04)00302-2] [PMID: 15084260]
[130]
Dansen TB, Burgering BMT. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol 2008; 18(9): 421-9.
[http://dx.doi.org/10.1016/j.tcb.2008.07.004] [PMID: 18715783]
[131]
Scheiblich H, Trombly M, Ramirez A, Heneka MT. Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol 2020; 41(4): 300-12.
[http://dx.doi.org/10.1016/j.it.2020.02.002] [PMID: 32147113]
[132]
Schäffner I, Minakaki G, Khan MA, et al. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 2018; 99(6): 1188-1203.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.08.017] [PMID: 30197237]
[133]
de la Torre-Ubieta L, Gaudillière B, Yang Y, et al. A FOXO–Pak1 transcriptional pathway controls neuronal polarity. Genes Dev 2010; 24(8): 799-813.
[http://dx.doi.org/10.1101/gad.1880510] [PMID: 20395366]
[134]
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 2020; 23(10): 1183-93.
[http://dx.doi.org/10.1038/s41593-020-0687-6] [PMID: 32778792]
[135]
Akhter R, Sanphui P, Biswas SC. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem 2014; 289(15): 10812-22.
[http://dx.doi.org/10.1074/jbc.M113.519355] [PMID: 24567336]
[136]
Sanphui P, Biswas SC. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis 2013; 4(5): e625.
[http://dx.doi.org/10.1038/cddis.2013.148] [PMID: 23661003]
[137]
Travagli RA, Browning KN, Camilleri M. Parkinson disease and the gut: New insights into pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 2020; 17(11): 673-85.
[http://dx.doi.org/10.1038/s41575-020-0339-z] [PMID: 32737460]
[138]
El-Ghaiesh SH, Bahr HI, Ibrahiem AT, et al. Metformin protects from rotenone–induced nigrostriatal neuronal death in adult mice by activating ampk-foxo3 signaling and mitigation of angiogenesis. Front Mol Neurosci 2020; 13: 84.
[http://dx.doi.org/10.3389/fnmol.2020.00084] [PMID: 32625061]
[139]
Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem 2014; 289(47): 32845-57.
[http://dx.doi.org/10.1074/jbc.M114.612424] [PMID: 25271153]
[140]
Voisin J, Farina F, Naphade S, et al. FOXO3 targets are reprogrammed as Huntington’s disease neural cells and striatal neurons face senescence with p16 INK4a increase. Aging Cell 2020; 19(11): e13226.
[http://dx.doi.org/10.1111/acel.13226] [PMID: 33156570]
[141]
Scarpa JR, Jiang P, Losic B, et al. Systems genetic analyses highlight a TGFβ-FOXO3 dependent striatal astrocyte network conserved across species and associated with stress, sleep, and Huntington’s disease. PLoS Genet 2016; 12(7): e1006137.
[http://dx.doi.org/10.1371/journal.pgen.1006137] [PMID: 27390852]
[142]
Guo A, Li K, Tian HC, et al. FGF19 protects skeletal muscle against obesity‐induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT‐1/PGC‐α pathway. J Cell Mol Med 2021; 25(7): 3585-600.
[http://dx.doi.org/10.1111/jcmm.16448] [PMID: 33751819]
[143]
Zhou C, Zhang Y, Jiao X, Wang G, Wang R, Wu Y. SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats. Reg Anesth Pain Med 2021; 46(1): 49-56.
[http://dx.doi.org/10.1136/rapm-2020-101918] [PMID: 33127810]
[144]
Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and pro-teasomal pathways in atrophying muscle cells. Cell Metab 2007; 6(6): 472-83.
[http://dx.doi.org/10.1016/j.cmet.2007.11.004] [PMID: 18054316]
[145]
Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy J Cell Sci 2014; 127(Pt 7): jcs. 136390.
[http://dx.doi.org/10.1242/jcs.136390] [PMID: 24463822]
[146]
Choi J, Song NJ, Lee A, et al. Oxyresveratrol increases energy expenditure through foxo3a-mediated ucp1 induction in high-fat-diet-induced obese mice. Int J Mol Sci 2018; 20(1): 26.
[http://dx.doi.org/10.3390/ijms20010026] [PMID: 30577593]
[147]
Deng Y, Xiao Y, Yuan F, et al. SGK1/FOXO3 signaling in hypothalamic pomc neurons mediates glucocorticoid-increased adiposity. Diabetes 2018; 67(4): 569-80.
[http://dx.doi.org/10.2337/db17-1069] [PMID: 29321171]
[148]
Sajan M, Hansen B, Ivey R III, et al. Brain insulin signaling is increased in insulin-resistant states and decreases in foxos and pgc-1α and increases in aβ1–40/42 and phospho-tau may abet alzheimer development. Diabetes 2016; 65(7): 1892-903.
[http://dx.doi.org/10.2337/db15-1428] [PMID: 26895791]
[149]
Matsumoto T, Kiuchi S, Murase T. Synergistic activation of thermogenic adipocytes by a combination of PPARγ activation, SMAD3 inhibition and adrenergic receptor activation ameliorates metabolic abnormalities in rodents. Diabetologia 2019; 62(10): 1915-27.
[http://dx.doi.org/10.1007/s00125-019-4938-6] [PMID: 31317231]
[150]
Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O’Brien RM. Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol 2006; 20(11): 2831-47.
[http://dx.doi.org/10.1210/me.2006-0085] [PMID: 16840535]
[151]
Fuchs E, Chen T. A matter of life and death: Self‐renewal in stem cells. EMBO Rep 2013; 14(1): 39-48.
[http://dx.doi.org/10.1038/embor.2012.197] [PMID: 23229591]
[152]
Mansell E, Sigurdsson V, Deltcheva E, et al. Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell Function. Cell Stem Cell 2021; 28(2): 241-256.e6.
[http://dx.doi.org/10.1016/j.stem.2020.09.018] [PMID: 33086034]
[153]
Paik J, Ding Z, Narurkar R, et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 2009; 5(5): 540-53.
[http://dx.doi.org/10.1016/j.stem.2009.09.013] [PMID: 19896444]
[154]
Webb AE, Pollina EA, Vierbuchen T, et al. FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep 2013; 4(3): 477-91.
[http://dx.doi.org/10.1016/j.celrep.2013.06.035] [PMID: 23891001]
[155]
Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128(2): 325-39.
[http://dx.doi.org/10.1016/j.cell.2007.01.003] [PMID: 17254970]
[156]
Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1(1): 101-12.
[http://dx.doi.org/10.1016/j.stem.2007.02.001] [PMID: 18371339]
[157]
Gopinath SD, Webb AE, Brunet A, Rando TA. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Reports 2014; 2(4): 414-26.
[http://dx.doi.org/10.1016/j.stemcr.2014.02.002] [PMID: 24749067]
[158]
García-Prat L, Perdiguero E, Alonso-Martín S, et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat Cell Biol 2020; 22(11): 1307-18.
[http://dx.doi.org/10.1038/s41556-020-00593-7] [PMID: 33106654]
[159]
Bridge D, Theofiles AG, Holler RL, Marcinkevicius E, Steele RE, Martínez DE. FoxO and stress responses in the cnidarian Hydra vulgaris. PLoS One 2010; 5(7): e11686.
[http://dx.doi.org/10.1371/journal.pone.0011686] [PMID: 20657733]
[160]
Puig O, Mattila J. Understanding Forkhead box class O function: Lessons from Drosophila melanogaster. Antioxid Redox Signal 2011; 14(4): 635-47.
[http://dx.doi.org/10.1089/ars.2010.3407] [PMID: 20618068]
[161]
Frankum R, Jameson TSO, Knight BA, et al. Extreme longevity variants at the FOXO3 locus may moderate FOXO3 isoform levels. Geroscience 2021.
[http://dx.doi.org/10.1007/s11357-021-00431-0] [PMID: 34436732]
[162]
Han X, Sun Z. Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in renal tubule cells. Hypertension 2020; 75(5): 1233-41.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14642] [PMID: 32223380]
[163]
O’Neill BT, Bhardwaj G, Penniman CM, et al. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes 2019; 68(3): 556-70.
[http://dx.doi.org/10.2337/db18-0416] [PMID: 30523026]
[164]
Zhou Y, Chen E, Tang Y, et al. miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma cells. Cell Death Dis 2019; 10(11): 843.
[http://dx.doi.org/10.1038/s41419-019-2053-8] [PMID: 31695022]
[165]
Eijkelenboom A, Mokry M, Smits LM, Nieuwenhuis EE, Burgering BMT. FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep 2013; 5(6): 1664-78.
[http://dx.doi.org/10.1016/j.celrep.2013.11.031] [PMID: 24360957]
[166]
Al-Tamari HM, Dabral S, Schmall A, et al. FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Mol Med 2018; 10(2): 276-93.
[http://dx.doi.org/10.15252/emmm.201606261] [PMID: 29217661]
[167]
Li L, Kang H, Zhang Q, D’Agati VD, Al-Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest 2019; 129(6): 2374-89.
[http://dx.doi.org/10.1172/JCI122256] [PMID: 30912765]
[168]
Zheng F, Tang Q, Wu J, et al. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J Exp Clin Cancer Res 2014; 33(1): 36.
[http://dx.doi.org/10.1186/1756-9966-33-36] [PMID: 24766860]
[169]
Sunters A, Madureira PA, Pomeranz KM, et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 2006; 66(1): 212-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1997] [PMID: 16397234]
[170]
Wang X, Meng L, Zhao L, et al. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res Clin Pract 2017; 126: 172-81.
[http://dx.doi.org/10.1016/j.diabres.2016.12.005] [PMID: 28258028]
[171]
Kodali M, Attaluri S, Madhu LN, et al. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 2021; 20(2): e13277.
[http://dx.doi.org/10.1111/acel.13277] [PMID: 33443781]
[172]
Sun X, Cao B, Naval-Sanchez M, et al. Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat Commun 2021; 12(1): 2665.
[http://dx.doi.org/10.1038/s41467-021-22863-0] [PMID: 33976125]
[173]
Ranganathan P, Yu X, Santhanam R, et al. Decitabine priming enhances the antileukemic effects of exportin 1 (XPO1) selective inhibitor selinexor in acute myeloid leukemia. Blood 2015; 125(17): 2689-92.
[http://dx.doi.org/10.1182/blood-2014-10-607648] [PMID: 25716206]
[174]
Hill R, Madureira PA, Ferreira B, et al. TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT. Nat Commun 2017; 8(1): 14687.
[http://dx.doi.org/10.1038/ncomms14687] [PMID: 28276427]
[175]
Salcher S, Spoden G, Hagenbuchner J, et al. A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2020; 39(5): 1080-97.
[http://dx.doi.org/10.1038/s41388-019-1044-7] [PMID: 31591479]
[176]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: A report from the American heart association. Circulation 2022; 145(8): e153-639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[177]
Nolan E, Bridgeman VL, Ombrato L, et al. Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat Can 2022; 3(2): 173-87.
[http://dx.doi.org/10.1038/s43018-022-00336-7] [PMID: 35221334]
[178]
Png G, Barysenka A, Repetto L, et al. Mapping the serum proteome to neurological diseases using whole genome sequencing. Nat Commun 2021; 12(1): 7042.
[http://dx.doi.org/10.1038/s41467-021-27387-1] [PMID: 34857772]
[179]
Qin Y, Sun W, Wang Z, et al. RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis 2022; 13(3): 270.
[http://dx.doi.org/10.1038/s41419-022-04728-6] [PMID: 35338124]
[180]
Chen R, Morris BJ, Donlon TA, et al. FOXO3 longevity genotype mitigates the increased mortality risk in men with a cardiometabolic disease. Aging 2020; 12(23): 23509-24.
[http://dx.doi.org/10.18632/aging.202175] [PMID: 33260156]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy