Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A Revision of Polymeric Nanoparticles as a Strategy to Improve the Biological Activity of Melatonin

Author(s): Pablo Igor Ribeiro Franco*, José Rodrigues do Carmo Neto, Viviane Lopes Rocha, Juliana Reis Machado, Andre Correa Amaral and Marina Pacheco Miguel*

Volume 30, Issue 29, 2023

Published on: 16 November, 2022

Page: [3315 - 3334] Pages: 20

DOI: 10.2174/0929867329666221006113536

Price: $65

conference banner
Abstract

Drug delivery systems based on nanotechnology exhibit a number of advantages over traditional pharmacological formulations. Polymeric nanoparticles are commonly used as delivery systems and consist of synthetic or natural polymers that protect drugs from degradation in physiological environments. In this context, indolamine melatonin has been associated with several biological functions, including antioxidant, antitumor, immunoregulatory, neuroprotective, and cardioprotective effects. However, its availability, half-life, and absorption depend upon the route of administration, and this can limit its therapeutic potential. An alternative is the use of polymeric nanoparticle formulations associated with melatonin to increase its bioavailability and therapeutic dose at sites of interest. Thus, the objective of this review is to provide a general and concise approach to the therapeutic association between melatonin and polymeric nanoparticles applied to different biological disorders and to also highlight its advantages and potential applications compared to those of the typical drug formulations that are available.

Keywords: Polymeric nanoparticles, melatonin, polymers, antioxidants, anti-inflammatory agents, drug dellivery.

[1]
Safari, J.; Zarnegar, Z. Advanced drug delivery systems: Nanotechnology of health design A review. J. Saudi Chem. Soc., 2014, 18(2), 85-99.
[http://dx.doi.org/10.1016/j.jscs.2012.12.009]
[2]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.012] [PMID: 26458789]
[3]
Ahlawat, J.; Henriquez, G.; Narayan, M. Enhancing the delivery of chemotherapeutics: Role of biodegradable polymeric nanoparticles. Molecules, 2018, 23(9), 2157.
[http://dx.doi.org/10.3390/molecules23092157] [PMID: 30150595]
[4]
Lam, P.L.; Wong, W.Y.; Bian, Z.; Chui, C.H.; Gambari, R. Recent advances in green nanoparticulate systems for drug delivery: Efficient delivery and safety concern. Nanomedicine (Lond.), 2017, 12(4), 357-385.
[http://dx.doi.org/10.2217/nnm-2016-0305] [PMID: 28078952]
[5]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[6]
Souza, A.C.O.; Amaral, A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front. Microbiol., 2017, 8, 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]
[7]
Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nat, 1976, 263, 797-800.
[8]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[9]
Wong, K.H.; Lu, A.; Chen, X.; Yang, Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules, 2020, 25(16), 3620.
[http://dx.doi.org/10.3390/molecules25163620] [PMID: 32784890]
[10]
Chuffa, L.G.A.; Seiva, F.R.F.; Novais, A.A.; Simão, V.A.; Martín Giménez, V.M.; Manucha, W.; Zuccari, D.A.P.C.; Reiter, R.J. Melatonin-loaded nanocarriers: New horizons for therapeutic applications. Molecules, 2021, 26(12), 3562.
[http://dx.doi.org/10.3390/molecules26123562] [PMID: 34200947]
[11]
Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev., 2005, 9(1), 11-24.
[http://dx.doi.org/10.1016/j.smrv.2004.08.001] [PMID: 15649735]
[12]
Charão, M.F.; Goethel, G.; Brucker, N.; Paese, K.; Eifler-Lima, V.L.; Pohlmann, A.R.; Guterres, S.S.; Garcia, S.C. Melatonin-loaded lipid-core nanocapsules protect against lipid peroxidation caused by paraquat through increased SOD expression in Caenorhabditis elegans. BMC Pharmacol. Toxicol., 2019, 20(Suppl. 1), 80.
[http://dx.doi.org/10.1186/s40360-019-0352-4] [PMID: 31852511]
[13]
Chen, G.; Deng, H.; Song, X.; Lu, M.; Zhao, L.; Xia, S.; You, G.; Zhao, J.; Zhang, Y.; Dong, A.; Zhou, H. Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials, 2017, 144, 30-41.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.008] [PMID: 28820966]
[14]
Lopes Rocha Correa, V.; Assis Martins, J.; Ribeiro de Souza, T.; de Castro Nunes Rincon, G.; Pacheco Miguel, M.; Borges de Menezes, L.; Correa Amaral, A. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int. J. Biol. Macromol., 2020, 162, 1465-1475.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.027] [PMID: 32781118]
[15]
Si, M.; Sun, Q.; Ding, H.; Cao, C.; Huang, M.; Wang, Q.; Yang, H.; Yao, Y. Melatonin-loaded nanoparticles for enhanced antidepressant effects and HPA hormone modulation. Adv. Polym. Technol., 2020, 2020, 4789475.
[http://dx.doi.org/10.1155/2020/4789475]
[16]
Wang, S.; Li, J.; He, Y.; Ran, Y.; Lu, B.; Gao, J.; Shu, C.; Li, J.; Zhao, Y.; Zhang, X.; Hao, Y. Protective effect of melatonin entrapped PLGA nanoparticles on radiation-induced lung injury through the miR-21/TGF-β1/Smad3 pathway. Int. J. Pharm., 2021, 602, 120584.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120584] [PMID: 33887395]
[17]
Reiter, RJ.; Tan, DX.; Tamura, H.; Cruz, MHC.; Fuentes-Broto, L. Clinical relevance of melatonin in ovarian and placental physiology: A review. Gynecol. Endocrinol., 2014, 30(2), 83-89.
[http://dx.doi.org/10.3109/09513590.2013.849238]
[18]
Moreira Andraschko, M.; de Carvalho, M.T.; Cardoso Martins Pires, H.; de Deus, H.D.; Martí Castelló, C.; de Menezes, L.B.; Brolo Martins, D.; Pacheco Miguel, M. Melatonin attenuates glucocorticoid effect induced by medroxyprogesterone acetate in rats. Gen. Comp. Endocrinol., 2022, 316, 113959.
[http://dx.doi.org/10.1016/j.ygcen.2021.113959] [PMID: 34861281]
[19]
Watson, N.; Diamandis, T.; Gonzales-Portillo, C.; Reyes, S.; Borlongan, C.V. Melatonin as an antioxidant for stroke neuroprotection. Cell Transplant., 2016, 25(5), 883-891.
[http://dx.doi.org/10.3727/096368915X689749] [PMID: 26497887]
[20]
Baltatu, O.C.; Senar, S.; Campos, L.A.; Cipolla-Neto, J. Cardioprotective melatonin: Translating from proof-of-concept studies to therapeutic use. Int. J. Mol. Sci., 2019, 20(18), 4342.
[http://dx.doi.org/10.3390/ijms20184342] [PMID: 31491852]
[21]
Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol., 2017, 15(3), 434-443.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[22]
Gibbs, F.P.; Vriend, J. The half-life of melatonin elimination from rat plasma. Endocrinology, 1981, 109(5), 1796-1798.
[http://dx.doi.org/10.1210/endo-109-5-1796] [PMID: 7297507]
[23]
Zetner, D.; Andersen, L.P.H.; Rosenberg, J. Pharmacokinetics of alternative administration routes of melatonin: A systematic review. Drug Res. (Stuttg.), 2016, 66(4), 169-173.
[PMID: 26514093]
[24]
Altındal, D.Ç.; Gümüşderelioğlu, M. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J. Microencapsul., 2016, 33(1), 53-63.
[http://dx.doi.org/10.3109/02652048.2015.1115901] [PMID: 26605784]
[25]
Osorio, R.; Cabello, I.; Medina-Castillo, A.L.; Osorio, E.; Toledano, M. Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces. Clin. Oral Investig., 2016, 20(9), 2411-2420.
[http://dx.doi.org/10.1007/s00784-016-1738-y] [PMID: 26832781]
[26]
Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc., 1958, 80(10), 2587.
[http://dx.doi.org/10.1021/ja01543a060]
[27]
Nordlund, J.J.; Lerner, A.B. The effects of oral melatonin on skin color and on the release of pituitary hormones. J. Clin. Endocrinol. Metab., 1977, 45(4), 768-774.
[http://dx.doi.org/10.1210/jcem-45-4-768] [PMID: 914981]
[28]
Bubenik, G.A. Gastrointestinal melatonin: Localization, function, and clinical relevance. Dig. Dis. Sci., 2002, 47(10), 2336-2348.
[http://dx.doi.org/10.1023/A:1020107915919] [PMID: 12395907]
[29]
Slominski, A.; Pisarchik, A.; Semak, I.; Sweatman, T.; Wortsman, J.; Szczesniewski, A.; Slugocki, G.; McNulty, J.; Kauser, S.; Tobin, D.J.; Jing, C.; Johansson, O. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J., 2002, 16(8), 896-898.
[http://dx.doi.org/10.1096/fj.01-0952fje] [PMID: 12039872]
[30]
Klein, D.C.; Moore, R.Y. Pineal N-acetyltransferase and hydroxyindole-O-methyl-transferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res., 1979, 174(2), 245-262.
[http://dx.doi.org/10.1016/0006-8993(79)90848-5] [PMID: 487129]
[31]
Pardridge, W.M.; Mietus, L.J. Transport of albumin-bound melatonin through the blood-brain barrier. J. Neurochem., 1980, 34(6), 1761-1763.
[http://dx.doi.org/10.1111/j.1471-4159.1980.tb11272.x] [PMID: 7381501]
[32]
Francis, P.L.; Leone, A.M.; Young, I.M.; Stovell, P.; Silman, R.E. Gas chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine. Clin. Chem., 1987, 33(4), 453-457.
[http://dx.doi.org/10.1093/clinchem/33.4.453] [PMID: 3829375]
[33]
Cutando, A.; Aneiros-Fernández, J.; López-Valverde, A.; Arias-Santiago, S.; Aneiros-Cachaza, J.; Reiter, R.J. A new perspective in oral health: Potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity. Arch. Oral Biol., 2011, 56(10), 944-950.
[http://dx.doi.org/10.1016/j.archoralbio.2011.03.004] [PMID: 21459362]
[34]
Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding expectations. Physiology (Bethesda), 2014, 29(5), 325-333.
[http://dx.doi.org/10.1152/physiol.00011.2014] [PMID: 25180262]
[35]
Shukla, M.; Chinchalongporn, V.; Govitrapong, P.; Reiter, R.J. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann. N.Y. Acad. Sci., 2019, 1443(1), 75-96.
[http://dx.doi.org/10.1111/nyas.14005] [PMID: 30756405]
[36]
Karaaslan, C.; Suzen, S. Antioxidant properties of melatonin and its potential action in diseases. Curr. Top. Med. Chem., 2015, 15(9), 894-903.
[http://dx.doi.org/10.2174/1568026615666150220120946] [PMID: 25697560]
[37]
Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res., 2018, 65(4), e12525.
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[38]
Zawilska, J.B.; Skene, D.J.; Arendt, J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol. Rep., 2009, 61(3), 383-410.
[http://dx.doi.org/10.1016/S1734-1140(09)70081-7] [PMID: 19605939]
[39]
Brown, G.M.; Pandi-Perumal, S.R.; Pupko, H.; Kennedy, J.L.; Cardinali, D.P. Melatonin as an add-on treatment of COVID-19 infection: Current status. Diseases, 2021, 9(3), 64.
[http://dx.doi.org/10.3390/diseases9030064] [PMID: 34562971]
[40]
Tan, D.X.; Hardeland, R. Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation: Focus on COVID-19. Melatonin Res., 2020, 3(1), 120-143.
[http://dx.doi.org/10.32794/mr11250052]
[41]
Morera-Fumero, A.; Abreu-Gonzalez, P. Role of melatonin in schizophrenia. Int. J. Mol. Sci., 2013, 14(5), 9037-9050.
[http://dx.doi.org/10.3390/ijms14059037] [PMID: 23698762]
[42]
Satyanarayanan, S.K.; Su, H.; Lin, Y.W.; Su, K.P. Circadian rhythm and melatonin in the treatment of depression. Curr. Pharm. Des., 2018, 24(22), 2549-2555.
[http://dx.doi.org/10.2174/1381612824666180803112304] [PMID: 30073921]
[43]
Wade, A.G.; Ford, I.; Crawford, G.; McConnachie, A.; Nir, T.; Laudon, M.; Zisapel, N. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: A randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med., 2010, 8(1), 51.
[http://dx.doi.org/10.1186/1741-7015-8-51] [PMID: 20712869]
[44]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[45]
Talib, W.H.; Alsayed, A.R.; Abuawad, A.; Daoud, S.; Mahmod, A.I. Melatonin in cancer treatment: Current knowledge and future opportunities. Molecules, 2021, 26(9), 2506.
[http://dx.doi.org/10.3390/molecules26092506] [PMID: 33923028]
[46]
Koral, L.; Ovali, M.A.; Tufekcioglu, N.K.; Karakilic, E.; Adali, Y.; Uzun, M. The role of AQP3 and AQP4 channels in cisplatin-induced cardiovascular edema and the protective effect of melatonin. Mol. Biol. Rep., 2021, 48(11), 7457-7465.
[http://dx.doi.org/10.1007/s11033-021-06763-6] [PMID: 34657253]
[47]
Maria, S.; Witt-Enderby, P.A. Melatonin effects on bone: Potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J. Pineal Res., 2014, 56(2), 115-125.
[http://dx.doi.org/10.1111/jpi.12116] [PMID: 24372640]
[48]
DeMuro, R.L.; Nafziger, A.N.; Blask, D.E.; Menhinick, A.M.; Bertino, J.S., Jr. The absolute bioavailability of oral melatonin. J. Clin. Pharmacol., 2000, 40(7), 781-784.
[http://dx.doi.org/10.1177/00912700022009422] [PMID: 10883420]
[49]
Harpsøe, N.G.; Andersen, L.P.H.; Gögenur, I.; Rosenberg, J. Clinical pharmacokinetics of melatonin: A systematic review. Eur. J. Clin. Pharmacol., 2015, 71(8), 901-909.
[http://dx.doi.org/10.1007/s00228-015-1873-4] [PMID: 26008214]
[50]
Cavallo, A.; Hassan, M. Stability of melatonin in aqueous solution. J. Pineal Res., 1995, 18(2), 90-92.
[http://dx.doi.org/10.1111/j.1600-079X.1995.tb00145.x] [PMID: 7629696]
[51]
Daya, S.; Walker, R.B.; Glass, B.D.; Anoopkumar-Dukie, S. The effect of variations in pH and temperature on stability of melatonin in aqueous solution. J. Pineal Res., 2001, 31(2), 155-158.
[http://dx.doi.org/10.1034/j.1600-079x.2001.310209.x] [PMID: 11555171]
[52]
Zetner, D.; Rosenberg, J.; Henrique Marcondes Sari, M.; Priprem, A.; Zetner Dennis, D. Solubility and stability of melatonin in propylene glycol, glycofurol, and dimethyl sulfoxide. F1000 Res., 2020, 9, 85.
[http://dx.doi.org/10.12688/f1000research.21992.1]
[53]
Longmire, M.R.; Ogawa, M.; Choyke, P.L.; Kobayashi, H. Biologically optimized nanosized molecules and particles: More than just size. Bioconjug. Chem., 2011, 22(6), 993-1000.
[http://dx.doi.org/10.1021/bc200111p] [PMID: 21513351]
[54]
Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res., 2017, 68, 1-11.
[http://dx.doi.org/10.1016/j.plipres.2017.07.001] [PMID: 28778472]
[55]
Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal., 2014, 3(2), 199-215.
[http://dx.doi.org/10.4155/ppa.13.79] [PMID: 24588596]
[56]
Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: State of the art. J. Colloid Sci. Biotechnol., 2012, 1(2), 147-168.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[57]
Molska, A.; Nyman, A.K.G.; Sofias, A.M.; Kristiansen, K.A.; Hak, S.; Widerøe, M. in vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. Eur. J. Pharm. Biopharm., 2020, 152, 248-256.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.003] [PMID: 32439308]
[58]
Dubey, V.; Mishra, D.; Jain, N.K. Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery. Eur. J. Pharm. Biopharm., 2007, 67(2), 398-405.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.007] [PMID: 17452098]
[59]
Gonçalves, M.C.F.; Mertins, O.; Pohlmann, A.R.; Silveira, N.P.; Guterres, S.S. Chitosan coated liposomes as an innovative nanocarrier for drugs. J. Biomed. Nanotechnol., 2012, 8(2), 240-250.
[http://dx.doi.org/10.1166/jbn.2012.1375] [PMID: 22515075]
[60]
Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res., 2020, 22(6), 141.
[http://dx.doi.org/10.1007/s11051-020-04848-0]
[61]
Albertini, B.; Di Sabatino, M.; Melegari, C.; Passerini, N. Formulating SLMs as oral pulsatile system for potential delivery of melatonin to pediatric population. Int. J. Pharm., 2014, 469(1), 67-79.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.055] [PMID: 24768728]
[62]
Mirhoseini, M.; Gatabi, Z.R.; Saeedi, M.; Morteza-Semnani, K.; Amiri, F.T.; Kelidari, H.; Malekshah, A.A.K. Protective effects of melatonin solid lipid nanoparticles on testis histology after testicular trauma in rats. Res. Pharm. Sci., 2019, 14(3), 201-208.
[http://dx.doi.org/10.4103/1735-5362.258486] [PMID: 31160897]
[63]
Sabzichi, M.; Samadi, N.; Mohammadian, J.; Hamishehkar, H.; Akbarzadeh, M.; Molavi, O. Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids Surf. B Biointerfaces, 2016, 145, 64-71.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.042] [PMID: 27137804]
[64]
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm., 2019, 144, 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[65]
Priprem, A.; Nukulkit, C.; Johns, N.P.; Laohasiriwong, S.; Yimtae, K.; Soontornpas, C. Transmucosal delivery of melatonin-encapsulated niosomes in a mucoadhesive gel. Ther. Deliv., 2018, 9(5), 343-357.
[http://dx.doi.org/10.4155/tde-2018-0001] [PMID: 29681235]
[66]
Uthaiwat, P.; Daduang, J.; Priprem, A.; Settasatian, C.; Chio-Srichan, S.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P. Topical melatonin niosome gel for the treatment of 5- fu-induced oral mucositis in mice. Curr. Drug Deliv., 2021, 18(2), 199-211.
[http://dx.doi.org/10.2174/1567201817666200525151848] [PMID: 32484102]
[67]
Arslan Azizoglu, G.; Tuncay Tanriverdi, S.; Aydin Kose, F.; Ballar Kirmizibayrak, P.; Ozer, O. Dual-prevention for UV-induced skin damage: Incorporation of melatonin-loaded elastic niosomes into octyl methoxycinnamate pickering emulsions. AAPS PharmSciTech, 2017, 18(8), 2987-2998.
[http://dx.doi.org/10.1208/s12249-017-0786-1] [PMID: 28493002]
[68]
Bitar, A.; Ahmad, N.M.; Fessi, H.; Elaissari, A. Silica-based nanoparticles for biomedical applications. Drug Discov. Today, 2012, 17(19-20), 1147-1154.
[http://dx.doi.org/10.1016/j.drudis.2012.06.014] [PMID: 22772028]
[69]
Khattabi, A.M.; Talib, W.H.; Alqdeimat, D.A. The effect of polymer length on the in vitro characteristics of a drug loaded and targeted silica nanoparticles. Saudi Pharm. J., 2018, 26(7), 1022-1026.
[http://dx.doi.org/10.1016/j.jsps.2018.05.010] [PMID: 30416358]
[70]
Usman, M.; Hussein, M.; Kura, A.; Fakurazi, S.; Masarudin, M.; Ahmad Saad, F. Graphene oxide as a nanocarrier for a theranostics delivery system of protocatechuic acid and gadolinium/gold nanoparticles. Molecules, 2018, 23(2), 500.
[http://dx.doi.org/10.3390/molecules23020500] [PMID: 29495251]
[71]
Niu, G.; Yousefi, B.; Qujeq, D.; Marjani, A.; Asadi, J.; Wang, Z.; Mir, S.M. Melatonin and doxorubicin co-delivered via a functionalized graphene-dendrimeric system enhances apoptosis of osteosarcoma cells. Mater. Sci. Eng. C, 2021, 119, 111554.
[http://dx.doi.org/10.1016/j.msec.2020.111554] [PMID: 33321618]
[72]
Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for biomedical and healthcare applications. Macromol. Biosci., 2019, 19(2), 1800256.
[http://dx.doi.org/10.1002/mabi.201800256] [PMID: 30485660]
[73]
Li, Y.; Zhao, X.; Liu, Y.; Yang, J.; Zhang, Q.; Wang, L.; Wu, W.; Yang, Q.; Liu, B. Melatonin loaded with bacterial cellulose nanofiber by Pickering-emulsion solvent evaporation for enhanced dissolution and bioavailability. Int. J. Pharm., 2019, 559, 393-401.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.059] [PMID: 30731257]
[74]
Mirmajidi, T.; Chogan, F.; Rezayan, A.H.; Sharifi, A.M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm., 2021, 596, 120213.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120213] [PMID: 33493599]
[75]
Erdoğar, N.; Akkın, S.; Bilensoy, E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat. Drug Deliv. Formul., 2019, 12(4), 252-266.
[http://dx.doi.org/10.2174/1872211313666190123153711] [PMID: 30674269]
[76]
Bessone, C.D.V.; Martinez, S.M.; Luna, J.D.; Marquez, M.A.; Ramírez, M.L.; Allemandi, D.A.; Carpentieri, Á.R.; Quinteros, D.A. Neuroprotective effect of melatonin loaded in ethylcellulose nanoparticles applied topically in a retinal degeneration model in rabbits. Exp. Eye Res., 2020, 200, 108222.
[http://dx.doi.org/10.1016/j.exer.2020.108222] [PMID: 32898513]
[77]
Alphandéry, E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology, 2019, 13(5), 573-596.
[http://dx.doi.org/10.1080/17435390.2019.1572809] [PMID: 30938215]
[78]
El-Megharbel, S.M.; Almalki, A.S.A.; Hamza, R.Z.; Gobouri, A.A.; Alhadhrami, A.A.; Al-Humaidi, J.Y.; Refat, M.S. Synthesis and suggestion of a new nanometric gold(III) melatonin drug complex: An interesting model for testicular protection. Future Med. Chem., 2018, 10(14), 1693-1704.
[http://dx.doi.org/10.4155/fmc-2018-0008] [PMID: 29957063]
[79]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants (Basel, Switzerland), 2020, 2020, 9.
[80]
Milan, A.S.; Calpena Campmany, A.C.; Naveros, B.C. Antioxidant nanoplatforms for dermal delivery: Melatonin. Curr. Drug Metab., 2017, 18(5), 437-453.
[http://dx.doi.org/10.2174/1389200218666170222145908] [PMID: 28228077]
[81]
Lim, E.K.; Chung, B.H.; Chung, S.J. Recent advances in ph-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr. Drug Targets, 2018, 19(4), 300-317.
[http://dx.doi.org/10.2174/1389450117666160602202339] [PMID: 27262486]
[82]
Martins, L.G.; khalil, N.M.; Mainardes, R.M. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles. J. Pharm. Anal., 2017, 7(6), 388-393.
[http://dx.doi.org/10.1016/j.jpha.2017.05.007] [PMID: 29404064]
[83]
Soni, J.M.; Sardoiwala, M.N.; Choudhury, S.R.; Sharma, S.S.; Karmakar, S. Melatonin-loaded chitosan nanoparticles endows nitric oxide synthase 2 mediated anti-inflammatory activity in inflammatory bowel disease model. Mater. Sci. Eng. C, 2021, 124, 112038.
[http://dx.doi.org/10.1016/j.msec.2021.112038] [PMID: 33947538]
[84]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[85]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, IJN.S52634.
[PMID: 24363556]
[86]
Leyva-Gómez, G.; Piñón-Segundo, E.; Mendoza-Muñoz, N.; Zambrano-Zaragoza, M.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Approaches in polymeric nanoparticles for vaginal drug delivery: A review of the state of the art. Int. J. Mol. Sci., 2018, 19(6), 1549.
[http://dx.doi.org/10.3390/ijms19061549] [PMID: 29882846]
[87]
Koseva, N.S.; Rydz, J.; Stoyanova, E.V.; Mitova, V.A. Hybrid protein-synthetic polymer nanoparticles for drug delivery. Adv. Protein Chem. Struct. Biol., 2015, 98, 93-119.
[http://dx.doi.org/10.1016/bs.apcsb.2014.12.003] [PMID: 25819277]
[88]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[89]
Garbutt, J.C.; Kranzler, H.R.; O’Malley, S.S.; Gastfriend, D.R.; Pettinati, H.M.; Silverman, B.L. Efficacy and tolerability of long-acting injectable naltrexone for alcohol dependence: A randomized controlled trial. JAMA, 2005, 293(13), 1617-1625.
[http://dx.doi.org/10.1001/jama.293.13.1617] [PMID: 15811981]
[90]
Gad, H.A.; El-Nabarawi, M.A.; Abd El-Hady, S.S. Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech, 2008, 9(3), 878-884.
[http://dx.doi.org/10.1208/s12249-008-9126-9] [PMID: 18654864]
[91]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[92]
Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61(3), 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[93]
Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll., 2012, 29(1), 48-56.
[http://dx.doi.org/10.1016/j.foodhyd.2012.02.013]
[94]
Mirza-Aghazadeh-Attari, M.; Mihanfar, A.; Yousefi, B.; Majidinia, M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int., 2022, 22(1), 43.
[http://dx.doi.org/10.1186/s12935-022-02472-7] [PMID: 35093076]
[95]
Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H.G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol., 2008, 74(12), 3764-3773.
[http://dx.doi.org/10.1128/AEM.00453-08] [PMID: 18456858]
[96]
Blažević, F.; Milekić, T.; Romić, M.D.; Juretić, M.; Pepić, I.; Filipović-Grčić, J.; Lovrić, J.; Hafner, A. Nanoparticle- mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr. Polym., 2016, 146, 445-454.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.074] [PMID: 27112895]
[97]
Kumar Yadav, S.; Kumar Srivastava, A.; Dev, A.; Kaundal, B.; Roy Choudhury, S.; Karmakar, S. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line. Nanotechnology, 2017, 28(36), 365102.
[http://dx.doi.org/10.1088/1361-6528/aa7c76] [PMID: 28820142]
[98]
Shokrzadeh, M.; Ghassemi-Barghi, N. Melatonin loading chitosan-tripolyphosphate nanoparticles: Application in attenuating etoposide-induced genotoxicity in HepG2 cells. Pharmacology, 2018, 102(1-2), 74-80.
[http://dx.doi.org/10.1159/000489667] [PMID: 29940567]
[99]
Hafner, A.; Lovrić, J.; Romić, M.D.; Juretić, M.; Pepić, I.; Cetina-Čižmek, B.; Filipović-Grčić, J. Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model. Eur. J. Pharm. Sci., 2015, 75, 142-150.
[http://dx.doi.org/10.1016/j.ejps.2015.04.003] [PMID: 25869457]
[100]
Lei, C.; Liu, X.R.; Chen, Q.B.; Li, Y.; Zhou, J.L.; Zhou, L.Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release, 2021, 331, 416-433.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.033] [PMID: 33503486]
[101]
Marinho, A.; Nunes, C.; Reis, S. Hyaluronic acid: A key ingredient in the therapy of inflammation. Biomolecules, 2021, 11(10), 1518.
[http://dx.doi.org/10.3390/biom11101518] [PMID: 34680150]
[102]
Chen, L.H.; Xue, J.F.; Zheng, Z.Y.; Shuhaidi, M.; Thu, H.E.; Hussain, Z. Hyaluronic acid, an efficient biomacromolecule for treatment of inflammatory skin and joint diseases: A review of recent developments and critical appraisal of preclinical and clinical investigations. Int. J. Biol. Macromol., 2018, 116, 572-584.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.068] [PMID: 29772338]
[103]
Dong, J.; Jiang, D.; Wang, Z.; Wu, G.; Miao, L.; Huang, L. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int. J. Pharm., 2013, 441(1-2), 285-290.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.031] [PMID: 23194887]
[104]
Kang, M.L.; Jeong, S.Y.; Im, G.I. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic PEGylated kartogenin for the treatment of osteoarthritis. Tissue Eng. Part A, 2017, 23(13-14), 630-639.
[http://dx.doi.org/10.1089/ten.tea.2016.0524] [PMID: 28338415]
[105]
Gouveia, V.M.; Lopes-de-Araújo, J.; Costa Lima, S.A.; Nunes, C.; Reis, S. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine (Lond.), 2018, 13(9), 1037-1049.
[http://dx.doi.org/10.2217/nnm-2017-0377] [PMID: 29790395]
[106]
Zhou, M.; Hou, J.; Zhong, Z.; Hao, N.; Lin, Y.; Li, C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv., 2018, 25, 716-722.
[http://dx.doi.org/10.1080/10717544.2018.1447050]
[107]
Jing, W.; Zhu, M.; Wang, F.; Zhao, X.; Dong, S.; Xu, Y.; Wang, S.; Yang, J.; Wang, K.; Liu, W. Hyaluronic acid-melatonin nanoparticles improve the dysregulated intestinal barrier, microbiome and immune response in mice with dextran sodium sulfate-induced colitis. J. Biomed. Nanotechnol., 2022, 18(1), 175-184.
[http://dx.doi.org/10.1166/jbn.2022.3232] [PMID: 35180910]
[108]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[109]
Zhang, L.; Zhang, J.; Ling, Y.; Chen, C.; Liang, A.; Peng, Y.; Chang, H.; Su, P.; Huang, D. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J. Pineal Res., 2013, 54(1), 24-32.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01016.x] [PMID: 22712496]
[110]
Jarrar, H.; Çetin Altındal, D.; Gümüşderelioğlu, M. Scaffold-based osteogenic dual delivery system with melatonin and BMP-2 releasing PLGA microparticles. Int. J. Pharm., 2021, 600, 120489.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120489] [PMID: 33744449]
[111]
Kim, H.; Tse, Y.; Webb, A.; Mudd, E.; Abedin, M.R.; Mormile, M.; Dutta, S.; Rege, K.; Barua, S. PolyRad - protection against free radical damage. Sci. Rep., 2020, 10(1), 8335.
[http://dx.doi.org/10.1038/s41598-020-65247-y] [PMID: 32433503]
[112]
Ma, Q.; Yang, J.; Huang, X.; Guo, W.; Li, S.; Zhou, H.; Li, J.; Cao, F.; Chen, Y. Poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells, 2018, 36(4), 540-550.
[http://dx.doi.org/10.1002/stem.2777] [PMID: 29327399]
[113]
Sarkar, S.; Mukherjee, A.; Das, N.; Swarnakar, S. Protective roles of nanomelatonin in cerebral ischemia-reperfusion of aged brain: Matrixmetalloproteinases as regulators. Exp. Gerontol., 2017, 92, 13-22.
[http://dx.doi.org/10.1016/j.exger.2017.03.009] [PMID: 28285147]
[114]
Li Volti, G.; Musumeci, T.; Pignatello, R.; Murabito, P.; Barbagallo, I.; Carbone, C.; Gullo, A.; Puglisi, G. Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis. Exp. Biol. Med. (Maywood), 2012, 237(6), 670-677.
[http://dx.doi.org/10.1258/ebm.2012.011425] [PMID: 22728708]
[115]
Zhang, M.; Bai, Y.; Xu, C.; Lin, J.; Jin, J.; Xu, A.; Lou, J.N.; Qian, C.; Yu, W.; Wu, Y.; Qi, Y.; Tao, H. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv., 2021, 28(1), 2548-2561.
[http://dx.doi.org/10.1080/10717544.2021.2009937] [PMID: 34854786]
[116]
Schaffazick, S.R.; Pohlmann, A.R.; de Cordova, C.A.S.; Creczynski-Pasa, T.B.; Guterres, S.S. Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int. J. Pharm., 2005, 289(1-2), 209-213.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.003] [PMID: 15652213]
[117]
Schaffazick, S.R.; Siqueira, I.R.; Badejo, A.S.; Jornada, D.S.; Pohlmann, A.R.; Netto, C.A.; Guterres, S.S. Incorporation in polymeric nanocapsules improves the antioxidant effect of melatonin against lipid peroxidation in mice brain and liver. Eur. J. Pharm. Biopharm., 2008, 69(1), 64-71.
[http://dx.doi.org/10.1016/j.ejpb.2007.11.010] [PMID: 18182281]
[118]
Musumeci, T.; Bucolo, C.; Carbone, C.; Pignatello, R.; Drago, F.; Puglisi, G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int. J. Pharm., 2013, 440(2), 135-140.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.014] [PMID: 23078856]
[119]
Lee, B.K.; Yun, Y.; Park, K. PLA micro- and nano-particles. Adv. Drug Deliv. Rev., 2016, 107, 176-191.
[http://dx.doi.org/10.1016/j.addr.2016.05.020] [PMID: 27262925]
[120]
Pandey, S.K.; Haldar, C.; Vishwas, D.K.; Maiti, P. Synthesis and in vitro evaluation of melatonin entrapped PLA nanoparticles: An oxidative stress and T-cell response using golden hamster. J. Biomed. Mater. Res. A, 2015, 103(9), 3034-3044.
[http://dx.doi.org/10.1002/jbm.a.35441] [PMID: 25727726]
[121]
Martins, L.G.; khalil, N.M.; Mainardes, R.M. PLGA nanoparticles and polysorbate-80-coated PLGA nanoparticles increase the in vitro antioxidant activity of melatonin. Curr. Drug Deliv., 2018, 15(4), 554-563.
[122]
Carbone, C.; Manno, D.; Serra, A.; Musumeci, T.; Pepe, V.; Tisserand, C.; Puglisi, G. Innovative hybrid vs polymeric nanocapsules: The influence of the cationic lipid coating on the “4S”. Colloids Surf. B Biointerfaces, 2016, 141, 450-457.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.002] [PMID: 26895507]
[123]
Medina-Castillo, A.L.; Fernandez-Sanchez, J.F.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Micrometer and submicrometer particles prepared by precipitation polymerization: Thermodynamic model and experimental evidence of the relation between flory’s parameter and particle size. Macromolecules, 2010, 43(13), 5804-5813.
[http://dx.doi.org/10.1021/ma100841c]
[124]
Osorio, R.; Alfonso-Rodríguez, C.A.; Medina-Castillo, A.L.; Alaminos, M.; Toledano, M. Bioactive polymeric nanoparticles for periodontal therapy. PLoS One, 2016, 11(11), e0166217.
[http://dx.doi.org/10.1371/journal.pone.0166217] [PMID: 27820866]
[125]
Toledano, M.; Aguilera, F.S.; Osorio, E.; Toledano-Osorio, M.; Escames, G.; Medina-Castillo, A.L.; Toledano, R.; Lynch, C.D.; Osorio, R. Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin: Morpho-histological, chemical and biomechanical studies. Dent. Mater., 2021, 37(7), 1107-1120.
[http://dx.doi.org/10.1016/j.dental.2021.03.007] [PMID: 33846017]
[126]
Liu, J.; Zhou, H.; Fan, W.; Dong, W.; Fu, S.; He, H.; Huang, F. Melatonin influences proliferation and differentiation of rat dental papilla cells in vitro and dentine formation in vivo by altering mitochondrial activity. J. Pineal Res., 2013, 54(2), 170-178.
[http://dx.doi.org/10.1111/jpi.12002] [PMID: 22946647]
[127]
Meenakshi, S.S.; Malaiappan, S. Role of melatonin in periodontal disease - A systematic review. Indian J. Dent. Res., 2020, 31(4), 593-600.
[http://dx.doi.org/10.4103/ijdr.IJDR_227_18] [PMID: 33107463]
[128]
Toledano-Osorio, M.; Osorio, E.; Aguilera, F.S.; Luis Medina-Castillo, A.; Toledano, M.; Osorio, R. Improved reactive nanoparticles to treat dentin hypersensitivity. Acta Biomater., 2018, 72, 371-380.
[http://dx.doi.org/10.1016/j.actbio.2018.03.033] [PMID: 29581027]
[129]
Dash, T.K.; Konkimalla, V.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release, 2012, 158(1), 15-33.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.064] [PMID: 21963774]
[130]
Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ϵ-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm., 2004, 278(1), 1-23.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.044] [PMID: 15158945]
[131]
Massella, D.; Leone, F.; Peila, R.; Barresi, A.; Ferri, A. Functionalization of cotton fabrics with polycaprolactone nanoparticles for transdermal release of melatonin. J. Funct. Biomater., 2017, 9(1), 1.
[http://dx.doi.org/10.3390/jfb9010001] [PMID: 29295545]
[132]
de Oliveira Junior, E.R.; Nascimento, T.L.; Salomão, M.A.; da Silva, A.C.G.; Valadares, M.C.; Lima, E.M. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm. Res., 2019, 36(9), 131.
[http://dx.doi.org/10.1007/s11095-019-2662-z] [PMID: 31263962]
[133]
Hallan, SS.; Kaur, P.; Kaur, V.; Mishra, N.; Vaidya, B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif. Cells Nanomed. Biotechnol., 2014, 44, 334-349.
[134]
Jornada, D.S.; Fiel, L.A.; Bueno, K.; Gerent, J.F.; Petzhold, C.L.; Beck, R.C.R.; Guterres, S.S.; Pohlmann, A.R. Lipid-core nanocapsules: Mechanism of self-assembly, control of size and loading capacity. Soft Matter, 2012, 8(24), 6646-6655.
[http://dx.doi.org/10.1039/c2sm25754h]
[135]
Külkamp, I.C.; Rabelo, B.D.; Berlitz, S.J.; Isoppo, M.; Bianchin, M.D.; Schaffazick, S.R.; Pohlmann, A.R.; Guterres, S.S. Nanoencapsulation improves the in vitro antioxidant activity of lipoic acid. J. Biomed. Nanotechnol., 2011, 7(4), 598-607.
[http://dx.doi.org/10.1166/jbn.2011.1318] [PMID: 21870465]
[136]
Charão, M.F.; Baierle, M.; Gauer, B.; Goethel, G.; Fracasso, R.; Paese, K.; Brucker, N.; Moro, A.M.; Bubols, G.B.; Dias, B.B.; Matte, U.S.; Guterres, S.S.; Pohlmann, A.R.; Garcia, S.C. Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 784-785, 1-9.
[http://dx.doi.org/10.1016/j.mrgentox.2015.04.006] [PMID: 26046970]
[137]
Charão, M.F.; Souto, C.; Brucker, N.; Barth, A.; Jornada, D.S.; Fagundez, D.; Ávila, D.S.; Eifler-Lima, V.L.; Guterres, S.S.; Pohlmann, A.R.; Garcia, S.C. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int. J. Nanomedicine, 2015, 10, 5093-5106.
[http://dx.doi.org/10.2147/IJN.S84909] [PMID: 26300641]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy