Review Article

Therapeutic Potential of HDAC Inhibitors in the Treatment of Cardiac Diseases: A Short Review

Author(s): Vikas Tiwari and Sanjay Kumar Banerjee*

Volume 24, Issue 9, 2023

Published on: 22 November, 2022

Page: [718 - 727] Pages: 10

DOI: 10.2174/1389450123666221003094908

Price: $65

conference banner
Abstract

Protein acetylation is a reversible central mechanism to control gene expression and cell signaling events. Current evidence suggests that pharmacological inhibitors for protein deacetylation have already been used in various disease conditions. Accumulating reports showed that several compounds that enhance histone acetylation in cells are in both the preclinical and clinical development stages targeting non-communicable diseases, which include cancerous and non-cancerous especially cardiovascular complications. These compounds are, in general, enzyme inhibitors and target a family of enzymes- called histone deacetylases (HDACs). Since HDAC inhibitors have shown to be helpful in preclinical models of cardiac complications, further research on developing novel compounds with high efficacy and low toxicity may be essential for treating cardiovascular diseases. In this review, we have highlighted the roles of HDAC and its inhibitors in cardiac complications.

Keywords: Cardiovascular, HDAC, cardiomyopathy, SAHA, myocardial infarction, cardiac hypertrophy.

Graphical Abstract
[1]
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10(1): 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[2]
Morris MJ, Monteggia LM. Unique functional roles for class I and class II histone deacetylases in central nervous system development and function. Int J Dev Neurosci 2013; 31(6): 370-81.
[http://dx.doi.org/10.1016/j.ijdevneu.2013.02.005] [PMID: 23466417]
[3]
Luo Z, Qing X, Benda C, et al. Nuclear-cytoplasmic shuttling of class IIa histone deacetylases regulates somatic cell reprogramming. Cell Regen 2019; 8(1): 21-9.
[http://dx.doi.org/10.1016/j.cr.2018.11.001] [PMID: 31205685]
[4]
Wright LH, Menick DR. A class of their own: exploring the nondeacetylase roles of class IIa HDACs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2016; 311(1): H199-206.
[http://dx.doi.org/10.1152/ajpheart.00271.2016] [PMID: 27208161]
[5]
Yoon S, Eom GH. HDAC and HDAC Inhibitor: From cancer to cardiovascular diseases. Chonnam Med J 2016; 52(1): 1-11.
[http://dx.doi.org/10.4068/cmj.2016.52.1.1] [PMID: 26865995]
[6]
Li G, Tian Y, Zhu WG. The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Develop Biol 2020; 8: 576946.
[http://dx.doi.org/10.3389/fcell.2020.576946]
[7]
Keuser B, Khobta A, Gallé K, et al. Influences of histone deacetylase inhibitors and resveratrol on DNA repair and chromatin compaction. Mutagenesis 2013; 28(5): 569-76.
[http://dx.doi.org/10.1093/mutage/get034] [PMID: 23814181]
[8]
Stephens AD, Liu PZ, Banigan EJ, et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell 2018; 29(2): 220-33.
[http://dx.doi.org/10.1091/mbc.E17-06-0410] [PMID: 29142071]
[9]
Xiao L, Somers K, Murray J, et al. Dual targeting of chromatin stability by the curaxin CBL0137 and histone deacetylase inhibitor panobinostat shows significant preclinical efficacy in neuroblastoma. Clin Cancer Res 2021; 27(15): 4338-52.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2357] [PMID: 33994371]
[10]
Segré CV, Chiocca S. Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011; 2011: 1-15.
[http://dx.doi.org/10.1155/2011/690848] [PMID: 21197454]
[11]
Claudiani S, Apperley JF. The argument for using imatinib in CML. Hematology Am Soc Hematol Educ Program (2018); 2018(1): 161-7.
[http://dx.doi.org/10.1182/asheducation-2018.1.161] [PMID: 30504305]
[12]
La Rosée P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ. Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 2002; 62(24): 7149-53.
[PMID: 12499247]
[13]
Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007; 109(1): 31-9.
[http://dx.doi.org/10.1182/blood-2006-06-025999] [PMID: 16960145]
[14]
Iwamoto M, Friedman EJ, Sandhu P, Agrawal NGB, Rubin EH, Wagner JA. Clinical pharmacology profile of vorinostat, a histone deacetylase inhibitor. Cancer Chemother Pharmacol 2013; 72(3): 493-508.
[http://dx.doi.org/10.1007/s00280-013-2220-z] [PMID: 23820962]
[15]
Cortes JR, Patrone CC, Quinn SA, et al. Jak-STAT inhibition mediates romidepsin and mechlorethamine synergism in cutaneous T-cell lymphoma. J Invest Dermatol 2021; 141(12): 2908-2920.e7.
[http://dx.doi.org/10.1016/j.jid.2021.04.023] [PMID: 34089720]
[16]
Lagosz KB, Bysiek A, Macina JM, et al. HDAC3 regulates gingival fibroblast inflammatory responses in periodontitis. J Dent Res 2020; 99(1): 98-106.
[http://dx.doi.org/10.1177/0022034519885088] [PMID: 31693860]
[17]
Krug LM, Kindler HL, Calvert H, et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol 2015; 16(4): 447-56.
[http://dx.doi.org/10.1016/S1470-2045(15)70056-2] [PMID: 25800891]
[18]
Kaufman JL, Mina R, Shah JJ, et al. Phase 1 trial evaluating vorinostat plus bortezomib, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma. Clin Lymphoma Myeloma Leuk 2020; 20(12): 797-803.
[http://dx.doi.org/10.1016/j.clml.2020.07.013] [PMID: 32819881]
[19]
Pinto N, DuBois SG, Marachelian A, et al. Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: A new approaches to Neuroblastoma Therapy (NANT) trial. Pediatr Blood Cancer 2018; 65(7): e27023.
[http://dx.doi.org/10.1002/pbc.27023] [PMID: 29603591]
[20]
Chen R, Frankel P, Popplewell L, et al. A phase II study of vorinostat and rituximab for treatment of newly diagnosed and relapsed/refractory indolent non-Hodgkin lymphoma. Haematologica 2015; 100(3): 357-62.
[http://dx.doi.org/10.3324/haematol.2014.117473] [PMID: 25596263]
[21]
Galanis E, Anderson SK, Miller CR, et al. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02. Neuro-oncol 2018; 20(4): 546-56.
[http://dx.doi.org/10.1093/neuonc/nox161] [PMID: 29016887]
[22]
Duvic M, Bates SE, Piekarz R, et al. Responses to romidepsin in patients with cutaneous T-cell lymphoma and prior treatment with systemic chemotherapy. Leuk Lymphoma 2018; 59(4): 880-7.
[http://dx.doi.org/10.1080/10428194.2017.1361022] [PMID: 28853310]
[23]
Grant C, Rahman F, Piekarz R, et al. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther 2010; 10(7): 997-1008.
[http://dx.doi.org/10.1586/era.10.88] [PMID: 20645688]
[24]
Gerber DE. A Phase I/II study of erlotinib and romidepsin in advanced non-small cell lung cancer. NCT01302808, 2021.
[25]
Niesvizky R, Ely S, Mark T, et al. Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma. Cancer 2011; 117(2): 336-42.
[http://dx.doi.org/10.1002/cncr.25584] [PMID: 20862746]
[26]
Foss F, Advani R, Duvic M, et al. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol 2015; 168(6): 811-9.
[http://dx.doi.org/10.1111/bjh.13222] [PMID: 25404094]
[27]
Kirschbaum MH, Foon KA, Frankel P, et al. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a california cancer consortium study. Leuk Lymphoma 2014; 55(10): 2301-4.
[http://dx.doi.org/10.3109/10428194.2013.877134] [PMID: 24369094]
[28]
Dizon DS, Blessing JA, Penson RT, et al. A phase II evaluation of belinostat and carboplatin in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal carcinoma: A gynecologic oncology group study. Gynecol Oncol 2012; 125(2): 367-71.
[http://dx.doi.org/10.1016/j.ygyno.2012.02.019] [PMID: 22366594]
[29]
Vitfell-Rasmussen J, Judson I, Safwat A, et al. A Phase I/II clinical trial of belinostat (PXD101) in combination with doxorubicin in patients with soft tissue sarcomas. Sarcoma 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/2090271] [PMID: 27403082]
[30]
Waqar S, Chawla S, Mathews B, et al. P2.03a-003 Belinostat in combination with carboplatin and paclitaxel in patients with chemotherapy-Naive Metastatic Lung Cancer (NSCLC). J Thorac Oncol 2017; 12(1): S888-9.
[http://dx.doi.org/10.1016/j.jtho.2016.11.1212]
[31]
Duvic M, Dummer R, Becker JC, et al. Panobinostat activity in both bexarotene-exposed and -naïve patients with refractory cutaneous T-cell lymphoma: Results of a phase II trial. Eur J Cancer 2013; 49(2): 386-94.
[http://dx.doi.org/10.1016/j.ejca.2012.08.017] [PMID: 22981498]
[32]
Novartis Pharmaceuticals. A Phase II, multicentre study of oral LBH589 in patients with chronic phase chronic myeloid leukemia with resistant disease following treatment with at least two fusion gene of the BCR and ABL genes (BCR-ABL) tyrosine kinase inhibitors. Patent NCT00451035, 2021.
[33]
Yee AJ, Raje NS. Panobinostat and Multiple Myeloma in 2018. Oncologist 2018; 23(5): 516-7.
[http://dx.doi.org/10.1634/theoncologist.2017-0644] [PMID: 29445026]
[34]
Novartis Pharmaceuticals. A phase ii, open label, single arm study of i.v. panobinostat (LBH589) in patients with metastatic hormone refractory prostate cancer. Patent NCT00667862, 2021.
[35]
A Pilot/Phase I Study of Panobinostat (LBH589) in Patients With Metastatic Melanoma. NCT01065467, 2017.
[36]
Romoli M, Mazzocchetti P, D’Alonzo R, et al. Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. Curr Neuropharmacol 2019; 17(10): 926-46.
[http://dx.doi.org/10.2174/1570159X17666181227165722] [PMID: 30592252]
[37]
National Institute of Cancerología. Randomized, double-blind, phase III trial of chemotherapy plus the transcriptional therapy hydralazine and magnesium valproate versus chemotherapy plus placebo in cisplatin-resistant recurrent ovarian cancer. NCT00533299, 2007.
[38]
National Institute of Cancerología. Randomized, double-blind, phase III trial of chemotherapy plus the transcriptional therapy hydralazine and magnesium valproate versus chemotherapy plus placebo in recurrent and metastatic cervical cancer. Patent NCT00532818, 2009.
[39]
Jayathilaka N, Han A, Gaffney KJ, et al. Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2. Nucleic Acids Res 2012; 40(12): 5378-88.
[http://dx.doi.org/10.1093/nar/gks189] [PMID: 22396528]
[40]
Wei J, Joshi S, Speransky S, et al. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight 2017; 2(17): e91068.
[http://dx.doi.org/10.1172/jci.insight.91068] [PMID: 28878124]
[41]
Ismat FA, Zhang M, Kook H, et al. Homeobox protein Hop functions in the adult cardiac conduction system. Circ Res 2005; 96(8): 898-903.
[http://dx.doi.org/10.1161/01.RES.0000163108.47258.f3] [PMID: 15790958]
[42]
Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 2007; 21(14): 1790-802.
[http://dx.doi.org/10.1101/gad.1563807] [PMID: 17639084]
[43]
Monteforte N, Napolitano C, Priori SG. Genetics and arrhythmias: diagnostic and prognostic applications. Rev Esp Cardiol 2012; 65(3): 278-86.
[http://dx.doi.org/10.1016/j.rec.2011.10.010] [PMID: 22245453]
[44]
Liu F, Levin MD, Petrenko NB, et al. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol 2008; 45(6): 715-23.
[http://dx.doi.org/10.1016/j.yjmcc.2008.08.015] [PMID: 18926829]
[45]
Jeong MY, Lin YH, Wennersten SA, et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med 2018; 10(427): eaao0144.
[http://dx.doi.org/10.1126/scitranslmed.aao0144] [PMID: 29437146]
[46]
Zhang L, Wang H, Zhao Y, et al. Myocyte-specific overexpressing HDAC4 promotes myocardial ischemia/reperfusion injury. Mol Med 2018; 24(1): 37.
[http://dx.doi.org/10.1186/s10020-018-0037-2] [PMID: 30134825]
[47]
Xie M, Kong Y, Tan W, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014; 129(10): 1139-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002416] [PMID: 24396039]
[48]
Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia‐reperfusion injury in mice. FASEB J 2008; 22(10): 3549-60.
[http://dx.doi.org/10.1096/fj.08-108548] [PMID: 18606865]
[49]
Lee TM, Lin MS, Chang NC. Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 2007; 293(2): H968-77.
[http://dx.doi.org/10.1152/ajpheart.00891.2006] [PMID: 17400721]
[50]
Milan M, Pace V, Maiullari F, et al. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death Dis 2018; 9(2): 108.
[http://dx.doi.org/10.1038/s41419-017-0174-5] [PMID: 29371598]
[51]
Tian S, Lei I, Gao W, et al. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine 2019; 39: 83-94.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.003] [PMID: 30552062]
[52]
Zhou Y-H, et al. HMGB1 protects the heart against ischemia-reperfusion injury via PI3K/AkT pathway-mediated upregulation of VEGF expression. Front Physiol 2020; 10.
[http://dx.doi.org/10.3389/fphys.2019.01595]
[53]
Eom GH, Cho YK, Ko JH, et al. Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 2011; 123(21): 2392-403.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.003665] [PMID: 21576649]
[54]
Trivedi CM, Lu MM, Wang Q, Epstein JA. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem 2008; 283(39): 26484-9.
[http://dx.doi.org/10.1074/jbc.M803686200] [PMID: 18625706]
[55]
Vega RB, Harrison BC, Meadows E, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004; 24(19): 8374-85.
[http://dx.doi.org/10.1128/MCB.24.19.8374-8385.2004] [PMID: 15367659]
[56]
McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulindependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci 2000; 97(26): 14400-5.
[http://dx.doi.org/10.1073/pnas.260501497] [PMID: 11114197]
[57]
Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002; 110(4): 479-88.
[http://dx.doi.org/10.1016/S0092-8674(02)00861-9] [PMID: 12202037]
[58]
Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004; 24(19): 8467-76.
[http://dx.doi.org/10.1128/MCB.24.19.8467-8476.2004] [PMID: 15367668]
[59]
Eom GH, Nam YS, Oh JG, et al. Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 2014; 114(7): 1133-43.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303429] [PMID: 24526703]
[60]
Patel BM. Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats. Cardiovasc Toxicol 2018; 18(1): 1-8.
[http://dx.doi.org/10.1007/s12012-017-9406-2] [PMID: 28389765]
[61]
Blakeslee WW, Demos-Davies KM, Lemon DD, et al. Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy. Pediatr Res 2017; 82(4): 642-9.
[http://dx.doi.org/10.1038/pr.2017.126] [PMID: 28549058]
[62]
Zhang L, Deng M, Lu A, et al. Sodium butyrate attenuates angiotensin II‐induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6‐dependent mechanism. J Cell Mol Med 2019; 23(12): 8139-50.
[http://dx.doi.org/10.1111/jcmm.14684] [PMID: 31565858]
[63]
Zhao T, Kee HJ, Bai L, Kim M-K, Kee S-J, Jeong MH. Selective HDAC8 inhibition attenuates isoproterenol-induced cardiac hypertrophy and fibrosis via p38 MAPK pathway. Front Pharmacol 2021; 12: 677757.
[http://dx.doi.org/10.3389/fphar.2021.677757]
[64]
Fitzgerald O’Connor EJ, Badshah II, Addae LY, et al. Histone deacetylase 2 is upregulated in normal and keloid scars. J Invest Dermatol 2012; 132(4): 1293-6.
[http://dx.doi.org/10.1038/jid.2011.432] [PMID: 22205303]
[65]
Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res 2019; 124(11): 1598-617.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.313572] [PMID: 31120821]
[66]
Zhou YX, Xia W, Yue W, Peng C, Rahman K, Zhang H. Rhein: A review of pharmacological activities. Evid Based Complement Alternat Med 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/578107] [PMID: 26185519]
[67]
Spencer CM, Wilde MI. Diacerein. Drugs 1997; 53(1): 98-106.
[http://dx.doi.org/10.2165/00003495-199753010-00007] [PMID: 9010651]
[68]
Barbosa DM, Fahlbusch P, Herzfeld de Wiza D, et al. Rhein, a novel Histone Deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Sci Rep 2020; 10(1): 4888.
[http://dx.doi.org/10.1038/s41598-020-61886-3] [PMID: 32184434]
[69]
Miksiunas R, Aldonyte R, Vailionyte A, et al. Cardiomyogenic differentiation potential of human dilated myocardium-derived mesenchymal stem/stromal cells: the impact of HDAC inhibitor SAHA and biomimetic matrices. Int J Mol Sci 2021; 22(23): 12702.
[http://dx.doi.org/10.3390/ijms222312702] [PMID: 34884505]
[70]
Chen Q, Zeng Y, Yang X, et al. Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyopathy. BMC Cardiovasc Disord 2022; 22(1): 17.
[http://dx.doi.org/10.1186/s12872-021-02401-y] [PMID: 35081907]
[71]
Yuan L, Chen X, Cheng L, et al. HDAC11 regulates interleukin-13 expression in CD4+ T cells in the heart. J Mol Cell Cardiol 2018; 122: 1-10.
[http://dx.doi.org/10.1016/j.yjmcc.2018.07.253] [PMID: 30063898]
[72]
Jin H, Guo X. Valproic acid ameliorates coxsackievirus-B3-induced viral myocarditis by modulating Th17/Treg imbalance. Virol J 2016; 13(1): 168.
[http://dx.doi.org/10.1186/s12985-016-0626-z] [PMID: 27724948]
[73]
Pedro Ferreira J, Pitt B, Zannad F. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. Lancet Healthy Longev 2021; 2(6): e371-9.
[http://dx.doi.org/10.1016/S2666-7568(21)00061-1] [PMID: 36098145]
[74]
Lee TI, Kao YH, Tsai WC, Chung CC, Chen YC, Chen YJ. HDAC inhibition modulates cardiac PPARs and fatty acid metabolism in diabetic cardiomyopathy. PPAR Res 2016; 2016: 5938740.
[http://dx.doi.org/10.1155/2016/5938740] [PMID: 27446205]
[75]
Xu Z, Tong Q, Zhang Z, et al. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond) 2017; 131(15): 1841-57.
[http://dx.doi.org/10.1042/CS20170064] [PMID: 28533215]
[76]
Herr DJ, Baarine M, Aune SE, et al. HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. J Mol Cell Cardiol 2018; 114: 309-19.
[http://dx.doi.org/10.1016/j.yjmcc.2017.12.004] [PMID: 29224834]
[77]
Ooi JYY, Tuano NK, Rafehi H, et al. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics 2015; 10(5): 418-30.
[http://dx.doi.org/10.1080/15592294.2015.1024406] [PMID: 25941940]
[78]
Lkhagva B, Kao YH, Lee TI, Lee TW, Cheng WL, Chen YJ. Activation of Class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics 2018; 13(4): 376-85.
[http://dx.doi.org/10.1080/15592294.2018.1460032] [PMID: 29613828]
[79]
Lee TI, Bai KJ, Chen YC, et al. Histone deacetylase inhibition of cardiac autophagy in rats on a high-fat diet with low-dose streptozotocin-induced type 2 diabetes mellitus. Mol Med Rep 2017; 17(1): 594-601.
[http://dx.doi.org/10.3892/mmr.2017.7905] [PMID: 29115461]
[80]
Lee HA, Kang SH, Kim M, et al. Histone deacetylase inhibition ameliorates hypertension and hyperglycemia in a model of Cushing’s syndrome. Am J Physiol Endocrinol Metab 2018; 314(1): E39-52.
[http://dx.doi.org/10.1152/ajpendo.00267.2017] [PMID: 28928236]
[81]
Fan XD, Wan LL, Duan M, Lu S. HDAC11 deletion reduces fructose-induced cardiac dyslipidemia, apoptosis and inflammation by attenuating oxidative stress injury. Biochem Biophys Res Commun 2018; 503(2): 444-51.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.090] [PMID: 29655790]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy