Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Bisphenol A-Induced Endocrine Dysfunction and its Associated Metabolic Disorders

Author(s): Meenu Maniradhan and Latchoumycandane Calivarathan*

Volume 23, Issue 4, 2023

Published on: 13 December, 2022

Page: [515 - 529] Pages: 15

DOI: 10.2174/1871530322666220928144043

Price: $65

conference banner
Abstract

Bisphenol A (BPA) is an endocrine-disrupting chemical widely present in many consumer goods that poses a significant threat to our health upon exposure. Humans are exposed to BPA, which directly or indirectly causes endocrine dysfunctions that lead to metabolic disorders like obesity, fatty liver diseases, insulin resistance, polycystic ovarian syndrome, and other endocrine- related imbalances. The duration, quantity, and period of exposure to BPA, especially during the critical stage of development, determine its impact on reproductive and non-reproductive health. Because of its endocrine-disrupting effects, the European Chemical Agency has added BPA to the candidate list of chemicals of very serious concern. Due to its estrogenic properties and structural similarities with thyroid hormones, BPA disrupts the endocrine system at different levels. It interacts with estrogen receptors at the molecular level and acts as an antagonist or agonist via an estrogen receptor-dependent signaling pathway. In particular, BPA binds to G-protein coupled receptors and estrogen receptors, activating signaling pathways that influence cellular apoptosis, proliferation, differentiation, and inflammation. BPA acts as an obesogen that promotes adipogenesis and correlates with increased lipid accumulation and elevated expression of adipogenic markers. As a metabolic and endocrine disruptor, BPA impairs cellular homeostasis by increasing oxidative mediators and decreasing antioxidant enzymes, resulting in mitochondrial dysfunction. Due to its endocrine-disrupting properties, BPA exposure induces endocrine dysfunctions, causing metabolic syndrome. This review article gives recent development and novel insights into the cellular and molecular mechanisms of BPA-induced endocrine dysfunctions and their associated metabolic disorders.

Keywords: Bisphenol A, endocrine disruptor, metabolic syndrome, obesogen, xenoestrogen, mitochondrial dysfunction.

Graphical Abstract
[1]
Nishikawa, M.; Iwano, H.; Yanagisawa, R.; Koike, N.; Inoue, H.; Yokota, H. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ. Health Perspect., 2010, 118(9), 1196-1203.
[http://dx.doi.org/10.1289/ehp.0901575] [PMID: 20382578]
[2]
Sun, Y.; Nakashima, M.N.; Takahashi, M.; Kuroda, N.; Nakashima, K. Determination of bisphenol A in rat brain by microdialysis and column switching high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr., 2002, 16(5), 319-326.
[http://dx.doi.org/10.1002/bmc.161] [PMID: 12210505]
[3]
Zhang, B.; He, Y.; Zhu, H.; Huang, X.; Bai, X.; Kannan, K.; Zhang, T. Concentrations of bisphenol A and its alternatives in paired maternal–fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environ. Int., 2020, 136, 105407.
[http://dx.doi.org/10.1016/j.envint.2019.105407] [PMID: 31955035]
[4]
Lee, J.; Choi, K.; Park, J.; Moon, H.B.; Choi, G.; Lee, J.J.; Suh, E.; Kim, H.J.; Eun, S.H.; Kim, G.H.; Cho, G.J.; Kim, S.K.; Kim, S.; Kim, S.Y.; Kim, S.; Eom, S.; Choi, S.; Kim, Y.D.; Kim, S. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother–neonate pairs. Sci. Total Environ., 2018, 626, 1494-1501.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.042] [PMID: 29146078]
[5]
Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; Meccariello, R. Neuro-toxic and reproductive effects of BPA. Curr. Neuropharmacol., 2019, 17(12), 1109-1132.
[http://dx.doi.org/10.2174/1570159X17666190726112101] [PMID: 31362658]
[6]
Zhang, X.; Liu, R. Advances in BPA-induced oxidative stress and related effects and mechanisms in liver, 1991-2017. Mini Rev. Med. Chem., 2020, 20(6), 432-443.
[http://dx.doi.org/10.2174/1389557518666180912105345] [PMID: 30207228]
[7]
Soriano, S.; Alonso-Magdalena, P.; García-Arévalo, M.; Novials, A.; Muhammed, S.J.; Salehi, A.; Gustafsson, J.A.; Quesada, I.; Nadal, A. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: Role of estrogen receptor β. PLoS One, 2012, 7(2), e31109.
[http://dx.doi.org/10.1371/journal.pone.0031109] [PMID: 22347437]
[8]
Martinez-Pinna, J.; Marroqui, L.; Hmadcha, A.; Lopez-Beas, J.; Soriano, S.; Villar-Pazos, S.; Alonso-Magdalena, P.; Dos Santos, R.S.; Quesada, I.; Martin, F.; Soria, B.; Gustafsson, J.Å.; Nadal, A. Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia, 2019, 62(9), 1667-1680.
[http://dx.doi.org/10.1007/s00125-019-4925-y] [PMID: 31250031]
[9]
Doerge, D.R.; Twaddle, N.C.; Vanlandingham, M.; Brown, R.P.; Fisher, J.W. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague–Dawley rats. Toxicol. Appl. Pharmacol., 2011, 255(3), 261-270.
[http://dx.doi.org/10.1016/j.taap.2011.07.009] [PMID: 21820460]
[10]
Chitra, K.; Latchoumycandane, C.; Mathur, P.P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology, 2003, 185(1-2), 119-127.
[http://dx.doi.org/10.1016/S0300-483X(02)00597-8] [PMID: 12505450]
[11]
Chitra, K.C.; Rao, K.R.; Mathur, P.P. Effect of bisphenol A and co-administration of bisphenol A and vitamin C on epididymis of adult rats: A histological and biochemical study. Asian J. Androl., 2003, 5(3), 203-208.
[PMID: 12937802]
[12]
Manfo, F.P.; Jubendradass, R.; Nantia, E.A.; Moundipa, P.F.; Mathur, P.P. Adverse effects of bisphenol A on male reproductive function. Rev. Environ. Contam. Toxicol., 2014, 228, 57-82.
[PMID: 24162092]
[13]
Bindhumol, V.; Chitra, K.C.; Mathur, P.P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 2003, 188(2-3), 117-124.
[http://dx.doi.org/10.1016/S0300-483X(03)00056-8] [PMID: 12767684]
[14]
D’Cruz, S.C.; Jubendradass, R.; Jayakanthan, M.; Rani, S.J.A.; Mathur, P.P. Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: An in vivo and in silico study. Food Chem. Toxicol., 2012, 50(3-4), 1124-1133.
[http://dx.doi.org/10.1016/j.fct.2011.11.041] [PMID: 22142692]
[15]
D’Cruz, S.C.; Jubendradass, R.; Mathur, P.P. Bisphenol A induces oxidative stress and decreases levels of insulin receptor substrate 2 and glucose transporter 8 in rat testis. Reprod. Sci., 2012, 19(2), 163-172.
[http://dx.doi.org/10.1177/1933719111415547] [PMID: 22101236]
[16]
Bock, K.W. Homeostatic control of xeno- and endobiotics in the drug-metabolizing enzyme system. Biochem. Pharmacol., 2014, 90(1), 1-6.
[http://dx.doi.org/10.1016/j.bcp.2014.04.009] [PMID: 24837423]
[17]
Kovacic, P. How safe is bisphenol A? Fundamentals of toxicity: Metabolism, electron transfer and oxidative stress. Med. Hypotheses, 2010, 75(1), 1-4.
[http://dx.doi.org/10.1016/j.mehy.2010.03.002] [PMID: 20371154]
[18]
Michałowicz, J. Bisphenol A – sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol., 2014, 37(2), 738-758.
[http://dx.doi.org/10.1016/j.etap.2014.02.003] [PMID: 24632011]
[19]
Khan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsouza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. A comprehensive review on the carcinogenic potential of bisphenol A: Clues and evidence. Environ. Sci. Pollut. Res. Int., 2021, 28(16), 19643-19663.
[http://dx.doi.org/10.1007/s11356-021-13071-w] [PMID: 33666848]
[20]
Yoshihara, S.; Mizutare, T.; Makishima, M.; Suzuki, N.; Fujimoto, N.; Igarashi, K. Potent estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 fraction: Their structures and estrogenic potency. Toxicol. Sci., 2004, 78(1), 50-59.
[http://dx.doi.org/10.1093/toxsci/kfh047]
[21]
Yokota, H.; Iwano, H.; Endo, M.; Kobayashi, T.; Inoue, H.; Ikushiro, S.; Yuasa, A. Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver. Biochem. J., 1999, 340(2), 405-409.
[http://dx.doi.org/10.1042/bj3400405] [PMID: 10333482]
[22]
Elsby, R.; Maggs, J.L.; Ashby, J.; Park, B.K. Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: Implications for extrapolation to humans. J. Pharmacol. Exp. Ther., 2001, 297(1), 103-113.
[PMID: 11259533]
[23]
Pritchett, J.J.; Kuester, R.K.; Sipes, I.G. Metabolism of bisphenol A in primary cultured hepatocytes from mice, rats, and humans. Drug Metab. Dispos., 2002, 30(11), 1180-1185.
[http://dx.doi.org/10.1124/dmd.30.11.1180] [PMID: 12386122]
[24]
Pivonello, C.; Muscogiuri, G.; Nardone, A.; Garifalos, F.; Provvisiero, D.P.; Verde, N.; de Angelis, C.; Conforti, A.; Piscopo, M.; Auriemma, R.S.; Colao, A.; Pivonello, R.; Bisphenol, A. An emerging threat to female fertility. Reprod. Biol. Endocrinol., 2020, 18(1), 22.
[http://dx.doi.org/10.1186/s12958-019-0558-8] [PMID: 32171313]
[25]
Chen, F.; Zhou, L.; Bai, Y.; Zhou, R.; Chen, L. Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A. Brain Res., 2014, 1571, 12-24.
[http://dx.doi.org/10.1016/j.brainres.2014.05.010] [PMID: 24857958]
[26]
Rosol, T.J.; Yarrington, J.T.; Latendresse, J.; Capen, C.C. Adrenal gland: Structure, function, and mechanisms of toxicity. Toxicol. Pathol., 2001, 29(1), 41-48.
[http://dx.doi.org/10.1080/019262301301418847] [PMID: 11215683]
[27]
Barontini, M.; García-Rudaz, M.C.; Veldhuis, J.D. Mechanisms of hypothalamic-pituitary-gonadal disruption in polycystic ovarian syndrome. Arch. Med. Res., 2001, 32(6), 544-552.
[http://dx.doi.org/10.1016/S0188-4409(01)00325-3] [PMID: 11750729]
[28]
Molina, A.; Abril, N.; Morales-Prieto, N.; Monterde, J.; Ayala, N.; Lora, A.; Moyano, R. Hypothalamic-pituitary-ovarian axis perturbation in the basis of bisphenol A (BPA) reproductive toxicity in female zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 2018, 156, 116-124.
[http://dx.doi.org/10.1016/j.ecoenv.2018.03.029] [PMID: 29549734]
[29]
Eckstrum, K.S.; Weis, K.E.; Baur, N.G.; Yoshihara, Y.; Raetzman, L.T. Icam5 expression exhibits sex differences in the neonatal pituitary and is regulated by estradiol and bisphenol A. Endocrinology, 2016, 157(4), 1408-1420.
[http://dx.doi.org/10.1210/en.2015-1521] [PMID: 26789235]
[30]
Nakamura, D.; Yanagiba, Y.; Duan, Z.; Ito, Y.; Okamura, A.; Asaeda, N.; Tagawa, Y.; Li, C.; Taya, K.; Zhang, S.Y.; Naito, H.; Ramdhan, D.H.; Kamijima, M.; Nakajima, T. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol. Lett., 2010, 194(1-2), 16-25.
[http://dx.doi.org/10.1016/j.toxlet.2010.02.002] [PMID: 20144698]
[31]
Wisniewski, P.; Romano, R.M.; Kizys, M.M.L.; Oliveira, K.C.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R.; Romano, M.A. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology, 2015, 329, 1-9.
[http://dx.doi.org/10.1016/j.tox.2015.01.002] [PMID: 25575453]
[32]
Patisaul, H.; Fortino, A.; Polston, E. Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol. Teratol., 2006, 28(1), 111-118.
[http://dx.doi.org/10.1016/j.ntt.2005.11.004] [PMID: 16427766]
[33]
Brannick, K.E.; Craig, Z.R.; Himes, A.D.; Peretz, J.R.; Wang, W.; Flaws, J.A.; Raetzman, L.T. Prenatal exposure to low doses of bisphenol A increases pituitary proliferation and gonadotroph number in female mice offspring at birth. Biol. Reprod., 2012, 87(4), 82.
[http://dx.doi.org/10.1095/biolreprod.112.100636] [PMID: 22875908]
[34]
Dungan, H.M.; Clifton, D.K.; Steiner, R.A. Minireview: Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology, 2006, 147(3), 1154-1158.
[http://dx.doi.org/10.1210/en.2005-1282] [PMID: 16373418]
[35]
Thayil, A.J.; Wang, X.; Bhandari, P.; vom Saal, F.S.; Tillitt, D.E.; Bhandari, R.K. Bisphenol A and 17α-ethinylestradiol-induced transgenerational gene expression differences in the brain-pituitary-testis axis of medaka, Oryzias latipes. Biol. Reprod., 2020, 103(6), 1324-1335.
[http://dx.doi.org/10.1093/biolre/ioaa169] [PMID: 32940650]
[36]
Qiu, W.; Zhao, Y.; Yang, M.; Farajzadeh, M.; Pan, C.; Wayne, N.L. Actions of bisphenol A and bisphenol S on the reproductive neuroendocrine system during early development in zebrafish. Endocrinology, 2016, 157(2), 636-647.
[http://dx.doi.org/10.1210/en.2015-1785] [PMID: 26653335]
[37]
Wang, X.; Chang, F.; Bai, Y.; Chen, F.; Zhang, J.; Chen, L. Bisphenol A enhances kisspeptin neurons in anteroventral periventricular nucleus of female mice. J. Endocrinol., 2014, 221(2), 201-213.
[http://dx.doi.org/10.1530/JOE-13-0475] [PMID: 24532816]
[38]
Sanannam, B.; Looprasertkul, S.; Kanlayaprasit, S.; Kitkumthorn, N.; Sarachana, T.; Jindatip, D. Alteration of extracellular matrix components in the anterior pituitary gland of neonatal rats induced by a maternal bisphenol A diet during pregnancy. Int. J. Mol. Sci., 2021, 22(23), 12667.
[http://dx.doi.org/10.3390/ijms222312667] [PMID: 34884472]
[39]
Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid disrupting chemicals. Int. J. Mol. Sci., 2017, 18(12), 2583.
[http://dx.doi.org/10.3390/ijms18122583] [PMID: 29194390]
[40]
de Cock, M.; de Boer, M.R.; Govarts, E.; Iszatt, N.; Palkovicova, L.; Lamoree, M.H.; Schoeters, G.; Eggesbø, M.; Trnovec, T.; Legler, J.; van de Bor, M. Thyroid-stimulating hormone levels in newborns and early life exposure to endocrine-disrupting chemicals: Analysis of three European mother-child cohorts. Pediatr. Res., 2017, 82(3), 429-437.
[http://dx.doi.org/10.1038/pr.2017.50] [PMID: 28288144]
[41]
Zhai, W.; Huang, Z.; Chen, L.; Feng, C.; Li, B.; Li, T. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP). PLoS One, 2014, 9(3), e92465.
[http://dx.doi.org/10.1371/journal.pone.0092465] [PMID: 24658602]
[42]
Derakhshan, A.; Shu, H.; Peeters, R.P.; Kortenkamp, A.; Lindh, C.H.; Demeneix, B. Association of urinary bisphenols and triclosan with thyroid function during early pregnancy. Environ Int, 2019, 133(Pt A), 105123.
[http://dx.doi.org/10.1016/j.envint.2019.105123]
[43]
Gorini, F.; Bustaffa, E.; Coi, A.; Iervasi, G.; Bianchi, F. Bisphenols as environmental triggers of thyroid dysfunction: Clues and evidence. Int. J. Environ. Res. Public Health, 2020, 17(8), 2654.
[http://dx.doi.org/10.3390/ijerph17082654] [PMID: 32294918]
[44]
Li, L.; Wang, Q.; Zhang, Y.; Niu, Y.; Yao, X.; Liu, H. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations. PLoS One, 2015, 10(3), e0120330.
[http://dx.doi.org/10.1371/journal.pone.0120330] [PMID: 25799048]
[45]
Wu, Y.; Beland, F.A.; Fang, J.L. Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol. In Vitro, 2016, 32, 310-319.
[http://dx.doi.org/10.1016/j.tiv.2016.01.014] [PMID: 26827900]
[46]
Lee, S.; Kim, C.; Youn, H.; Choi, K. Thyroid hormone disrupting potentials of bisphenol A and its analogues - in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicol. In Vitro, 2017, 40, 297-304.
[http://dx.doi.org/10.1016/j.tiv.2017.02.004] [PMID: 28167136]
[47]
Sabatino, L.; Vassalle, C.; Del Seppia, C.; Iervasi, G. Deiodinases and the three types of thyroid hormone deiodination reactions. Endocrinol. Metab. (Seoul), 2021, 36(5), 952-964.
[http://dx.doi.org/10.3803/EnM.2021.1198] [PMID: 34674502]
[48]
Cao, J.; Guo, L.H.; Wan, B.; Wei, Y. In vitro fluorescence displacement investigation of thyroxine transport disruption by bisphenol A. J. Environ. Sci. (China), 2011, 23(2), 315-321.
[http://dx.doi.org/10.1016/S1001-0742(10)60408-1] [PMID: 21517007]
[49]
Ishihara, A.; Sawatsubashi, S.; Yamauchi, K. Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol. Cell. Endocrinol., 2003, 199(1-2), 105-117.
[http://dx.doi.org/10.1016/S0303-7207(02)00302-7] [PMID: 12581883]
[50]
Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab., 2002, 87(11), 5185-5190.
[http://dx.doi.org/10.1210/jc.2002-020209] [PMID: 12414890]
[51]
Larsen, P.R.; Zavacki, A.M. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur. Thyroid J., 2012, 1(4), 232-242.
[http://dx.doi.org/10.1159/000343922] [PMID: 23750337]
[52]
Mohammed, E.T.; Hashem, K.S.; Ahmed, A.E.; Aly, M.T.; Aleya, L.; Abdel-Daim, M.M. Ginger extract ameliorates bisphenol A (BPA)-induced disruption in thyroid hormones synthesis and metabolism: Involvement of Nrf-2/HO-1 pathway. Sci. Total Environ., 2020, 703, 134664.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134664] [PMID: 31757552]
[53]
Wang, F.; Hua, J.; Chen, M.; Xia, Y.; Zhang, Q.; Zhao, R.; Zhou, W.; Zhang, Z.; Wang, B. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup. Environ. Med., 2012, 69(9), 679-684.
[http://dx.doi.org/10.1136/oemed-2011-100529] [PMID: 22562051]
[54]
Chevrier, J.; Gunier, R.B.; Bradman, A.; Holland, N.T.; Calafat, A.M.; Eskenazi, B.; Harley, K.G. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ. Health Perspect., 2013, 121(1), 138-144.
[http://dx.doi.org/10.1289/ehp.1205092] [PMID: 23052180]
[55]
Kim, M.J.; Park, Y.J. Bisphenols and thyroid hormone. Endocrinol. Metab. (Seoul), 2019, 34(4), 340-348.
[http://dx.doi.org/10.3803/EnM.2019.34.4.340] [PMID: 31884733]
[56]
Itoh, K.; Yaoi, T.; Fushiki, S. Bisphenol A, an endocrine-disrupting chemical, and brain development. Neuropathology, 2012, 32(4), 447-457.
[http://dx.doi.org/10.1111/j.1440-1789.2011.01287.x] [PMID: 22239237]
[57]
Zoeller, R.T.; Bansal, R.; Parris, C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology, 2005, 146(2), 607-612.
[http://dx.doi.org/10.1210/en.2004-1018] [PMID: 15498886]
[58]
Fernandez, M.O.; Bourguignon, N.S.; Arocena, P.; Rosa, M.; Libertun, C.; Lux-Lantos, V. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats. Toxicol. Lett., 2018, 285, 81-86.
[http://dx.doi.org/10.1016/j.toxlet.2017.12.029] [PMID: 29305326]
[59]
Hamers, T.; Kamstra, J.H.; Sonneveld, E.; Murk, A.J.; Kester, M.H.A.; Andersson, P.L.; Legler, J.; Brouwer, A. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol. Sci., 2006, 92(1), 157-173.
[http://dx.doi.org/10.1093/toxsci/kfj187] [PMID: 16601080]
[60]
Kudo, Y.; Yamauchi, K.; Fukazawa, H.; Terao, Y. In vitro and in vivo analysis of the thyroid system-disrupting activities of brominated phenolic and phenol compounds in Xenopus laevis. Toxicol. Sci., 2006, 92(1), 87-95.
[http://dx.doi.org/10.1093/toxsci/kfj204] [PMID: 16627555]
[61]
Meerts, I.A.T.M.; van Zanden, J.J.; Luijks, E.A.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci., 2000, 56(1), 95-104.
[http://dx.doi.org/10.1093/toxsci/56.1.95] [PMID: 10869457]
[62]
Livingstone, C.; Collison, M. Sex steroids and insulin resistance. Clin. Sci. (Lond.), 2002, 102(2), 151-166.
[http://dx.doi.org/10.1042/CS20010197] [PMID: 11834135]
[63]
Barros, R.P.A.; Machado, U.F.; Gustafsson, J.Å. Estrogen receptors: New players in diabetes mellitus. Trends Mol. Med., 2006, 12(9), 425-431.
[http://dx.doi.org/10.1016/j.molmed.2006.07.004] [PMID: 16890492]
[64]
Le May, C.; Chu, K.; Hu, M.; Ortega, C.S.; Simpson, E.R.; Korach, K.S.; Tsai, M.J.; Mauvais-Jarvis, F. Estrogens protect pancreatic β-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 9232-9237.
[http://dx.doi.org/10.1073/pnas.0602956103] [PMID: 16754860]
[65]
Rahman, M.S.; Pang, M.G. Understanding the molecular mechanisms of bisphenol A action in spermatozoa. Clin. Exp. Reprod. Med., 2019, 46(3), 99-106.
[http://dx.doi.org/10.5653/cerm.2019.00276] [PMID: 31484226]
[66]
Alonso-Magdalena, P.; Morimoto, S.; Ripoll, C.; Fuentes, E.; Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health Perspect., 2006, 114(1), 106-112.
[http://dx.doi.org/10.1289/ehp.8451] [PMID: 16393666]
[67]
Alonso-Magdalena, P.; Laribi, O.; Ropero, A.B.; Fuentes, E.; Ripoll, C.; Soria, B.; Nadal, A. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ. Health Perspect., 2005, 113(8), 969-977.
[http://dx.doi.org/10.1289/ehp.8002] [PMID: 16079065]
[68]
Lösel, R.M.; Falkenstein, E.; Feuring, M.; Schultz, A.; Tillmann, H.C.; Rossol-Haseroth, K.; Wehling, M. Nongenomic steroid action: Controversies, questions, and answers. Physiol. Rev., 2003, 83(3), 965-1016.
[http://dx.doi.org/10.1152/physrev.00003.2003] [PMID: 12843413]
[69]
Nadal, A.; Quesada, I.; Soria, B. Homologous and heterologous asynchronicity between identified α‐, β‐ and δ‐cells within intact islets of Langerhans in the mouse. J. Physiol., 1999, 517(1), 85-93.
[http://dx.doi.org/10.1111/j.1469-7793.1999.0085z.x] [PMID: 10226151]
[70]
Song, L.; Xia, W.; Zhou, Z.; Li, Y.; Lin, Y.; Wei, J.; Wei, Z.; Xu, B.; Shen, J.; Li, W.; Xu, S. Low-level phenolic estrogen pollutants impair islet morphology and β-cell function in isolated rat islets. J. Endocrinol., 2012, 215(2), 303-311.
[http://dx.doi.org/10.1530/JOE-12-0219] [PMID: 22946080]
[71]
Carchia, E.; Porreca, I.; Almeida, P.J.; D’Angelo, F.; Cuomo, D.; Ceccarelli, M.; De Felice, M.; Mallardo, M.; Ambrosino, C. Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death Dis., 2015, 6(10), e1959.
[http://dx.doi.org/10.1038/cddis.2015.319] [PMID: 26512966]
[72]
Wei, J.; Lin, Y.; Li, Y.; Ying, C.; Chen, J.; Song, L.; Zhou, Z.; Lv, Z.; Xia, W.; Chen, X.; Xu, S. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology, 2011, 152(8), 3049-3061.
[http://dx.doi.org/10.1210/en.2011-0045] [PMID: 21586551]
[73]
Kajta, M.; Wójtowicz, A.K. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol. Rep., 2013, 65(6), 1632-1639.
[http://dx.doi.org/10.1016/S1734-1140(13)71524-X] [PMID: 24553011]
[74]
Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2006, 8(4), 383-395.
[http://dx.doi.org/10.31887/DCNS.2006.8.4/ssmith] [PMID: 17290797]
[75]
Mina, T.H.; Reynolds, R.M. Mechanisms linking in utero stress to altered offspring behaviour. Curr. Top. Behav. Neurosci., 2014, 18, 93-122.
[http://dx.doi.org/10.1007/7854_2014_291] [PMID: 24577734]
[76]
Giesbrecht, G.F.; Liu, J.; Ejaredar, M.; Dewey, D.; Letourneau, N.; Campbell, T.; Martin, J.W. Urinary bisphenol A is associated with dysregulation of HPA-axis function in pregnant women: Findings from the APrON cohort study. Environ. Res., 2016, 151, 689-697.
[http://dx.doi.org/10.1016/j.envres.2016.09.007] [PMID: 27640068]
[77]
Panagiotidou, E.; Zerva, S.; Mitsiou, D.J.; Alexis, M.N.; Kitraki, E. Perinatal exposure to low-dose bisphenol A affects the neuroendocrine stress response in rats. J. Endocrinol., 2014, 220(3), 207-218.
[http://dx.doi.org/10.1530/JOE-13-0416] [PMID: 24323913]
[78]
Lan, H.C.; Lin, I.W.; Yang, Z.J.; Lin, J.H. Low-dose bisphenol A activates Cyp11a1 gene expression and corticosterone secretion in adrenal gland via the JNK signaling pathway. Toxicol. Sci., 2015, 148(1), 26-34.
[http://dx.doi.org/10.1093/toxsci/kfv162] [PMID: 26209791]
[79]
Sanderson, J.T. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci., 2006, 94(1), 3-21.
[http://dx.doi.org/10.1093/toxsci/kfl051] [PMID: 16807284]
[80]
Medwid, S.; Guan, H.; Yang, K. Prenatal exposure to bisphenol A disrupts adrenal steroidogenesis in adult mouse offspring. Environ. Toxicol. Pharmacol., 2016, 43, 203-208.
[http://dx.doi.org/10.1016/j.etap.2016.03.014] [PMID: 27017381]
[81]
Poimenova, A.; Markaki, E.; Rahiotis, C.; Kitraki, E. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience, 2010, 167(3), 741-749.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.051] [PMID: 20219646]
[82]
Medwid, S.; Guan, H.; Yang, K. Bisphenol A stimulates steroidogenic acute regulatory protein expression via an unknown mechanism in adrenal cortical cells. J. Cell. Biochem., 2018, 120(2), 2429-38.
[PMID: 30206973]
[83]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[84]
vom Saal, F.S.; Nagel, S.C.; Coe, B.L.; Angle, B.M.; Taylor, J.A. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol. Cell. Endocrinol., 2012, 354(1-2), 74-84.
[http://dx.doi.org/10.1016/j.mce.2012.01.001] [PMID: 22249005]
[85]
Ritchie, S.A.; Connell, J.M.C. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis., 2007, 17(4), 319-326.
[http://dx.doi.org/10.1016/j.numecd.2006.07.005] [PMID: 17110092]
[86]
Szkudelska, K.; Okulicz, M.; Szkudelski, T. Bisphenol A disturbs metabolism of primary rat adipocytes without affecting adipokine secretion. Environ. Sci. Pollut. Res. Int., 2021, 28(18), 23301-23309.
[http://dx.doi.org/10.1007/s11356-021-12411-0] [PMID: 33447972]
[87]
Masuno, H.; Kidani, T.; Sekiya, K.; Sakayama, K.; Shiosaka, T.; Yamamoto, H.; Honda, K. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J. Lipid Res., 2002, 43(5), 676-684.
[http://dx.doi.org/10.1016/S0022-2275(20)30108-5] [PMID: 11971937]
[88]
Ariemma, F.; D’Esposito, V.; Liguoro, D.; Oriente, F.; Cabaro, S.; Liotti, A.; Cimmino, I.; Longo, M.; Beguinot, F.; Formisano, P.; Valentino, R. Low-dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One, 2016, 11(3), e0150762.
[http://dx.doi.org/10.1371/journal.pone.0150762] [PMID: 26942597]
[89]
De Filippis, E.; Li, T.; Rosen, E.D. Exposure of adipocytes to bisphenol-A in vitro interferes with insulin action without enhancing adipogenesis. PLoS One, 2018, 13(8), e0201122.
[http://dx.doi.org/10.1371/journal.pone.0201122] [PMID: 30133442]
[90]
Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and phthalates in diet: An emerging link with pregnancy complications. Nutrients, 2020, 12(2), 525.
[http://dx.doi.org/10.3390/nu12020525] [PMID: 32092855]
[91]
Wang, J.; Sun, B.; Hou, M.; Pan, X.; Li, X. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int. J. Obes., 2013, 37(7), 999-1005.
[http://dx.doi.org/10.1038/ijo.2012.173] [PMID: 23090578]
[92]
Sargis, R.M.; Simmons, R.A. Environmental neglect: Endocrine disruptors as underappreciated but potentially modifiable diabetes risk factors. Diabetologia, 2019, 62(10), 1811-1822.
[http://dx.doi.org/10.1007/s00125-019-4940-z] [PMID: 31451869]
[93]
Nadal, A.; Alonso-Magdalena, P.; Soriano, S.; Quesada, I.; Ropero, A.B. The pancreatic β-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol., 2009, 304(1-2), 63-68.
[http://dx.doi.org/10.1016/j.mce.2009.02.016] [PMID: 19433249]
[94]
Akash, M.S.H.; Sabir, S.; Rehman, K. Bisphenol A-induced metabolic disorders: From exposure to mechanism of action. Environ. Toxicol. Pharmacol., 2020, 77, 103373.
[http://dx.doi.org/10.1016/j.etap.2020.103373] [PMID: 32200274]
[95]
Wade, M.; Delawder, V.; Reneau, P.; dos Santos, J.M. The effect of BPA exposure on insulin resistance and type 2 diabetes - The impact of muscle contraction. Med. Hypotheses, 2020, 140, 109675.
[http://dx.doi.org/10.1016/j.mehy.2020.109675] [PMID: 32200183]
[96]
Hwang, S.; Lim, J.; Choi, Y.; Jee, S.H. Bisphenol A exposure and type 2 diabetes mellitus risk: A meta-analysis. BMC Endocr. Disord., 2018, 18(1), 81.
[http://dx.doi.org/10.1186/s12902-018-0310-y] [PMID: 30400886]
[97]
Alonso-Magdalena, P.; Quesada, I.; Nadal, Á. Prenatal exposure to BPA and offspring outcomes. Dose Response, 2015, 13(2), 1559325815590395.
[http://dx.doi.org/10.1177/1559325815590395] [PMID: 26676280]
[98]
Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA, 2008, 300(11), 1303-1310.
[http://dx.doi.org/10.1001/jama.300.11.1303] [PMID: 18799442]
[99]
Jiang, Y.; Xia, W.; Zhu, Y.; Li, X.; Wang, D.; Liu, J.; Chang, H.; Li, G.; Xu, B.; Chen, X.; Li, Y.; Xu, S. Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring. Toxicol. Lett., 2014, 228(2), 85-92.
[http://dx.doi.org/10.1016/j.toxlet.2014.04.013] [PMID: 24768697]
[100]
Alonso-Magdalena, P.; Rivera, F.J.; Guerrero-Bosagna, C. Bisphenol-A and metabolic diseases: Epigenetic, developmental and transgenerational basis. Environ. Epigenet., 2016, 2(3), dvw022.
[http://dx.doi.org/10.1093/eep/dvw022] [PMID: 29492299]
[101]
Pottenger, L.H.; Domoradzki, J.Y.; Markham, D.A.; Hansen, S.C.; Cagen, S.Z.; Waechter, J.M., Jr The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol. Sci., 2000, 54(1), 3-18.
[http://dx.doi.org/10.1093/toxsci/54.1.3] [PMID: 10746927]
[102]
Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol., 2013, 42, 132-155.
[http://dx.doi.org/10.1016/j.reprotox.2013.08.008] [PMID: 23994667]
[103]
Rector, R.S.; Thyfault, J.P.; Uptergrove, G.M.; Morris, E.M.; Naples, S.P.; Borengasser, S.J.; Mikus, C.R.; Laye, M.J.; Laughlin, M.H.; Booth, F.W.; Ibdah, J.A. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J. Hepatol., 2010, 52(5), 727-736.
[http://dx.doi.org/10.1016/j.jhep.2009.11.030] [PMID: 20347174]
[104]
Demeilliers, C.; Maisonneuve, C.; Grodet, A.; Mansouri, A.; Nguyen, R.; Tinel, M.; Lettéron, P.; Degott, C.; Feldmann, G.; Pessayre, D.; Fromenty, B. Impaired adaptive resynthesis and prolonged depletion of hepatic mitochondrial DNA after repeated alcohol binges in mice. Gastroenterology, 2002, 123(4), 1278-1290.
[http://dx.doi.org/10.1053/gast.2002.35952] [PMID: 12360488]
[105]
Mukherjee, U.; Samanta, A.; Biswas, S.; Das, S.; Ghosh, S.; Mandal, D.K.; Maitra, S. Bisphenol A-induced oxidative stress, hepatotoxicity and altered estrogen receptor expression in Labeo bata: Impact on metabolic homeostasis and inflammatory response. Ecotoxicol. Environ. Saf., 2020, 202, 110944.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110944] [PMID: 32800225]
[106]
Jayashree, S.; Indumathi, D.; Akilavalli, N.; Sathish, S.; Selvaraj, J.; Balasubramanian, K. Effect of bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. Environ. Toxicol. Pharmacol., 2013, 35(2), 300-310.
[http://dx.doi.org/10.1016/j.etap.2012.12.016] [PMID: 23376180]
[107]
Marmugi, A.; Ducheix, S.; Lasserre, F.; Polizzi, A.; Paris, A.; Priymenko, N.; Bertrand-Michel, J.; Pineau, T.; Guillou, H.; Martin, P.G.P.; Mselli-Lakhal, L. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology, 2012, 55(2), 395-407.
[http://dx.doi.org/10.1002/hep.24685] [PMID: 21932408]
[108]
Ke, Z.H.; Pan, J.X.; Jin, L.Y.; Xu, H.Y.; Yu, T.T.; Ullah, K.; Rahman, T.U.; Ren, J.; Cheng, Y.; Dong, X.Y.; Sheng, J.Z.; Huang, H.F. Bisphenol A exposure may induce hepatic lipid accumulation via reprogramming the DNA methylation patterns of genes involved in lipid metabolism. Sci. Rep., 2016, 6(1), 31331.
[http://dx.doi.org/10.1038/srep31331] [PMID: 27502578]
[109]
Fernández, M.; Bourguignon, N.; Lux-Lantos, V.; Libertun, C. Neonatal exposure to bisphenol A and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ. Health Perspect., 2010, 118(9), 1217-1222.
[http://dx.doi.org/10.1289/ehp.0901257] [PMID: 20413367]
[110]
Rutkowska, A.; Rachoń, D.; Bisphenol, A. BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS). Gynecol. Endocrinol., 2014, 30(4), 260-265.
[http://dx.doi.org/10.3109/09513590.2013.871517] [PMID: 24397396]
[111]
Diamanti-Kandarakis, E.; Katsikis, I.; Piperi, C.; Kandaraki, E.; Piouka, A.; Papavassiliou, A.G.; Panidis, D. Increased serum advanced glycation end-products is a distinct finding in lean women with Polycystic Ovary Syndrome (PCOS). Clin. Endocrinol. (Oxf.), 2008, 69(4), 634-641.
[http://dx.doi.org/10.1111/j.1365-2265.2008.03247.x] [PMID: 18363886]
[112]
Zhou, W.; Liu, J.; Liao, L.; Han, S.; Liu, J. Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol. Cell. Endocrinol., 2008, 283(1-2), 12-18.
[http://dx.doi.org/10.1016/j.mce.2007.10.010] [PMID: 18191889]
[113]
Lazúrová, Z.; Figurová, J.; Hubková, B.; Mašlanková, J.; Lazúrová, I. Urinary bisphenol A in women with polycystic ovary syndrome - a possible suppressive effect on steroidogenesis? Horm. Mol. Biol. Clin. Investig., 2021, 42(3), 303-309.
[http://dx.doi.org/10.1515/hmbci-2020-0032] [PMID: 34118794]
[114]
Kandaraki, E.; Chatzigeorgiou, A.; Livadas, S.; Palioura, E.; Economou, F.; Koutsilieris, M.; Palimeri, S.; Panidis, D.; Diamanti-Kandarakis, E. Endocrine disruptors and Polycystic Ovary Syndrome (PCOS): Elevated serum levels of bisphenol A in women with PCOS. J. Clin. Endocrinol. Metab., 2011, 96(3), E480-E484.
[http://dx.doi.org/10.1210/jc.2010-1658] [PMID: 21193545]
[115]
Takeda, Y.; Liu, X.; Sumiyoshi, M.; Matsushima, A.; Shimohigashi, M.; Shimohigashi, Y. Placenta expressing the greatest quantity of bisphenol A receptor ERRgamma among the human reproductive tissues: Predominant expression of type-1 ERRgamma isoform. J. Biochem., 2009, 146(1), 113-122.
[http://dx.doi.org/10.1093/jb/mvp049] [PMID: 19304792]
[116]
Darbre, P.D. Endocrine disruptors and obesity. Curr. Obes. Rep., 2017, 6(1), 18-27.
[http://dx.doi.org/10.1007/s13679-017-0240-4] [PMID: 28205155]
[117]
Muscogiuri, G.; Barrea, L.; Laudisio, D.; Savastano, S.; Colao, A. Obesogenic endocrine disruptors and obesity: Myths and truths. Arch. Toxicol., 2017, 91(11), 3469-3475.
[http://dx.doi.org/10.1007/s00204-017-2071-1] [PMID: 28975368]
[118]
Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A. Endocrine disruptors leading to obesity and related diseases. Int. J. Environ. Res. Public Health, 2017, 14(10), 1282.
[http://dx.doi.org/10.3390/ijerph14101282] [PMID: 29064461]
[119]
Boucher, J.G.; Boudreau, A.; Atlas, E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr. Diabetes, 2014, 4(1), e102.
[http://dx.doi.org/10.1038/nutd.2013.43] [PMID: 24418828]
[120]
Williams, G. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-α and GPER signalling. Mol. Cell. Endocrinol., 2012, 351(2), 269-278.
[http://dx.doi.org/10.1016/j.mce.2011.12.017] [PMID: 22233684]
[121]
Somm, E.; Schwitzgebel, V.M.; Toulotte, A.; Cederroth, C.R.; Combescure, C.; Nef, S.; Aubert, M.L.; Hüppi, P.S. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ. Health Perspect., 2009, 117(10), 1549-1555.
[http://dx.doi.org/10.1289/ehp.11342] [PMID: 20019905]
[122]
Angle, B.M.; Do, R.P.; Ponzi, D.; Stahlhut, R.W.; Drury, B.E.; Nagel, S.C.; Welshons, W.V.; Besch-Williford, C.L.; Palanza, P.; Parmigiani, S.; vom Saal, F.S.; Taylor, J.A. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol., 2013, 42, 256-268.
[http://dx.doi.org/10.1016/j.reprotox.2013.07.017] [PMID: 23892310]
[123]
Sargis, R.M.; Johnson, D.N.; Choudhury, R.A.; Brady, M.J. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring), 2010, 18(7), 1283-1288.
[http://dx.doi.org/10.1038/oby.2009.419] [PMID: 19927138]
[124]
Fenichel, P.; Chevalier, N.; Brucker-Davis, F.; Bisphenol, A. An endocrine and metabolic disruptor. Ann. Endocrinol. (Paris), 2013, 74(3), 211-220.
[http://dx.doi.org/10.1016/j.ando.2013.04.002] [PMID: 23796010]
[125]
Fang, C.; Ning, B.; Waqar, A.B.; Niimi, M.; Li, S.; Satoh, K.; Shiomi, M.; Ye, T.; Dong, S.; Fan, J. Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J. Appl. Toxicol., 2015, 35(9), 1058-1070.
[http://dx.doi.org/10.1002/jat.3103] [PMID: 25619500]
[126]
Legeay, S.; Faure, S. Is bisphenol A an environmental obesogen? Fundam. Clin. Pharmacol., 2017, 31(6), 594-609.
[PMID: 28622415]
[127]
Gao, H.; Yang, B.J.; Li, N.; Feng, L.M.; Shi, X.Y.; Zhao, W.H.; Liu, S.J. Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine (Baltimore), 2015, 94(1), e211.
[http://dx.doi.org/10.1097/MD.0000000000000211] [PMID: 25569640]
[128]
Fernandez, S.V.; Russo, J. Estrogen and xenoestrogens in breast cancer. Toxicol. Pathol., 2010, 38(1), 110-122.
[http://dx.doi.org/10.1177/0192623309354108] [PMID: 19933552]
[129]
Hall, J.M.; Korach, K.S. Endocrine disrupting chemicals promote the growth of ovarian cancer cells via the ER-CXCL12-CXCR4 signaling axis. Mol. Carcinog., 2013, 52(9), 715-725.
[http://dx.doi.org/10.1002/mc.21913] [PMID: 22549810]
[130]
Zhang, X.L.; Wang, H.S.; Liu, N.; Ge, L.C. Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals. Arch. Biochem. Biophys., 2015, 585, 10-16.
[http://dx.doi.org/10.1016/j.abb.2015.09.006] [PMID: 26363213]
[131]
Eve, L.; Fervers, B.; Le Romancer, M.; Etienne-Selloum, N. Exposure to endocrine disrupting chemicals and risk of breast cancer. Int. J. Mol. Sci., 2020, 21(23), 9139.
[http://dx.doi.org/10.3390/ijms21239139] [PMID: 33266302]
[132]
Scsukova, S.; Rollerova, E.; Bujnakova Mlynarcikova, A. Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer. Reprod. Biol., 2016, 16(4), 243-254.
[http://dx.doi.org/10.1016/j.repbio.2016.09.001] [PMID: 27692877]
[133]
Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol., 2007, 24(2), 178-198.
[http://dx.doi.org/10.1016/j.reprotox.2007.05.010] [PMID: 17628395]
[134]
Zahra, A.; Dong, Q.; Hall, M.; Jeyaneethi, J.; Silva, E.; Karteris, E.; Sisu, C. Identification of Potential Bisphenol A (BPA) exposure biomarkers in ovarian cancer. J. Clin. Med., 2021, 10(9), 1979.
[http://dx.doi.org/10.3390/jcm10091979] [PMID: 34062972]
[135]
Newbold, R.R.; Jefferson, W.N.; Padilla-Banks, E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod. Toxicol., 2007, 24(2), 253-258.
[http://dx.doi.org/10.1016/j.reprotox.2007.07.006] [PMID: 17804194]
[136]
Adewale, H.B.; Jefferson, W.N.; Newbold, R.R.; Patisaul, H.B. Neonatal bisphenol-A exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biol. Reprod., 2009, 81(4), 690-699.
[http://dx.doi.org/10.1095/biolreprod.109.078261] [PMID: 19535786]
[137]
Shanmugalingam, T.; Soultati, A.; Chowdhury, S.; Rudman, S.; Van Hemelrijck, M. Global incidence and outcome of testicular cancer. Clin. Epidemiol., 2013, 5, 417-427.
[PMID: 24204171]
[138]
Zhang, Y.; Graubard, B.I.; Klebanoff, M.A.; Ronckers, C.; Stanczyk, F.Z.; Longnecker, M.P.; McGlynn, K.A. Maternal hormone levels among populations at high and low risk of testicular germ cell cancer. Br. J. Cancer, 2005, 92(9), 1787-1793.
[http://dx.doi.org/10.1038/sj.bjc.6602545] [PMID: 15841083]
[139]
Williams, C.; Bondesson, M.; Krementsov, D.N.; Teuscher, C. Gestational bisphenol A exposure and testis development. Endocr. Disruptors (Austin), 2014, 2(1), e29088.
[http://dx.doi.org/10.4161/endo.29088] [PMID: 26167515]
[140]
Ferguson, L.; Agoulnik, A.I. Testicular cancer and cryptorchidism. Front. Endocrinol. (Lausanne), 2013, 4, 32.
[http://dx.doi.org/10.3389/fendo.2013.00032] [PMID: 23519268]
[141]
Horwich, A.; Shipley, J.; Huddart, R. Testicular germ-cell cancer. Lancet, 2006, 367(9512), 754-765.
[http://dx.doi.org/10.1016/S0140-6736(06)68305-0] [PMID: 16517276]
[142]
Chevalier, N.; Hinault, C.; Clavel, S.; Paul-Bellon, R.; Fenichel, P. GPER and testicular germ cell cancer. Front. Endocrinol. (Lausanne), 2021, 11, 600404.
[http://dx.doi.org/10.3389/fendo.2020.600404] [PMID: 33574796]
[143]
Chevalier, N.; Bouskine, A.; Fenichel, P. Bisphenol A promotes testicular seminoma cell proliferation through GPER/GPR30. Int. J. Cancer, 2012, 130(1), 241-242.
[http://dx.doi.org/10.1002/ijc.25972] [PMID: 21312194]
[144]
Prins, G.; Birch, L.; Tang, W.; Ho, S. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod. Toxicol., 2007, 23(3), 374-382.
[http://dx.doi.org/10.1016/j.reprotox.2006.10.001] [PMID: 17123779]
[145]
Driscoll, S.G.; Taylor, S.H. Effects of prenatal maternal estrogen on the male urogenital system. Obstet. Gynecol., 1980, 56(5), 537-542.
[PMID: 7432722]
[146]
Prins, G.S.; Korach, K.S. The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids, 2008, 73(3), 233-244.
[http://dx.doi.org/10.1016/j.steroids.2007.10.013] [PMID: 18093629]
[147]
Hess-Wilson, J.K.; Webb, S.L.; Daly, H.K.; Leung, Y.K.; Boldison, J.; Comstock, C.E.S.; Sartor, M.A.; Ho, S.M.; Knudsen, K.E. Unique bisphenol A transcriptome in prostate cancer: Novel effects on ERbeta expression that correspond to androgen receptor mutation status. Environ. Health Perspect., 2007, 115(11), 1646-1653.
[http://dx.doi.org/10.1289/ehp.10283] [PMID: 18007998]
[148]
Ho, S.M.; Tang, W.Y.; Belmonte de Frausto, J.; Prins, G.S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res., 2006, 66(11), 5624-5632.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0516] [PMID: 16740699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy