Generic placeholder image

Current Bioinformatics


ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Enhanced Moth-flame Optimizer with Quasi-Reflection and Refraction Learning with Application to Image Segmentation and Medical Diagnosis

Author(s): Jianfu Xia, Zhennao Cai, Ali Asghar Heidari, Yinghai Ye*, Huiling Chen* and Zhifang Pan*

Volume 18, Issue 2, 2023

Published on: 04 November, 2022

Page: [109 - 142] Pages: 34

DOI: 10.2174/1574893617666220920102401

Price: $65


Background: Moth-flame optimization will meet the premature and stagnation phenomenon when encountering difficult optimization tasks.

Objective: This paper presented a quasi-reflection moth-flame optimization algorithm with refraction learning called QRMFO to strengthen the property of ordinary MFO and apply it in various application fields to overcome shortcomings.

Methods: In the proposed QRMFO, quasi-reflection-based learning increases the diversity of the population and expands the search space on the iteration jump phase; refraction learning improves the accuracy of the potential optimal solution.

Results: Several experiments are conducted to evaluate the superiority of the proposed QRMFO in the paper; first of all, the CEC2017 benchmark suite is utilized to estimate the capability of QRMFO when dealing with the standard test sets compared with the state-of-the-art algorithms; afterward, QRMFO is adopted to deal with multilevel thresholding image segmentation problems and real medical diagnosis case.

Conclusion: Simulation results and discussions show that the proposed optimizer is superior to the basic MFO and other advanced methods in terms of convergence rate and solution accuracy.

Keywords: Moth-flame optimization, global optimization, multilevel thresholding image segmentation, medical diagnosis, particle swarm optimization, ACO.

Graphical Abstract
Cao B, Li M, Liu X, Zhao J, Cao W, Lv Z. Many-objective deployment optimization for a drone-assisted camera network. IEEE Trans Netw Sci Eng 2021; 8(4): 2756-64.
Lu C, Liu Q, Zhang B, Yin L. A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop. Expert Syst Appl 2022; 204: 117555.
Xie Y, Sheng Y, Qiu M, Gui F. An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling. Eng Appl Artif Intell 2022; 112: 104879.
Mirjalili S, Dong JS, Lewis A. Nature-inspired optimizers: Theories, literature reviews and applications. Springer 2019; 811.
Shehab M, Abualigah L, Al Hamad H, Alabool H, Alshinwan M, Khasawneh AM. Moth–flame optimization algorithm: Variants and applications. Neural Comput Appl 2020; 32(14): 9859-84.
Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl Base Syst 2015; 89: 228-49.
Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: Algorithm and applications. Future Gener Comput Syst 2019; 97: 849-72.
Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Gener Comput Syst 2020; 111: 300-23.
Tu J, Chen H, Wang M, Gandomi AH. The colony predation algorithm. J Bionics Eng 2021; 18(3): 674-710.
Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 2021; 181: 115079.
Yang Y, Chen H, Heidari AA, Gandomi AH. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 2021; 177: 114864.
Ahmadianfar I, Heidari AA, Noshadian S, Chen H, Gandomi AH. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 2022; 195: 116516.
Hussien AG, Heidari AA, Ye X, Liang G, Chen H, Pan Z. Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method. Eng Comput 2022.
Yu H, Song J, Chen C, et al. Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-enabled grey wolf algorithm. Eng Appl Artif Intell 2022; 109: 104653.
Cai Z, Gu J, Luo J, et al. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl 2019; 138: 112814.
Dong R, Chen H, Heidari AA, Turabieh H, Mafarja M, Wang S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowl Base Syst 2021; 233: 107529.
Yu H, Cheng X, Chen C, et al. Apple leaf disease recognition method with improved residual network. Multimedia Tools Appl 2022; 81(6): 7759-82.
Han X, Han Y, Chen Q, et al. Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm. Complex System Modeling and Simulation 2021; 1(3): 198-217.
Gao D, Wang GG, Pedrycz W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans Fuzzy Syst 2020; 28(12): 3265-75.
Wang GG, Gao D, Pedrycz W. Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Trans Industr Inform 2022; 1: 8516-28.
Xia J, Yang D, Zhou H, et al. Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Comput Biol Med 2022; 141: 105137.
[] [PMID: 34953358]
Zhao F, Di S, Cao J, Tang J. Jonrinaldi. A novel cooperative multi-stage hyper-heuristic for combination optimization problems. Complex Syst Model Simulat 2021; 1(2): 91-108.
Deng W, Zhang X, Zhou Y, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf Sci 2022; 585: 441-53.
Hua Y. A survey of evolutionary algorithms for multi-objective optimization problems with irregular pareto fronts. IEEE/CAA J Autom Sin 2021; 8(2): 303-18.
Hu J, Gui W, Heidari AA, et al. Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection. Knowl Base Syst 2022; 237: 107761.
He Z, Yen GG, Ding J. Knee-based decision making and visualization in many-objective optimization. IEEE Trans Evol Comput 2021; 25(2): 292-306.
He Z, Yen GG, Lv J. Evolutionary multiobjective optimization with robustness enhancement. IEEE Trans Evol Comput 2020; 24(3): 494-507.
Wang G, Gui W, Liang G, et al. Spiral motion enhanced elite whale optimizer for global tasks. Complexity 2021; 2021: 1-33.
Ling Chen H. Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy. Appl Math Comput 2014; 239: 180-97.
Yu H, Yuan K, Li W, et al. Improved butterfly optimizer-configured extreme learning machine for fault diagnosis. Complexity 2021; 2021: 1-17.
Ye X, Liu W, Li H, et al. Modified whale optimization algorithm for solar cell and PV module parameter identification. Complexity 2021; 2021: 1-23.
Apinantanakon W, Sunat K. OMFO: A new opposition-based moth-flame optimization algorithm for solving unconstrained optimization problems. In: Recent Advances in Information and Communication Technology 2017. Cham: Springer International Publishing 2018.
Emary E, Zawbaa HM. Impact of chaos functions on modern swarm optimizers. PLoS One 2016; 11(7): e0158738.
[] [PMID: 27410691]
Wang M, Chen H, Yang B, et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017; 267: 69-84.
Guvenc U, Duman S,. Hınıslıoglu Y. Chaotic moth swarm algorithm. In. IEEE International Conference on Innovations in Intelligent SysTems and Applications (INISTA). 03-05 July 2017; Gdynia, Poland: IEEE.
Xu Y, Chen H, Heidari AA, et al. An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl 2019; 129: 135-55.
Li Z, Zhou Y, Zhang S, Song J. Lévy-Flight moth-flame algorithm for function optimization and engineering design problems. Math Probl Eng 2016; 2016: 1-22.
Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X. Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 2019; 492: 181-203.
Elsakaan AA, El-Sehiemy RA, Kaddah SS, Elsaid MI. An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions. Energy 2018; 157: 1063-78.
Li C, Niu Z, Song Z, Li B, Fan J, Liu PX. A double evolutionary learning moth-flame optimization for real-parameter global optimization problems. IEEE Access 2018; 6: 76700-27.
Sayed GI, Hassanien AE. A hybrid SA-MFO algorithm for function optimization and engineering design problems. Complex & Intelligent Systems 2018; 4(3): 195-212.
Bhesdadiya RH. A novel hybrid approach particle swarm optimizer with moth-flame optimizer algorithm. In: Advances in Computer and Computational Sciences. Singapore: Springer Singapore 2017.
Khelifi A, Bentouati B, Saliha C. Optimal power flow using hybrid particle swarm optimization and moth flame optimizer approach. Revue des sciences et sciences de l’ingénieur 2018; 7(2): 33-41.
Khalilpourazari S, Khalilpourazary S. An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 2019; 23(5): 1699-722.
Khalilpourazari S, Pasandideh SHR. Modeling and optimization of multi-item multi-constrained EOQ model for growing items. Knowl Base Syst 2019; 164: 150-62.
Sarma A, Bhutani A, Goel L. Hybridization of moth flame optimization and gravitational search algorithm and its application to detection of food quality In: 2017 Intelligent Systems Conference. Intelli Sys 2017.
Zhang L, Mistry K, Neoh SC, Lim CP. Intelligent facial emotion recognition using moth-firefly optimization. Knowl Base Syst 2016; 111: 248-67.
Zhao Xd. An ameliorated moth-flame optimization algorithm. In: 2018 37th Chinese Control Conference (CCC). Wuhan, China: IEEE 2018.
K SR. Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): A flame selection based computational technique. J Comput Sci 2018; 25: 298-317.
Punnathanam V, Kommadath R, Kotecha P. Extension and performance evaluation of recent optimization techniques on mixed integer optimization problems. In: 2016 IEEE Congress on Evolutionary Computation, CEC 2016. Vancouver, BC, Canada: IEEE. 2016.
Savsani V, Tawhid MA. Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng Appl Artif Intell 2017; 63: 20-32.
Vikas, Nanda SJ. Multi-objective moth flame optimization. In: 2016 International Conference on Advances in Computing, Communications and Informatics. Jaipur, India: ICACCI 2016.
Dubey HM, Pandit M, Panigrahi BK. An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm Evol Comput 2018; 38: 12-34.
Allam D, Yousri DA, Eteiba MB. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm. Energy Convers Manage 2016; 123: 535-48.
Sulaiman MH. An application of Moth-Flame Optimization algorithm for solving optimal reactive power dispatch problem. In. 4th IET Clean Energy and Technology Conference (CEAT 2016); 14-15 Nov. 2016: Kuala Lumpur, Malaysia. 2016.
Aziz MAE, Ewees AA, Hassanien AE. Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 2017; 83: 242-56.
Sayed GI, Hassanien AE. Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images. Appl Intell 2017; 47(2): 397-408.
Gandomi AH, Kashani AR. Construction cost minimization of shallow foundation using recent swarm intelligence techniques. IEEE Trans Industr Inform 2018; 14(3): 1099-106.
Li J, Niu D, Wu M, Wang Y, Li F, Dong H. Research on battery energy storage as backup power in the operation optimization of a regional integrated energy system. Energies 2018; 11(11): 2990-3009.
Shah YA, Habib HA, Aadil F, Khan MF, Maqsood M, Nawaz T. CAMONET: Moth-Flame Optimization (MFO) based clustering algorithm for VANETs. IEEE Access 2018; 6: 48611-24.
Tolba M, Rezk H, Tulsky V, Diab A, Abdelaziz A, Vanin A. Impact of optimum allocation of renewable distributed generations on distribution networks based on different optimization algorithms. Energies 2018; 11(1): 245-77.
Trivedi IN, Jangir P, Parmar SA, Jangir N. Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer. Neural Comput Appl 2018; 30(6): 1889-904.
Das M, Singh MAK, Biswas A. Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches-Case of a radio transmitter station in India. Energy Convers Manage 2019; 185: 339-52.
Goel L, Raman S, Dora SS, Bhutani A, Aditya AS, Mehta A. Hybrid computational intelligence algorithms and their applications to detect food quality. Artif Intell Rev 2020; 53(2): 1415-40.
Jalili A, Keshtgari M, Akbari R. A new framework for reliable control placement in software-defined networks based on multi-criteria clustering approach. Soft Comput 2020; 24(4): 2897-916.
Lei X, Fang M, Fujita H. Moth–flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes. Knowl Base Syst 2019; 172: 76-85.
Mahata S, Saha SK, Kar R, Mandal D. A metaheuristic optimization approach to discretize the fractional order Laplacian operator without employing a discretization operator. Swarm Evol Comput 2019; 44: 534-45.
Li C, Li S, Liu Y. A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting. Appl Intell 2016; 45(4): 1166-78.
Jiang P, Li R, Lu H, Zhang X. Modeling of electricity demand forecast for power system. Neural Comput Appl 2020; 32(11): 6857-75.
Cao Z, Wang Y, Zheng W, et al. The algorithm of stereo vision and shape from shading based on endoscope imaging. Biomed Signal Process Control 2022; 76: 103658.
Liu Y, Tian J, Hu R, et al. Improved feature point pair purification algorithm based on SIFT during endoscope image stitching. Front Neurorobot 2022; 16: 840594.
[] [PMID: 35242022]
Zhang Z, Wang L, Zheng W, Yin L, Hu R, Yang B. Endoscope image mosaic based on pyramid ORB. Biomed Signal Process Control 2022; 71: 103261.
Ergezer M, Simon D, Du D. Oppositional biogeography-based optimization. In. IEEE International Conference on Systems, Man and Cybernetics; 04 December 2009: San Antonio, TX, USA; IEEE 2009.
Ergezer M, Simon D. Mathematical and experimental analyses of oppositional algorithms. IEEE Trans Cybern 2014; 44(11): 2178-89.
[] [PMID: 25330478]
Ergezer M, Simon D. Probabilistic properties of fitness-based quasi-reflection in evolutionary algorithms. Comput Oper Res 2015; 63: 114-24.
Yu F. The application of a novel OBL based on lens imaging principle in PSO. ACTA Electonica Sinica 2014; 42(2): 230.
Shao P, Wu ZJ, Zhou XY, Deng CS. Improved particle swarm optimization algorithm based on opposite learning of refraction. ACTA Electonica Sinica 2015; 43: 2137-44.
Long W, Wu T, Cai S, Liang X, Jiao J, Xu M. A novel grey wolf optimizer algorithm with refraction learning. IEEE Access 2019; 7: 57805-19.
Long W, Wu T, Jiao J, Tang M, Xu M. Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model. Eng Appl Artif Intell 2020; 89: 103457.
Remli MA, Deris S, Mohamad MS, Omatu S, Corchado JM. An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems. Eng Appl Artif Intell 2017; 62: 164-80.
Wu Z, Li G, Shen S, Lian X, Chen E, Xu G. Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web (Bussum) 2021; 24(1): 25-49.
Wu Z, Wang R, Li Q, et al. A location privacy-preserving system based on query range cover-up for location-based services. IEEE Trans Vehicular Technol 2020; 69(5): 5244-54.
Guan Q, Chen Y, Wei Z, et al. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput Biol Med 2022; 145: 105444.
[] [PMID: 35421795]
Chen Y, Yang XH, Wei Z, et al. Generative adversarial networks in medical image augmentation: A review. Comput Biol Med 2022; 144: 105382.
[] [PMID: 35276550]
Qiu S, Hongkai Z, Nan J, et al. Sensor network oriented human motion capture via wearable intelligent system. Int J Intell Syst 2021; 37(2): 1646-73.
Tian Y, Su X, Su Y, Zhang X. EMODMI: A multi-objective optimization based method to identify disease modules. IEEE Trans Emerg Top Comput Intell 2021; 5(4): 570-82.
Su Y, Li S, Zheng C, Zhang X. A heuristic algorithm for identifying molecular signatures in cancer. IEEE Trans Nanobiosci 2020; 19(1): 132-41.
[] [PMID: 31352348]
Yang Z, Ma J, Chen H, Zhang J, Chang Y. Context-aware attentive multilevel feature fusion for named entity recognition. IEEE Trans Neural Netw Learn Syst. 2022; 8: pp. 1-12.
[] [PMID: 35675246]
Wu Z, Li R, Zhou Z, Guo J, Jiang J, Su X. A user sensitive subject protection approach for book search service. J Assoc Inf Sci Technol 2020; 71(2): 183-95.
Wu Z, Shen S, Lian X, Su X, Chen E. A dummy-based user privacy protection approach for text information retrieval. Knowl Base Syst 2020; 195: 105679.
Wu Z, Shen S, Zhou H, Li H, Lu C, Zou D. An effective approach for the protection of user commodity viewing privacy in e-commerce website. Knowl Base Syst 2021; 220: 106952.
Gao X, Xiaoke M, Wensheng Z, et al. Multi-view clustering with self-representation and structural constraint. IEEE Trans Big Data 2022; 8(4): 882-93.
Wu W, Ma X. Network-based structural learning nonnegative matrix factorization algorithm for clustering of scRNA-seq data. IEEE/ACM Trans Comput Biol Bioinformatics 2022; 20(2): 566-75.
Huang L, Yang Y, Chen H, Zhang Y, Wang Z, He L. Context-aware road travel time estimation by coupled tensor decomposition based on trajectory data. Knowl Base Syst 2022; 245: 108596.
Zhang X, Hu W, Xie N, Bao H, Maybank S. A robust tracking system for low frame rate video. Int J Comput Vis 2015; 115(3): 279-304.
Zhang X. Hierarchical feature fusion with mixed convolution attention for single image dehazing. IEEE Transactions on Circuits and Systems for Video Technology. 2021.
Li D, Zhang S, Ma X. Dynamic module detection in temporal attributed networks of cancers. IEEE/ACM Trans Comput Biol Bioinformatics 2021.
Ma X, Sun PG, Gong M. An integrative framework of heterogeneous genomic data for cancer dynamic modules based on matrix decomposition. IEEE/ACM Trans Comput Biol Bioinformatics 2020; 19(1): 305-16.
Wang D, Liang Y, Xu D, Feng X, Guan R. A content-based recommender system for computer science publications. Knowl Base Syst 2018; 157: 1-9.
Li J, Chen C, Chen H, Tong C. Towards context-aware social recommendation via individual trust. Knowl Base Syst 2017; 127: 58-66.
Li J, Lin J. A probability distribution detection based hybrid ensemble QoS prediction approach. Inf Sci 2020; 519: 289-305.
Li J, Zheng XL, Chen ST, Song WW, Chen D. An efficient and reliable approach for quality-of-service-aware service composition. Inf Sci 2014; 269: 238-54.
Zhou D, Xue X, Zhou Z. SLE2: The improved social learning evolution model of cloud manufacturing service ecosystem. IEEE Trans Industr Inform 2022; 18(12): 9017-26.
Xue X, Chen F, Zhou D, Wang X, Lu M, Wang FY. Computational experiments for complex social systems--Part I: The customization of computational model. IEEE Trans Comput Soc Syst 2021; 1-15.
Li YH, Li XX, Hong JJ, et al. Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief Bioinform 2020; 21(2): 649-62.
[] [PMID: 30689717]
Zhu F, Li XX, Yang SY, Chen YZ. Clinical success of drug targets prospectively predicted by in silico study. Trends Pharmacol Sci 2018; 39(3): 229-31.
[] [PMID: 29295742]
Zhang X. Random reconstructed unpaired image-to-image translation. IEEE Trans Industr Inform 2022.
Derrac J. García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 2011; 1(1): 3-18.
He S. MRMD2.0: A python tool for machine learning with feature ranking and reduction. Curr Bioinform 2020; 15(10): 1213-21.
Wu X, Zheng W, Chen X, Zhao Y, Yu T, Mu D. Improving high-impact bug report prediction with combination of interactive machine learning and active learning. Inf Softw Technol 2021; 133: 106530.
Liu K, Ke F, Huang X, et al. DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Trans Commun 2021; 69(10): 6675-90.
Liu R, Wang X, Lu H, et al. SCCGAN: Style and characters inpainting based on CGAN. Mob Netw Appl 2021; 26(1): 3-12.
Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L. Grass: Generative recursive autoencoders for shape structures. ACM Trans Graph 2017; 36(4): 1-14.
Wang S, Guo H, Zhang S, Barton D, Brooks P. Analysis and prediction of double-carriage train wheel wear based on SIMPACK and neural networks. Adv Mech Eng 2022; 14(3): 1-12.
Daihong J, Sai Z, Lei D, Yueming D. Multi-scale generative adversarial network for image super-resolution. Soft Comput 2022; 26(8): 3631-41.
Awad NH, M.Z. Ali, J.J. Liang, B.Y. Qu. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Singapore: Nanyang Technological University 2016.
Heidari AA, Ali Abbaspour R, Chen H. Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Appl Soft Comput 2019; 81: 105521.
Tubishat M, Abushariah MAM, Idris N, Aljarah I. Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 2019; 49(5): 1688-707.
Ling Y, Zhou Y, Luo Q. Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 2017; 5: 6168-86.
Li H, Liu J, Chen L, Bai J, Sun Y, Lu K. Chaos-enhanced moth-flame optimization algorithm for global optimization. J Syst Eng Electron 2019; 30(6): 1144-59.
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014; 69: 46-61.
Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw 2016; 95: 51-67.
Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez A. A better balance in metaheuristic algorithms: Does it exist? Swarm Evol Comput 2020; 54: 100671.
Xu Q, Zeng Y, Tang W, et al. Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network. IEEE J Biomed Health Inform 2020; 24(9): 2481-9.
[] [PMID: 32310809]
Bhandari AK, Kumar A, Singh GK. Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 2015; 42(3): 1573-601.
Wu B, Zhou J, Ji X, Yin Y, Shen X. An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf Sci 2020; 533: 72-107.
Zhao D, Liu L, Yu F, et al. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl Base Syst 2021; 216: 106510.
Zhao C, Zhu Y, Du Y, Liao F, Chan CY. A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree. IEEE Trans Intell Transp Syst 2022; 1-12.
Yang XS. A new metaheuristic bat-inspired algorithm. In: González JR, Ed. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin: Heidelberg: Springer Berlin Heidelberg 2010; pp. 65-74.
Kennedy J, Eberhart R. Particle swarm optimization. Perth, WA, Australia 1995.
Liang JJ, Qin AK, Suganthan PN, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 2006; 10(3): 281-95.
Xu C. Biogeography-based learning particle swarm optimization. Soft Comput 2016; 21(24): 1-23.
Liu H, Liu J, Hou S, Tao T, Han J. Perception consistency ultrasound image super-resolution via self-supervised CycleGAN. Neural Comput Appl 2021; 1-11.
Zhou G, Yang F, Xiao J. Study on pixel entanglement theory for imagery classification. IEEE Trans Geosci Remote Sens 2022; 60: 1-18.
Zhang M, Chen Y, Lin J. A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment. IEEE Internet Things J 2021; 8(13): 10830-42.
Zhang M, Chen Y, Susilo W. PPO-CPQ: A privacy-preserving optimization of clinical pathway query for e-healthcare systems. IEEE Internet Things J 2020; 7(10): 10660-72.
Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, Rui Zhang. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 2012; 42(2): 513-29.
[] [PMID: 21984515]
Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2011; 2(3): 1-27.
Chen H, Yang B, Liu D, et al. Using blood indexes to predict overweight statuses: An extreme learning machine-based approach. PLoS One 2015; 10(11): e0143003.
[] [PMID: 26600199]
Kadry S, Rajinikanth V. Grey scale image multi-thresholding using moth-flame algorithm and tsallis entropy. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika 2020; 6(2): 79-89.
Kadry S, Rajinikanth V, Raja NSM, Jude Hemanth D, Hannon NMS, Raj ANJ. Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: A study. Evol Intell 2021; 14(2): 1053-63.
Rajinikanth V, Kadry SC, Rubén G. Verdú E. A study on RGB image multi-thresholding using kapur/tsallis entropy and moth-flame algorithm. Inter J Interact Multi Artif Intell 2021; 7(2): 163-71.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy