Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Perspective

The Synthetic Approaches for Preparation of Indigo and Applications in Denim Industry

Author(s): Gökhan Kaplan and Zeynel Seferoğlu*

Volume 20, Issue 4, 2023

Published on: 17 October, 2022

Page: [361 - 364] Pages: 4

DOI: 10.2174/1570179419666220830091956

conference banner
Abstract

This paper describes indigo chemistry and its brief scientific history beginning with the first characterization and chemical synthesis of indigo via various precursors such as isatin, cinnamic acid, 2-nitrobenzaldehyde, anthranilic acid, N-phenylglycine, aniline, and indole. Furthermore, alternative methods such as eco-friendly microbial synthesis of indigo using a variety of enzymes are reported: Cytochrome P450 monooxygenases, flavin-containing monooxygenases, and unspecific peroxygenases. Subsequently, the application of indigo in the denim industry, reduction methods (chemical, electrochemical, enzymatic and catalytic) and dyeing methods (all parameters in dyeing, ring dye) are discussed. In addition, the main reason for the use of indigo in the denim industry is briefly explained.

Keywords: Ancient dye, indigo, reduction, enzymatic synthesis, vat dye, oxidation, ring dye, fashion.

Next »
[1]
Steingruber, E. Indigo and indigo colorants. In: Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library, 2004; Vol. 19, pp. 55-63.
[http://dx.doi.org/10.1002/14356007.a14_149.pub2]
[2]
Splitstoser, J.C.; Dillehay, T.D.; Wouters, J.; Claro, A. Early pre-Hispanic use of indigo blue in Peru. Sci. Adv., 2016, 2(9), e1501623.
[http://dx.doi.org/10.1126/sciadv.1501623] [PMID: 27652337]
[3]
Uddin, M.G. Indigo ring dyeing of cotton warp yarns for denim fabric. Chem. Mater. Eng., 2014, 2(7), 149-154.
[http://dx.doi.org/10.13189/cme.2014.020701]
[4]
Chavan, R.B. Indigo dye and reduction techniques In: Denim Manufacture, Finishing and Applications; Woodhead Publishing series in Texiles, 2015; p. 37-67.
[http://dx.doi.org/10.1016/B978-0-85709-843-6.00003-2]
[5]
Wolk, J.L.; Frimer, A.A.A. A simple, safe and efficient synthesis of Tyrian purple (6,6′-dibromoindigo). Molecules, 2010, 15(8), 5561-5580.
[http://dx.doi.org/10.3390/molecules15085561] [PMID: 20714313]
[6]
Głowacki, E.D.; Voss, G.; Sariciftci, N.S. 25th anniversary article: Progress in chemistry and applications of functional indigos for organic electronics. Adv. Mater., 2013, 25(47), 6783-6800.
[http://dx.doi.org/10.1002/adma.201302652] [PMID: 24151199]
[7]
Wolk, J.L.; Frimer, A.A. Preparation of tyrian purple (6,6′-dibromoindigo): Past and present. Molecules, 2010, 15(8), 5473-5508.
[http://dx.doi.org/10.3390/molecules15085473] [PMID: 20714309]
[8]
Ullrich, R.; Poraj-Kobielska, M.; Herold-Majumdar, O.M.; Vind, J.; Hofrichter, M. Synthesis of indigo-dyes from indole derivatives by unspecific peroxygenases and their application for in-situ dyeing. Catalysts, 2021, 11(12), 1495.
[http://dx.doi.org/10.3390/catal11121495]
[9]
Sánchez-Viesca, F.; Gómez, R. On the baeyer-emmerling synthesis of indigo. World J. Organic Chem., 2018, 6(1), 6-12.
[10]
O’Connor, K.E.; Hartmans, S. Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnol. Lett., 1998, 20(3), 219-223.
[http://dx.doi.org/10.1023/A:1005361415496]
[11]
Bhushan, B.; Samanta, S.K.; Jain, R.K. Indigo production by naphthalene-degrading bacteria. Lett. Appl. Microbiol., 2000, 31(1), 5-9.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00754.x] [PMID: 10886605]
[12]
Fabara, A.N.; Fraaije, M.W. An overview of microbial indigo-forming enzymes. Appl. Microbiol. Biotechnol., 2020, 104(3), 925-933.
[http://dx.doi.org/10.1007/s00253-019-10292-5] [PMID: 31834440]
[13]
Choi, K.Y. A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications. Dyes Pigments, 2020, 181, 108570.
[http://dx.doi.org/10.1016/j.dyepig.2020.108570]
[14]
Krishnaswamy, N.R.; Sundaresan, C.N. Fascinating organic molecules from nature. Resonance, 2003, 8(3), 42-48.
[15]
Torii, S.; Yamanaka, T.; Tanaka, H. Electrochemical acetoxylation of N-Acetylindolines and N-Acetylindoles. A new synthesis of indigos. J. Org. Chem., 1978, 43(14), 2882-2885.
[http://dx.doi.org/10.1021/jo00408a029]
[16]
Yamamoto, Y.; Inoue, Y.; Takaki, U.; Suzuki, H. Development of a practical one-pot synthesis of indigo from indole. Bull. Chem. Soc. Jpn., 2011, 84(1), 82-89.
[http://dx.doi.org/10.1246/bcsj.20100134]
[17]
Chen, L.; Xu, J.K.; Li, L.; Gao, G.Q.; Wend, G.B.; Lin, Y.W. Design and engineering of neuroglobin to catalyze the synthesis of indigo and derivatives for textile dyeing. Mol. Syst. Des. Eng., 2022.
[http://dx.doi.org/10.1039/D1ME00123J]
[18]
Kaplan, G.; Cobanoglu, Ö.; Akdemir, Ö. Use of indigo derivatives as irreversible color change dyes for textile materials, new compounds and procedure for dyeing textile materials. U.S. Patent 10,246,820 2019.
[19]
Sanchez, M. Dyeing of denim yarns with non-indigo dyes In: Denim Manufacture, Finishing and Applications; Woodhead Publishing series in Texiles, 2015; p. 107-157.
[http://dx.doi.org/10.1016/B978-0-85709-843-6.00005-6]
[20]
Arıoğlu, E.; Hamitbeyli, A.; Loyan, K.; Tuncer, M.E.; Yenici, H. Process for introducing vat dyes and chemicals into textile. U.S. Patent 8,523,957 2013.

© 2024 Bentham Science Publishers | Privacy Policy