Review Article

Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis

Author(s): Tanja Rouhani Rankouhi, Daniëlle van Keulen, Dennie Tempel and Jennifer Venhorst*

Volume 23, Issue 14, 2022

Published on: 13 September, 2022

Page: [1345 - 1369] Pages: 25

DOI: 10.2174/1389450123666220811101032

Price: $65

conference banner
Abstract

Background: Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked.

Objective: In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM’s biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population.

Conclusion: While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.

Keywords: Oncostatin M, OSM, atherosclerosis, risk-benefit analysis, target safety assessment, risk assessment.

« Previous
Graphical Abstract
[1]
Deller MC, Hudson KR, Ikemizu S, Bravo J, Yvonne Jones E, Heath JK. Crystal structure and functional dissection of the cytostatic cytokine oncostatin M. Structure 2000; 8: 863-74.
[http://dx.doi.org/10.1016/S0969-2126(00)00176-3]
[2]
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18(12): 773-89.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[3]
Garbers C, Hermanns HM, Schaper F, et al. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23(3): 85-97.
[http://dx.doi.org/10.1016/j.cytogfr.2012.04.001] [PMID: 22595692]
[4]
Taga T, Kishimoto T. GP130 and the interleukin-6 family of cytokines. Annu Rev Immunol 1997; 15: 797-819.
[5]
West NR. Coordination of immune-stroma crosstalk by IL-6 family cytokines. Front Immunol 2019; 10: 1093.
[6]
Mosley B, De Imus C, Friend D, et al. Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation. J Biol Chem 1996; 271(51): 32635-43.
[http://dx.doi.org/10.1074/jbc.271.51.32635] [PMID: 8999038]
[7]
Adrian-Segarra JM, Sreenivasan K, Gajawada P, Lörchner H, Braun T, Pöling J. The AB loop of oncostatin M (OSM) determines species-specific signaling in humans and mice. J Biol Chem 2018; 293(52): 20181-99.
[http://dx.doi.org/10.1074/jbc.RA118.004375] [PMID: 30373773]
[8]
Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 2004; 5(7): 752-60.
[http://dx.doi.org/10.1038/ni1084] [PMID: 15184896]
[9]
Gibbs BF, Patsinakidis N, Raap U. Role of the pruritic cytokine IL-31 in autoimmune skin diseases. Front Immunol 2019; 10: 1383.
[http://dx.doi.org/10.3389/fimmu.2019.01383] [PMID: 31281316]
[10]
Walker EC, Johnson RW, Hu Y, et al. Murine oncostatin m acts via leukemia inhibitory factor receptor to phosphorylate Signal Transducer and Activator of Transcription 3 (STAT3) but not STAT1, an effect that protects bone mass. J Biol Chem 2016; 291(41): 21703-16.
[http://dx.doi.org/10.1074/jbc.M116.748483] [PMID: 27539849]
[11]
Walker EC, McGregor NE, Poulton IJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 2010; 120(2): 582-92.
[http://dx.doi.org/10.1172/JCI40568] [PMID: 20051625]
[12]
Stephens JM, Elks CM, Oncostatin M, Oncostatin M. Potential implications for malignancy and metabolism. Curr Pharm Des 2017; 23(25): 3645-57.
[http://dx.doi.org/10.2174/1381612823666170704122559] [PMID: 28677505]
[13]
West NR, Owens BMJ, Hegazy AN. The oncostatin M-stromal cell axis in health and disease. Scand J Immunol 2018; 88(3): e12694.
[http://dx.doi.org/10.1111/sji.12694] [PMID: 29926972]
[14]
Guo S, Li ZZ, Gong J, et al. Oncostatin M confers neuroprotection against ischemic stroke. J Neurosci 2015; 35(34): 12047-62.
[http://dx.doi.org/10.1523/JNEUROSCI.1800-15.2015 ] [PMID: 26311783]
[15]
Zhang X, Zhu D, Wei L, et al. OSM enhances angiogenesis and improves cardiac function after myocardial infarction. Biomed Res Int 2015; 2015: 317905.
[http://dx.doi.org/10.1155/2015/317905]
[16]
Stawski L, Trojanowska M. Oncostatin M and its role in fibrosis Connective Tissue Research. Taylor and Francis Ltd 2019; Vol. 60: pp. 40-9.
[17]
West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 2017; 23(5): 579-89.
[http://dx.doi.org/10.1038/nm.4307] [PMID: 28368383]
[18]
van Keulen D, Pouwer MG, Pasterkamp G, et al. Inflammatory cytokine oncostatin M induces endothelial activation in macro- and microvascular endothelial cells and in APOE*3Leiden. CETP mice. PLoS One 2018; 13(10): e0204911.
[http://dx.doi.org/10.1371/journal.pone.0204911] [PMID: 30273401]
[19]
Song P, Fang Z, Wang H, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob Health 2020; 8(5): e721-9.
[http://dx.doi.org/10.1016/S2214-109X(20)30117-0 ] [PMID: 32353319]
[20]
Roberts RA. Understanding drug targets: No such thing as bad news. Drug Discov Today 2018; 23(12): 1925-8.
[http://dx.doi.org/10.1016/j.drudis.2018.05.028] [PMID: 29803936]
[21]
Hornberg JJ, Mow T. How can we discover safer drugs? Future Med Chem Future Sci 2014; 6: 481-3.
[22]
Venhorst J, Verschuren L, Thougaard AV, Hornberg JJ, Rankouhi TR. Predicting the safety of drug targets. In: Carini C, Fidock M, van Gool A, Eds. In: Handbook of Biomarkers and Precision Medicine. (1st.), Routledge CRC Press, Chapman and Hall/CRC 2019.
[http://dx.doi.org/10.1201/9780429202872-8]
[23]
Emmerich CH, Gamboa LM, Hofmann MCJ, et al. Improving target assessment in biomedical research: The GOT-IT recommendations. Nat Rev Drug Discov 2021; 20(1): 64-81.
[http://dx.doi.org/10.1038/s41573-020-0087-3] [PMID: 33199880]
[24]
Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362(6423): 801-9.
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518]
[25]
Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5(1): 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[26]
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118(4): 535-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611 ] [PMID: 26892956]
[27]
Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013; 93(3): 1317-542.
[http://dx.doi.org/10.1152/physrev.00004.2012] [PMID: 23899566]
[28]
Nishibe T, Parry G, Ishida A, et al. Oncostatin M promotes biphasic tissue factor expression in smooth muscle cells: Evidence for Erk-1/2 activation. Blood 2001; 97(3): 692-9.
[http://dx.doi.org/10.1182/blood.v97.3.692] [PMID: 11157486]
[29]
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflamm 2013; 2013: 512103.
[http://dx.doi.org/10.1155/2013/512103] [PMID: 24381786]
[30]
Albasanz-Puig A, Murray J, Preusch M, et al. Oncostatin M is expressed in atherosclerotic lesions: A role for Oncostatin M in the pathogenesis of atherosclerosis. Atherosclerosis 2011; 216(2): 292-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.003] [PMID: 21376322]
[31]
Demyanets S, Kaun C, Rychli K, et al. Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ. Basic Res Cardiol 2011; 106(2): 217-31.
[http://dx.doi.org/10.1007/s00395-010-0141-0] [PMID: 21174212]
[32]
Ichiki T, Jougasaki M, Setoguchi M, et al. Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am J Physiol - Hear Circ Physiol 2008; 294(2): H750-63.
[http://dx.doi.org/10.1152/ajpheart.00161.2007]
[33]
Kapoor D, Trikha D, Vijayvergiya R, Kaul D, Dhawan V. Conventional therapies fail to target inflammation and immune imbalance in subjects with stable coronary artery disease: A system-based approach. Atherosclerosis 2014; 237(2): 623-31.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.009 ] [PMID: 25463097]
[34]
Zhang X, Li J, Qin JJ, et al. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 2017; 58(5): 895-906.
[http://dx.doi.org/10.1194/jlr.M074112] [PMID: 28258089]
[35]
Tabibiazar R, Wagner RA, Ashley EA, et al. Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease. Physiol Genomics 2005; 22(2): 213-26.
[http://dx.doi.org/10.1152/physiolgenomics.00001.2005 ] [PMID: 15870398]
[36]
Li X, Zhang X, Wei L, Xia Y, Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clin Lab 2014; 60(1): 113-8.
[http://dx.doi.org/10.7754/Clin.Lab.2013.121245] [PMID: 24600984]
[37]
Vasse M, Pourtau J, Trochon V, et al. Oncostatin M induces angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999; 19(8): 1835-42.
[http://dx.doi.org/10.1161/01.atv.19.8.1835] [PMID: 10446061]
[38]
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12: 18-34.
[39]
Fossey SL, Bear MD, Kisseberth WC, Pennell M, London CA. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 2011; 11: 125.
[http://dx.doi.org/10.1186/1471-2407-11-125] [PMID: 21481226]
[40]
Rychli K, Kaun C, Hohensinner PJ, et al. The inflammatory mediator oncostatin M induces angiopoietin 2 expression in endothelial cells in vitro and in vivo. J Thromb Haemost 2010; 8(3): 596-604.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03741.x ] [PMID: 20088942]
[41]
Mirshahi F, Vasse M, Tedgui A, et al. Oncostatin M induces procoagulant activity in human vascular smooth muscle cells by modulating the balance between tissue factor and tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2002; 13(5): 449-55.
[http://dx.doi.org/10.1097/00001721-200207000-00010 ] [PMID: 12138373]
[42]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301 ] [PMID: 26892962]
[43]
Modur V, Feldhaus MJ, Weyrich AS, et al. Oncostatin M is a proinflammatory mediator in vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. J Clin Invest 1997; 100: 158-68.
[http://dx.doi.org/10.1172/JCI119508]
[44]
Schnittker D, Kwofie K, Ashkar A, Trigatti B, Richards CD. Oncostatin M and TLR-4 ligand synergize to induce MCP-1, IL-6, and VEGF in human aortic adventitial fibroblasts and smooth muscle cells. Mediators Inflamm 2013; 2013: 317503.
[45]
Setiadi H, Yago T, Liu Z, McEver RP. Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv 2019; 3(2): 168-83.
[http://dx.doi.org/10.1182/bloodadvances.2018026294 ] [PMID: 30670533]
[46]
Chen Q, Lv J, Yang W, et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9(22): 6424-42.
[http://dx.doi.org/10.7150/thno.35528] [PMID: 31588227]
[47]
Yang X, Jia J, Yu Z, et al. Inhibition of JAK2/STAT3/SOCS3 signaling attenuates atherosclerosis in rabbit. BMC Cardiovasc Disord 2020; 20(1): 133.
[http://dx.doi.org/10.1186/s12872-020-01391-7] [PMID: 32169038]
[48]
NCT03816891 Study to assess the efficacy, safety, and tolerability of vixarelimab in reducing pruritus in Prurigo nodularis. ClinicalTrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03816891
[49]
Nnane IP, Han C, Jiao Q, Tam SH, Davis HM, Xu Z. Modification of the Fc region of a human anti-oncostatin M monoclonal antibody for higher affinity to FcRn receptor and extension of half-life in cynomolgus monkeys. Basic Clin Pharmacol Toxicol 2017; 121(1): 13-21.
[http://dx.doi.org/10.1111/bcpt.12761] [PMID: 28132416]
[50]
Reid J, Zamuner S, Edwards K, et al. in vivo affinity and target engagement in skin and blood in a first-time-in-human study of an anti-oncostatin M monoclonal antibody. Br J Clin Pharmacol 2018; 84(10): 2280-91.
[http://dx.doi.org/10.1111/bcp.13669] [PMID: 29900565]
[51]
Choy EH, Bendit M, McAleer D, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of an anti- oncostatin M monoclonal antibody in rheumatoid arthritis: Results from phase II randomized, placebo-controlled trials. Arthritis Res Ther 2013; 15(5): R132.
[http://dx.doi.org/10.1186/ar4312] [PMID: 24286335]
[52]
Gruson D, Ferracin B, Ahn SA, Rousseau MF. Elevation of plasma oncostatin M in heart failure. Future Cardiol 2017; 13(3): 219-27.
[http://dx.doi.org/10.2217/fca-2016-0063] [PMID: 28585906]
[53]
Kubin T, Pöling J, Kostin S, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 2011; 9(5): 420-32.
[http://dx.doi.org/10.1016/j.stem.2011.08.013] [PMID: 22056139]
[54]
Xie J, Zhu S, Dai Q, et al. Oncostatin M was associated with thrombosis in patients with atrial fibrillation. Medicine (Baltimore) 2017; 96(18): e6806.
[http://dx.doi.org/10.1097/MD.0000000000006806 ] [PMID: 28471981]
[55]
Pöling J, Gajawada P, Richter M, et al. Therapeutic targeting of the oncostatin M receptor-β prevents inflammatory heart failure. Basic Res Cardiol 2014; 109(1): 396.
[http://dx.doi.org/10.1007/s00395-013-0396-3] [PMID: 24292852]
[56]
Sun D, Li S, Wu H, et al. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity. J Cell Mol Med 2015; 19(6): 1296-307.
[http://dx.doi.org/10.1111/jcmm.12501] [PMID: 25752217]
[57]
Fan X, Hughes BG, Ali MAM, Chan BYH, Launier K, Schulz R. Matrix metalloproteinase-2 in oncostatin M-induced sarcomere degeneration in cardiomyocytes. Am J Physiol - Hear Circ Physiol 2016; 311(1): 183-9.
[58]
Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016; 106(1): 62-9.
[http://dx.doi.org/10.5935/abc.20160005] [PMID: 26647721]
[59]
Hu J, Zhang L, Zhao Z, et al. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1951-61.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.004] [PMID: 27825852]
[60]
Abe H, Takeda N, Isagawa T, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via oncostatin M. Nat Commun 2019; 10(1): 2824.
[http://dx.doi.org/10.1038/s41467-019-10859-w] [PMID: 31249305]
[61]
Li Y, Feng J, Song S, et al. Gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 2020; 142(10): 967-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044484] [PMID: 32600062]
[62]
Dai X, Wiernek S, Evans JP, Runge MS. Genetics of coronary artery disease and myocardial infarction. World J Cardiol 2016; 8(1): 1-23.
[http://dx.doi.org/10.4330/wjc.v8.i1.1] [PMID: 26839654]
[63]
NCT03041025 Proof of mechanism study of GSK2330811 in diffuse cutaneous systemic sclerosis. Clinical trialsgov Bethesda (MD): National Library of Medicine (US) 2021. Available from: https://clinicaltrials.gov/ct2/show/results/NCT03041025
[64]
Sebestyén V, Szűcs G, Páll D, et al. Electrocardiographic markers for the prediction of ventricular arrhythmias in patients with systemic sclerosis. Rheumatology 2020; 59(3): 478-86.
[http://dx.doi.org/10.1093/rheumatology/kez644] [PMID: 31943100]
[65]
Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol 2014; 6(9): 993-1005.
[http://dx.doi.org/10.4330/wjc.v6.i9.993] [PMID: 25276300]
[66]
Willeit K, Kiechl S. Atherosclerosis and atrial fibrillation-two closely intertwined diseases. Atherosclerosis 2014; 233(2): 679-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.082 ] [PMID: 24569021]
[67]
Schoepe R, McQuillan S, Valsan D, Teehan G. Atherosclerotic renal artery stenosis. Adv Exp Med Biol 2017; 956: 209-13.
[68]
de Leeuw PW, Postma CT, Spiering W, Kroon AA. Atherosclerotic renal artery stenosis: Should we intervene earlier? Curr Hypertens Rep 2018; 20(4): 35.
[http://dx.doi.org/10.1007/s11906-018-0829-3] [PMID: 29637445]
[69]
Manavathongchai S, Bian A, Rho YH, et al. Inflammation and hypertension in rheumatoid arthritis. J Rheumatol 2013; 40(11): 1806-11.
[http://dx.doi.org/10.3899/jrheum.130394] [PMID: 23996293]
[70]
Chen SH, Benveniste EN, Oncostatin M, Oncostatin M. A pleiotropic cytokine in the central nervous system. Cytokine Growth Factor Rev 2004; 15(5): 379-91.
[http://dx.doi.org/10.1016/j.cytogfr.2004.06.002] [PMID: 15450253]
[71]
Wang W, Wang WH, Azadzoi KM, Su N, Dai P, Sun J, et al. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci Rep 2015; 2016(6): 1-14.
[PMID: 26935990]
[72]
Esashi E, Ito H, Minehata K, Saito S, Morikawa Y, Miyajima A. Oncostatin M deficiency leads to thymic hypoplasia, accumulation of apoptotic thymocytes and glomerulonephritis. Eur J Immunol 2009; 39(6): 1664-70.
[http://dx.doi.org/10.1002/eji.200839149] [PMID: 19384873]
[73]
Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood 2003; 102(9): 3154-62.
[http://dx.doi.org/10.1182/blood-2003-02-0367] [PMID: 12855584]
[74]
Matthews VB, Knight B, Tirnitz-Parker JEE, Boon J, Olynyk JK, Yeoh GCT. Oncostatin M induces an acute phase response but does not modulate the growth or maturation-status of liver progenitor (oval) cells in culture. Exp Cell Res 2005; 306(1): 252-63.
[http://dx.doi.org/10.1016/j.yexcr.2005.02.010] [PMID: 15878349]
[75]
Richards CD, Brown TJ, Shoyab M, Baumann H, Gauldie J. Recombinant oncostatin M stimulates the production of acute phase proteins in HepG2 cells and rat primary hepatocytes in vitro. J Immunol 1992; 148(6): 1731-6.
[PMID: 1371787]
[76]
Richards CD, Kerr C, Tanaka M, et al. Regulation of tissue inhibitor of metalloproteinase-1 in fibroblasts and acute phase proteins in hepatocytes in vitro by mouse oncostatin M, cardiotrophin-1, and IL-6. J Immunol 1997; 159(5): 2431-7.
[PMID: 9278335]
[77]
Ruprecht K, Kuhlmann T, Seif F, et al. Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 2001; 60(11): 1087-98.
[http://dx.doi.org/10.1093/jnen/60.11.1087] [PMID: 11706938]
[78]
Sugaya M, Fang L, Cardones AR, et al. Oncostatin M enhances CCL21 expression by microvascular endothelial cells and increases the efficiency of dendritic cell trafficking to lymph nodes. J Immunol 2006; 177(11): 7665-72.
[http://dx.doi.org/10.4049/jimmunol.177.11.7665] [PMID: 17114436]
[79]
Korzus E, Nagase H, Rydell R, Travis J. The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J Biol Chem 1997; 272(2): 1188-96.
[http://dx.doi.org/10.1074/jbc.272.2.1188] [PMID: 8995420]
[80]
Ikeda S, Sato K, Takeda M, et al. Oncostatin M is a novel biomarker for coronary artery disease - A possibility as a screening tool of silent myocardial ischemia for diabetes mellitus. Int J Cardiol Heart Vasc 2021; 35: 100829.
[http://dx.doi.org/10.1016/j.ijcha.2021.100829] [PMID: 34235245]
[81]
Huang J, Khademi M, Fugger L, et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc Natl Acad Sci USA 2020; 117(23): 12952-60.
[http://dx.doi.org/10.1073/pnas.1912839117] [PMID: 32457139]
[82]
Reale M, Iarlori C, Gambi F, Lucci I, Salvatore M, Gambi D. Acetylcholinesterase inhibitors effects on oncostatin-M, interleukin-1 β and interleukin-6 release from lymphocytes of Alzheimer’s disease patients. Exp Gerontol 2005; 40(3): 165-71.
[http://dx.doi.org/10.1016/j.exger.2004.12.003] [PMID: 15763393]
[83]
Znoyko I, Sohara N, Spicer SS, Trojanowska M, Reuben A. Expression of oncostatin M and its receptors in normal and cirrhotic human liver. J Hepatol 2005; 43(5): 893-900.
[http://dx.doi.org/10.1016/j.jhep.2005.04.020] [PMID: 16169119]
[84]
Foglia B, Sutti S, Pedicini D, et al. Oncostatin M, a profibrogenic mediator overexpressed in non-alcoholic fatty liver disease, stimulates migration of hepatic myofibroblasts. Cells 2019; 9(1): E28.
[http://dx.doi.org/10.3390/cells9010028] [PMID: 31861914]
[85]
Sanchez-Infantes D, White UA, Elks CM, et al. Oncostatin M is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99(2): E217-25.
[http://dx.doi.org/10.1210/jc.2013-3555] [PMID: 24297795]
[86]
Piquer-Garcia I, Campderros L, Taxerås SD, et al. A role for oncostatin M in the impairment of glucose homeostasis in obesity. J Clin Endocrinol Metab 2020; 105(3): dgz090.
[http://dx.doi.org/10.1210/clinem/dgz090] [PMID: 31606738]
[87]
Hurst SM, McLoughlin RM, Monslow J, et al. Secretion of oncostatin M by infiltrating neutrophils: Regulation of IL-6 and chemokine expression in human mesothelial cells. J Immunol 2002; 169(9): 5244-51.
[http://dx.doi.org/10.4049/jimmunol.169.9.5244] [PMID: 12391243]
[88]
Elbjeirami WM, Truong LD, Tawil A, et al. Early differential expression of oncostatin M in obstructive nephropathy. J Interferon Cytokine Res 2010; 30(7): 513-23.
[http://dx.doi.org/10.1089/jir.2009.0105] [PMID: 20626292]
[89]
Beigel F, Friedrich M, Probst C, et al. Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members. PLoS One 2014; 9(4): e93498.
[http://dx.doi.org/10.1371/journal.pone.0093498] [PMID: 24710357]
[90]
Verstockt B, Verstockt S, Dehairs J, et al. Low TREM1 expression in whole blood predicts anti-TNF response in inflammatory bowel disease. EBioMedicine 2019; 40: 733-42.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.027] [PMID: 30685385]
[91]
Lee HM, Cho JG, Kang HJ, et al. Expression of oncostatin M in chronic obstructive sialadenitis of the submandibular gland. Ann Otol Rhinol Laryngol 2008; 117(5): 347-52.
[http://dx.doi.org/10.1177/000348940811700504] [PMID: 18564531]
[92]
Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol 2015; 136(3): 737-746.e4.
[http://dx.doi.org/10.1016/j.jaci.2015.01.043] [PMID: 25840724]
[93]
Boniface K, Diveu C, Morel F, et al. Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation. J Immunol 2007; 178(7): 4615-22.
[http://dx.doi.org/10.4049/jimmunol.178.7.4615] [PMID: 17372020]
[94]
Grenier A, Combaux D, Chastre J, et al. Oncostatin M production by blood and alveolar neutrophils during acute lung injury. Lab Invest 2001; 81(2): 133-41.
[http://dx.doi.org/10.1038/labinvest.3780220] [PMID: 11232634]
[95]
Simpson JL, Baines KJ, Boyle MJ, Scott RJ, Gibson PG, Oncostatin M. (OSM) is increased in asthma with incompletely reversible airflow obstruction. Exp Lung Res 2009; 35(9): 781-94.
[http://dx.doi.org/10.3109/01902140902906412] [PMID: 19916861]
[96]
Pothoven KL, Norton JE, Suh LA, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol 2017; 139(6): 1966-1978.e9.
[http://dx.doi.org/10.1016/j.jaci.2016.10.039] [PMID: 27993536]
[97]
Kang HJ, Kang JS, Lee SH, et al. Upregulation of oncostatin m in allergic rhinitis. Laryngoscope 2005; 115(12): 2213-6.
[http://dx.doi.org/10.1097/01.mlg.0000187819.89889.4a] [PMID: 16369169]
[98]
Baines KJ, Simpson JL, Gibson PG. Innate immune responses are increased in chronic obstructive pulmonary disease. PLoS One 2011; 6(3): e18426.
[http://dx.doi.org/10.1371/journal.pone.0018426] [PMID: 21483784]
[99]
Mozaffarian A, Brewer AW, Trueblood ES, et al. Mechanisms of oncostatin M-induced pulmonary inflammation and fibrosis. J Immunol 2008; 181(10): 7243-53.
[http://dx.doi.org/10.4049/jimmunol.181.10.7243] [PMID: 18981146]
[100]
Mashimo K, Usui-Ouchi A, Ito Y, et al. Role of oncostatin M in the pathogenesis of vernal keratocon junctivitis: Focus on tissue remodeling. Jpn J Ophthalmol 2021; 65(1): 144-53.
[http://dx.doi.org/10.1007/s10384-020-00791-8] [PMID: 33403505]
[101]
Guihard P, Boutet MA, Brounais-Le Royer B, et al. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 2015; 185(3): 765-75.
[http://dx.doi.org/10.1016/j.ajpath.2014.11.008] [PMID: 25559270]
[102]
Cross A, Edwards SW, Bucknall RC, Moots RJ. Secretion of oncostatin M by neutrophils in rheumatoid arthritis. Arthritis Rheum 2004; 50(5): 1430-6.
[http://dx.doi.org/10.1002/art.20166] [PMID: 15146412]
[103]
Manicourt DH, Poilvache P, Van Egeren A, Devogelaer JP, Lenz ME, Thonar EJMA. Synovial fluid levels of tumor necrosis factor α and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis. Arthritis Rheum 2000; 43(2): 281-8.
[http://dx.doi.org/10.1002/1529-0131(200002)43:2<281::AID-ANR7>3.0.CO;2-7] [PMID: 10693867]
[104]
Cawston TE, Curry VA, Summers CA, et al. The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. Arthritis Rheum 1998; 41(10): 1760-71.
[http://dx.doi.org/10.1002/1529-0131(199810)41:10<1760::AID-ART8>3.0.CO;2-M] [PMID: 9778217]
[105]
Yang X, Shao C, Duan L, et al. Oncostatin M promotes hepatic progenitor cell activation and hepatocarcinogenesis via macrophage-derived tumor necrosis factor-α. Cancer Lett 2021; 517: 46-54.
[http://dx.doi.org/10.1016/j.canlet.2021.05.039] [PMID: 34102284]
[106]
Tawara K, Bolin C, Koncinsky J, et al. OSM potentiates preintravasation events, increases CTC counts, and promotes breast cancer metastasis to the lung. Breast Cancer Res 2018; 20(1): 53.
[http://dx.doi.org/10.1186/s13058-018-0971-5] [PMID: 29898744]
[107]
Hanisch A, Dieterich KD, Dietzmann K, et al. Expression of members of the interleukin-6 family of cytokines and their receptors in human pituitary and pituitary adenomas. J Clin Endocrinol Metab 2000; 85(11): 4411-4.
[http://dx.doi.org/10.1210/jcem.85.11.7122] [PMID: 11095488]
[108]
Royuela M, Ricote M, Parsons MS, García-Tuñón I, Paniagua R, de Miguel MP. Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol 2004; 202(1): 41-9.
[http://dx.doi.org/10.1002/path.1476] [PMID: 14694520]
[109]
Wallace PM, MacMaster JF, Rouleau KA, et al. Regulation of inflammatory responses by oncostatin M. J Immunol 1999; 162(9): 5547-55.
[PMID: 10228036]
[110]
Langdon C, Kerr C, Hassen M, Hara T, Arsenault AL, Richards CD. Murine oncostatin M stimulates mouse synovial fibroblasts in vitro and induces inflammation and destruction in mouse joints in vivo. Am J Pathol 2000; 157(4): 1187-96.
[http://dx.doi.org/10.1016/S0002-9440(10)64634-2] [PMID: 11021823]
[111]
Houben E, Hellings N, Broux B. Oncostatin M, an underestimated player in the central nervous system. Front Immunol 2019; 10: 1165.
[http://dx.doi.org/10.3389/fimmu.2019.01165] [PMID: 31191538]
[112]
Elks CM, Stephens JM, Stephens JM. Oncostatin M modulation of lipid storage. Biology (Basel) 2015; 4(1): 151-60.
[http://dx.doi.org/10.3390/biology4010151] [PMID: 25689119]
[113]
Janssens K, Maheshwari A, Van den Haute C, et al. Oncostatin M protects against demyelination by inducing a protective microglial phenotype. Glia 2015; 63(10): 1729-37.
[http://dx.doi.org/10.1002/glia.22840] [PMID: 25921393]
[114]
Deerhake ME, Danzaki K, Inoue M, et al. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 2021; 54(3): 484-498.e8.
[http://dx.doi.org/10.1016/j.immuni.2021.01.004] [PMID: 33581044]
[115]
Sanchez AL, Langdon CM, Akhtar M, et al. Adenoviral transfer of the murine oncostatin M gene suppresses dextran-sodium sulfate-induced colitis. J Interferon Cytokine Res 2003; 23(4): 193-201.
[http://dx.doi.org/10.1089/107999003765027393] [PMID: 12856331]
[116]
Kim WM, Kaser A, Blumberg RS. A role for oncostatin M in inflammatory bowel disease. Nat Med 2017; 23(5): 535-6.
[http://dx.doi.org/10.1038/nm.4338] [PMID: 28475567]
[117]
Takata F, Sumi N, Nishioku T, et al. Oncostatin M induces functional and structural impairment of blood-brain barriers comprised of rat brain capillary endothelial cells. Neurosci Lett 2008; 441(2): 163-6.
[http://dx.doi.org/10.1016/j.neulet.2008.06.030] [PMID: 18603369]
[118]
Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res 2018; 371(2): 322-9.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.022] [PMID: 30142324]
[119]
Weissman S, Sinh P, Mehta TI, et al. Atherosclerotic cardiovascular disease in inflammatory bowel disease: The role of chronic inflammation. World J Gastrointest Pathophysiol 2020; 11(5): 104-13.
[http://dx.doi.org/10.4291/wjgp.v11.i5.104] [PMID: 32832194]
[120]
Sanjadi M, Rezvanie Sichanie Z, Totonchi H, Karami J, Rezaei R, Aslani S. Atherosclerosis and autoimmunity: A growing relationship. Int J Rheum Dis 2018; 21(5): 908-21.
[http://dx.doi.org/10.1111/1756-185X.13309] [PMID: 29671956]
[121]
Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M in hematopoietic organs. Dev Dyn 2002; 225(3): 327-31.
[http://dx.doi.org/10.1002/dvdy.10156] [PMID: 12412016]
[122]
Sato F, Miyaoka Y, Miyajima A, Tanaka M. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis. PLoS One 2014; 9(12): e116209.
[http://dx.doi.org/10.1371/journal.pone.0116209] [PMID: 25551451]
[123]
Okaya A, Kitanaka J, Kitanaka N, et al. Oncostatin M inhibits proliferation of rat oval cells, OC15-5, inducing differentiation into hepatocytes. Am J Pathol 2005; 166(3): 709-19.
[http://dx.doi.org/10.1016/S0002-9440(10)62292-4] [PMID: 15743783]
[124]
Mukouyama Y, Hara T, Xu M, et al. in vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta-gonad-mesonephros region. Immunity 1998; 8(1): 105-14.
[http://dx.doi.org/10.1016/S1074-7613(00)80463-X] [PMID: 9462516]
[125]
Miyajima A, Kinoshita T, Tanaka M, Kamiya A, Mukouyama Y, Hara T. Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev 2000; 11(3): 177-83.
[http://dx.doi.org/10.1016/S1359-6101(00)00003-4] [PMID: 10817961]
[126]
Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464(7285): 116-20.
[http://dx.doi.org/10.1038/nature08764] [PMID: 20154729]
[127]
Wallace PM, MacMaster JF, Rillema JR, Peng J, Burstein SA, Shoyab M. Thrombocytopoietic properties of oncostatin M. Blood 1995; 86(4): 1310-5.
[http://dx.doi.org/10.1182/blood.V86.4.1310.bloodjournal8641310] [PMID: 7632937]
[128]
Wallace PM, Macmaster JF, Rillema JR, et al. in vivo properties of oncostatin M. Ann N Y Acad Sci 1995; 762: 42-54.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb32313.x] [PMID: 7545375]
[129]
Kinoshita T, Miyajima A, Nakahata T. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Japanese J Clin Immunol 1998; 21: 215-24.
[130]
Minehata K, Takeuchi M, Hirabayashi Y, et al. Oncostatin m maintains the hematopoietic microenvironment and retains hematopoietic progenitors in the bone marrow. Int J Hematol 2006; 84(4): 319-27.
[http://dx.doi.org/10.1532/IJH97.06090] [PMID: 17118758]
[131]
NCT04138043. Safety, Tolerability, Pharmacokinetics, Pharmacodynamics of GSK2330811 in Healthy Japanese Participants. ClinicalTrialsgov Bethesda (MD): National Library of Medicine (US) 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04138043
[132]
Kong W, Abidi P, Kraemer FB, Jiang JD, Liu J. In vivo activities of cytokine oncostatin m in the regulation of plasma lipid levels. J Lipid Res 2005; 46(6): 1163-71.
[http://dx.doi.org/10.1194/jlr.M400425-JLR200] [PMID: 15772430]
[133]
Zhou Y, Abidi P, Kim A, et al. Transcriptional activation of hepatic ACSL3 and ACSL5 by oncostatin m reduces hypertriglyceridemia through enhanced β-oxidation. Arterioscler Thromb Vasc Biol 2007; 27(10): 2198-205.
[http://dx.doi.org/10.1161/ATVBAHA.107.148429] [PMID: 17761945]
[134]
Turner J, Parsi M, Badireddy M. Anemia. StatPearls. Treasure Island, FL: StatPearls Publishing 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499994/
[135]
Jankowsky JL, Patterson PH. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 1999; 159(2): 333-46.
[http://dx.doi.org/10.1006/exnr.1999.7137] [PMID: 10506506]
[136]
Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: Comparison with neuronal degeneration and microglial activation. Neuroscience 2003; 122(2): 329-48.
[http://dx.doi.org/10.1016/S0306-4522(03)00593-1] [PMID: 14614900]
[137]
Ensoli F, Fiorelli V, Lugaresi A, et al. Lymphomononuclear cells from multiple sclerosis patients spontaneously produce high levels of oncostatin M, tumor necrosis factors α and β and interferon γ. Mult Scler 2002; 8(4): 284-8.
[http://dx.doi.org/10.1191/1352458502ms817oa] [PMID: 12166497]
[138]
Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M receptor β in a specific subset of nociceptive sensory neurons. Eur J Neurosci 2003; 17(11): 2287-98.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02681.x] [PMID: 12814362]
[139]
Morikawa Y, Tamura S, Minehata K, Donovan PJ, Miyajima A, Senba E. Essential function of oncostatin m in nociceptive neurons of dorsal root ganglia. J Neurosci 2004; 24(8): 1941-7.
[http://dx.doi.org/10.1523/JNEUROSCI.4975-03.2004] [PMID: 14985435]
[140]
Morikawa Y. Oncostatin M in the development of the nervous system. Anat Sci Int 2005; 80(1): 53-9.
[http://dx.doi.org/10.1111/j.1447-073x.2005.00100.x] [PMID: 15794131]
[141]
Langeslag M, Constantin CE, Andratsch M, Quarta S, Mair N, Kress M. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons. Mol Pain 2011; 7(1): 102.
[http://dx.doi.org/10.1186/1744-8069-7-102] [PMID: 22196363]
[142]
Ito Y, Yamamoto M, Li M, et al. Temporal expression of mRNAs for neuropoietic cytokines, interleukin-11 (IL-11), oncostatin M (OSM), cardiotrophin-1 (CT-1) and their receptors (IL-11Ralpha and OSMRbeta) in peripheral nerve injury. Neurochem Res 2000; 25(8): 1113-8.
[http://dx.doi.org/10.1023/A:1007674113440] [PMID: 11055749]
[143]
Slaets H, Nelissen S, Janssens K, et al. Oncostatin M reduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury. Mol Neurobiol 2014; 50(3): 1142-51.
[http://dx.doi.org/10.1007/s12035-014-8795-5] [PMID: 24996996]
[144]
Weiss TW, Samson AL, Niego B, et al. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006; 20(13): 2369-71.
[http://dx.doi.org/10.1096/fj.06-5850fje] [PMID: 17023520]
[145]
Moidunny S, Dias RB, Wesseling E, et al. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010; 114(6): 1667-77.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06881.x] [PMID: 20598020]
[146]
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol 2014; 115(C): 157-88.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[147]
Peytrignet S, Denton CP, Lunt M, et al. Disability, fatigue, pain and their associates in early diffuse cutaneous systemic sclerosis: The European scleroderma observational study. Rheumatology (Oxford) 2018; 57(2): 370-81.
[http://dx.doi.org/10.1093/rheumatology/kex410] [PMID: 29207002]
[148]
Sousa-Neves J, Cerqueira M, Santos-Faria D, Afonso C, Teixeira F. Neuropathic pain in systemic sclerosis patients: A cross-sectional study. Reumatol Clin 2019; 15(6): e99-e101.
[http://dx.doi.org/10.1016/j.reumae.2017.12.010] [PMID: 29397326]
[149]
NHS UK Treatment - Rheumatoid arthritis 2019. Available from: https://www.nhs.uk/conditions/rheumatoid-arthritis/treatment/
[150]
Henkel J, Gärtner D, Dorn C, et al. Oncostatin M produced in Kupffer cells in response to PGE2: Possible contributor to hepatic insulin resistance and steatosis. Lab Invest 2011; 91(7): 1107-17.
[http://dx.doi.org/10.1038/labinvest.2011.47] [PMID: 21519329]
[151]
Hamada T, Sato A, Hirano T, et al. Oncostatin M gene therapy attenuates liver damage induced by dimethylnitrosamine in rats. Am J Pathol 2007; 171(3): 872-81.
[http://dx.doi.org/10.2353/ajpath.2007.060972] [PMID: 17640959]
[152]
Nakamura K, Nonaka H, Saito H, Tanaka M, Miyajima A. Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice. Hepatology 2004; 39(3): 635-44.
[http://dx.doi.org/10.1002/hep.20086] [PMID: 14999682]
[153]
Lázaro CA, Croager EJ, Mitchell C, et al. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 2003; 38(5): 1095-106.
[http://dx.doi.org/10.1053/jhep.2003.50448] [PMID: 14578848]
[154]
Kamiya A, Kinoshita T, Ito Y, et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 1999; 18(8): 2127-36.
[http://dx.doi.org/10.1093/emboj/18.8.2127] [PMID: 10205167]
[155]
Lu Q, Shen H, Yu H, et al. F4/80+ kupffer cell-derived oncostatin m sustains the progression phase of liver regeneration through inhibition of tgf-β2 pathway. Molecules 2021; 26(8): 2231.
[http://dx.doi.org/10.3390/molecules26082231] [PMID: 33924385]
[156]
Matsuda R, Yamamichi N, Shimamoto T, et al. Gastroesophageal reflux disease-related disorders of systemic sclerosis based on the analysis of 66 patients. Digestion 2018; 98(4): 201-8.
[http://dx.doi.org/10.1159/000489848] [PMID: 30045036]
[157]
Ostovaneh MR, Ambale-Venkatesh B, Fuji T, et al. Association of liver fibrosis with cardiovascular diseases in the general population: The multi-ethnic study of atherosclerosis (MESA). Circ Cardiovasc Imaging 2018; 11(3): e007241.
[http://dx.doi.org/10.1161/CIRCIMAGING.117.007241] [PMID: 29523555]
[158]
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017; 8(1): 126-36.
[http://dx.doi.org/10.3945/an.116.013961] [PMID: 28096133]
[159]
Kanda J, Uchiyama T, Tomosugi N, Higuchi M, Uchiyama T, Kawabata H. Oncostatin M and leukemia inhibitory factor increase hepcidin expression in hepatoma cell lines. Int J Hematol 2009; 90(5): 545-52.
[http://dx.doi.org/10.1007/s12185-009-0443-x] [PMID: 19915946]
[160]
Chung B, Verdier F, Matak P, Deschemin JC, Mayeux P, Vaulont S. Oncostatin M is a potent inducer of hepcidin, the iron regulatory hormone. FASEB J 2010; 24(6): 2093-103.
[http://dx.doi.org/10.1096/fj.09-152561] [PMID: 20124431]
[161]
Andrews NC. Anemia of inflammation: The cytokine-hepcidin link. J Clin Invest 2004; 113(9): 1251-3.
[http://dx.doi.org/10.1172/JCI21441] [PMID: 15124013]
[162]
Kraml P. The role of iron in the pathogenesis of atherosclerosis. Physiol Res 2017; 66 (Suppl. 1): S55-67.
[http://dx.doi.org/10.33549/physiolres.933589] [PMID: 28379030]
[163]
Dabbagh AJ, Shwaery GT, Keaney JF Jr, Frei B. Effect of iron overload and iron deficiency on atherosclerosis in the hypercholesterolemic rabbit. Arterioscler Thromb Vasc Biol 1997; 17(11): 2638-45.
[http://dx.doi.org/10.1161/01.ATV.17.11.2638] [PMID: 9409237]
[164]
Sanchez-Infantes D, Stephens JM. Adipocyte oncostatin receptor regulates adipose tissue homeostasis and inflammation. Front Immunol 2021; 11: 612013.
[http://dx.doi.org/10.3389/fimmu.2020.612013] [PMID: 33854494]
[165]
Liu J, Grove RI, Vestal RE. Oncostatin M activates low density lipoprotein receptor gene transcription in sterol-repressed liver cells. Cell Growth Differ 1994; 5(12): 1333-8.
[PMID: 7696181]
[166]
Grove RI, Mazzucco CE, Radka SF, Shoyab M, Kiener PA. Oncostatin M up-regulates low density lipoprotein receptors in HepG2 cells by a novel mechanism. J Biol Chem 1991; 266(27): 18194-9.
[http://dx.doi.org/10.1016/S0021-9258(18)55254-6] [PMID: 1655740]
[167]
Miyaoka Y, Tanaka M, Naiki T, Miyajima A. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. J Biol Chem 2006; 281(49): 37913-20.
[http://dx.doi.org/10.1074/jbc.M606089200] [PMID: 17028188]
[168]
White UA, Stewart WC, Mynatt RL, Stephens JM. Neuropoietin attenuates adipogenesis and induces insulin resistance in adipocytes. J Biol Chem 2008; 283(33): 22505-12.
[http://dx.doi.org/10.1074/jbc.M710462200] [PMID: 18562323]
[169]
Song HY, Jeon ES, Kim JI, Jung JS, Kim JH. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 2007; 101(5): 1238-51.
[http://dx.doi.org/10.1002/jcb.21245] [PMID: 17226768]
[170]
Nawa K, Ikeno H, Matsuhashi N, Ogasawara T, Otsuka E. Discovering small molecules that inhibit adipogenesis and promote osteoblastogenesis: Unique screening and Oncostatin M-like activity. Differentiation 2013; 86(1-2): 65-74.
[http://dx.doi.org/10.1016/j.diff.2013.07.005] [PMID: 23995451]
[171]
Komori T, Tanaka M, Furuta H, Akamizu T, Miyajima A, Morikawa Y. Oncostatin M is a potential agent for the treatment of obesity and related metabolic disorders: A study in mice. Diabetologia 2015; 58(8): 1868-76.
[http://dx.doi.org/10.1007/s00125-015-3613-9] [PMID: 25972231]
[172]
Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y. Deficiency of oncostatin M receptor β (OSMRβ) exacerbates high-fat diet-induced obesity and related metabolic disorders in mice. J Biol Chem 2014; 289(20): 13821-37.
[http://dx.doi.org/10.1074/jbc.M113.542399] [PMID: 24695736]
[173]
Elks CM, Zhao P, Grant RW, et al. Loss of oncostatin M signaling in adipocytes induces insulin resistance and adipose tissue inflammation in vivo. J Biol Chem 2016; 291(33): 17066-76.
[http://dx.doi.org/10.1074/jbc.M116.739110] [PMID: 27325693]
[174]
Obtaining and loading phenotype annotations from the international mouse phenotyping consortium (IMPC) database. Mouse Genome Informatics website 2014. Available from: http://www.informatics.jax.org/reference/J:211773
[175]
Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y. Lack of oncostatin M receptor β leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J Biol Chem 2013; 288(30): 21861-75.
[http://dx.doi.org/10.1074/jbc.M113.461905] [PMID: 23760275]
[176]
Stephens JM, Bailey JL, Hang H, et al. Adipose tissue dysfunction occurs independently of obesity in adipocyte-specific oncostatin receptor knockout mice. Obesity (Silver Spring) 2018; 26(9): 1439-47.
[http://dx.doi.org/10.1002/oby.22254] [PMID: 30226002]
[177]
Luo P, Wang PX, Li ZZ, et al. Hepatic oncostatin M receptor β regulates obesity-induced steatosis and insulin resistance. Am J Pathol 2016; 186(5): 1278-92.
[http://dx.doi.org/10.1016/j.ajpath.2015.12.028] [PMID: 26976243]
[178]
Mellinger JL, Pencina KM, Massaro JM, et al. Hepatic steatosis and cardiovascular disease outcomes: An analysis of the Framingham heart study. J Hepatol 2015; 63(2): 470-6.
[http://dx.doi.org/10.1016/j.jhep.2015.02.045] [PMID: 25776891]
[179]
Reardon CA, Lingaraju A, Schoenfelt KQ, et al. Obesity and insulin resistance promote atherosclerosis through an IFNg-regulated macrophage protein network. Cell Rep 2018; 23(10): 3021-30.
[http://dx.doi.org/10.1016/j.celrep.2018.05.010] [PMID: 29874587]
[180]
Pollack V, Sarközi R, Banki Z, Feifel E, Wehn S, Gstraunthaler G, et al. Oncostatin M-induced effects on EMT in human proximal tubular cells: Differential role of ERK signaling. Am J Physiol -. Ren Physiol 2007; 293(5): 1714-26.
[http://dx.doi.org/10.1152/ajprenal.00130.2007]
[181]
Sarközi R, Flucher K, Haller VM, Pirklbauer M, Mayer G, Schramek H. Oncostatin M inhibits TGF-β1-induced CTGF expression via STAT3 in human proximal tubular cells. Biochem Biophys Res Commun 2012; 424(4): 801-6.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.042] [PMID: 22814105]
[182]
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, et al. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244(2): 227-41.
[http://dx.doi.org/10.1002/path.5007] [PMID: 29160908]
[183]
Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38(1): 14.
[http://dx.doi.org/10.1186/s41232-018-0070-0] [PMID: 30123390]
[184]
Liu Q, Du Y, Li K, et al. Anti-OSM antibody inhibits tubulointerstitial lesion in a murine model of lupus nephritis. Mediators Inflamm 2017; 2017: 3038514.
[http://dx.doi.org/10.1155/2017/3038514] [PMID: 28626343]
[185]
Weinstein JR, Anderson S. The aging kidney: Physiological changes. Adv Chronic Kidney Dis 2010; 17: 302-7.
[http://dx.doi.org/10.1053/j.ackd.2010.05.002]
[186]
Bachetti T, Rosamilia F, Bartolucci M, et al. The osmr gene is involved in hirschsprung associated enterocolitis susceptibility through an altered downstream signaling. Int J Mol Sci 2021; 22(8): 3831.
[http://dx.doi.org/10.3390/ijms22083831] [PMID: 33917126]
[187]
Vossenkamper A, Foster K, Nevin K, Tannahill G, Flint S, McDonald TT. DOP18 OSM neutralisation in IBD mucosal explant cultures reduces pro-inflammatory cytokine production. J Crohn’s Colitis 2019; 13 (Suppl. 1): S037.
[188]
McFarlane IM, Bhamra MS, Kreps A, et al. Gastrointestinal manifestations of systemic sclerosis. Rheumatol Curr Res 2018; 8(1): 1-15.
[http://dx.doi.org/10.4172/2161-1149.1000235]
[189]
Goren I, Kämpfer H, Müller E, Schiefelbein D, Pfeilschifter J, Frank S. Oncostatin M expression is functionally connected to neutrophils in the early inflammatory phase of skin repair: Implications for normal and diabetes-impaired wounds. J Invest Dermatol 2006; 126(3): 628-37.
[http://dx.doi.org/10.1038/sj.jid.5700136] [PMID: 16410783]
[190]
Ganesh K, Das A, Dickerson R, et al. Prostaglandin E2 induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol 2012; 189(5): 2563-73.
[http://dx.doi.org/10.4049/jimmunol.1102762] [PMID: 22844123]
[191]
Duncan MR, Hasan A, Berman B. Oncostatin M stimulates collagen and glycosaminoglycan production by cultured normal dermal fibroblasts: Insensitivity of sclerodermal and keloidal fibroblasts. J Invest Dermatol 1995; 104(1): 128-33.
[http://dx.doi.org/10.1111/1523-1747.ep12613623] [PMID: 7798630]
[192]
Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 2011; 3(4): a005124.
[http://dx.doi.org/10.1101/cshperspect.a005124] [PMID: 21441589]
[193]
Rabeony H, Petit-Paris I, Garnier J, et al. Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1α TNFα and oncostatin M. PLoS One 2014; 9(7): e101937.
[http://dx.doi.org/10.1371/journal.pone.0101937] [PMID: 25010647]
[194]
Gazel A, Rosdy M, Bertino B, Tornier C, Sahuc F, Blumenberg M. A characteristic subset of psoriasis-associated genes is induced by oncostatin-M in reconstituted epidermis. J Invest Dermatol 2006; 126(12): 2647-57.
[http://dx.doi.org/10.1038/sj.jid.5700461] [PMID: 16917497]
[195]
Pohin M, Guesdon W, Mekouo AAT, et al. Oncostatin M overexpression induces skin inflammation but is not required in the mouse model of imiquimod-induced psoriasis-like inflammation. Eur J Immunol 2016; 46(7): 1737-51.
[http://dx.doi.org/10.1002/eji.201546216] [PMID: 27122058]
[196]
Luo XY, Liu Q, Yang H, et al. OSMR gene effect on the pathogenesis of chronic autoimmune Urticaria via the JAK/STAT3 pathway. Mol Med 2018; 24(1): 28.
[http://dx.doi.org/10.1186/s10020-018-0025-6] [PMID: 30134804]
[197]
Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol 2018; 27(4): 327-31.
[http://dx.doi.org/10.1111/exd.13533] [PMID: 29524262]
[198]
Arita K, South AP, Hans-Filho G, et al. Oncostatin M receptor-β mutations underlie familial primary localized cutaneous amyloidosis. Am J Hum Genet 2008; 82(1): 73-80.
[http://dx.doi.org/10.1016/j.ajhg.2007.09.002] [PMID: 18179886]
[199]
Lin MW, Lee DD, Liu TT, et al. Novel IL31RA gene mutation and ancestral OSMR mutant allele in familial primary cutaneous amyloidosis. Eur J Hum Genet 2010; 18(1): 26-32.
[http://dx.doi.org/10.1038/ejhg.2009.135] [PMID: 19690585]
[200]
Krieg T, Takehara K. Skin disease: A cardinal feature of systemic sclerosis. Rheumatology (Oxford) 2008; 2009(48) (Suppl. 3): 14-8.
[PMID: 19487217]
[201]
Richards CD, Botelho F. Oncostatin M in the regulation of connective tissue cells and macrophages in pulmonary disease. Biomedicines 2019; 7(4): E95.
[http://dx.doi.org/10.3390/biomedicines7040095] [PMID: 31817403]
[202]
Pothoven KL, Schleimer RP. The barrier hypothesis and oncostatin M: Restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 2017; 5(3): e1341367.
[http://dx.doi.org/10.1080/21688370.2017.1341367] [PMID: 28665760]
[203]
Dubey A, Izakelian L, Ayaub EA, et al. Separate roles of IL-6 and oncostatin M in mouse macrophage polarization in vitro and in vivo. Immunol Cell Biol 2018; 96(3): 257-72.
[http://dx.doi.org/10.1111/imcb.1035] [PMID: 29363180]
[204]
Wong S, Botelho FM, Rodrigues RM, Richards CD. Oncostatin M overexpression induces matrix deposition, STAT3 activation, and SMAD1 dysregulation in lungs of fibrosis-resistant BALB/c mice. Lab Invest 2014; 94(9): 1003-16.
[http://dx.doi.org/10.1038/labinvest.2014.81] [PMID: 24933422]
[205]
Miller M, Beppu A, Rosenthal P, et al. Fstl1 promotes asthmatic airway remodeling by inducing oncostatin M. J Immunol 2015; 195(8): 3546-56.
[http://dx.doi.org/10.4049/jimmunol.1501105] [PMID: 26355153]
[206]
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75(13): 2339-54.
[http://dx.doi.org/10.1007/s00018-018-2805-0] [PMID: 29594389]
[207]
Liu Y, Liu T, Wu J, Li T, Jiao X, Zhang H, et al. The correlation between FSTL1 expression and airway remodeling in asthmatics. Mediators Inflamm 2017; 2017: 7918472.
[http://dx.doi.org/10.1155/2017/7918472]
[208]
De Miguel MP, Regadera J, Martinez-Garcia F, Nistal M, Paniagua R. Oncostatin M in the normal human testis and several testicular disorders. J Clin Endocrinol Metab 1999; 84(2): 768-74.
[http://dx.doi.org/10.1210/jc.84.2.768] [PMID: 10022451]
[209]
de Miguel MP, de Boer-Brouwer M, de Rooij DG, Paniagua R, van Dissel-Emiliani FMF. Ontogeny and localization of an oncostatin M-like protein in the rat testis: Its possible role at the start of spermatogenesis. Cell Growth Differ 1997; 8(5): 611-8.
[PMID: 9149912]
[210]
Teerds KJ, van Dissel-Emiliani FMF, De Miguel MP, de Boer-Brouwer M, Körting LM, Rijntjes E. Oncostatin-M inhibits luteinizing hormone stimulated Leydig cell progenitor formation in vitro. Reprod Biol Endocrinol 2007; 5: 43.
[http://dx.doi.org/10.1186/1477-7827-5-43] [PMID: 17996055]
[211]
Abir R, Ao A, Jin S, et al. Immunocytochemical detection and reverse transcription polymerase chain reaction expression of oncostatin M (OSM) and its receptor (OSM-Rbeta) in human fetal and adult ovaries. Fertil Steril 2005; 83(4) (Suppl. 1): 1188-96.
[http://dx.doi.org/10.1016/j.fertnstert.2004.10.043] [PMID: 15831292]
[212]
Fu T, Zheng HT, Zhang HY, Chen ZC, Li B, Yang ZM. Oncostatin M expression in the mouse uterus during early pregnancy promotes embryo implantation and decidualization. FEBS Lett 2019; 593(15): 2040-50.
[http://dx.doi.org/10.1002/1873-3468.13468] [PMID: 31155707]
[213]
Ogata I, Shimoya K, Moriyama A, et al. Oncostatin M is produced during pregnancy by decidual cells and stimulates the release of HCG. Mol Hum Reprod 2000; 6(8): 750-7.
[http://dx.doi.org/10.1093/molehr/6.8.750] [PMID: 10908286]
[214]
Nwabuobi C, Arlier S, Schatz F, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA. hCG: Biological functions and clinical applications. Int J Mol Sci 2017; 18(10): 1-15.
[http://dx.doi.org/10.3390/ijms18102037] [PMID: 28937611]
[215]
Keay SD, Vatish M, Karteris E, Hillhouse EW, Randeva HS. The role of hCG in reproductive medicine. BJOG 2004; 111(11): 1218-28.
[http://dx.doi.org/10.1111/j.1471-0528.2004.00412.x] [PMID: 15521866]
[216]
Hara T, Tamura K, de Miguel MP, et al. Distinct roles of oncostatin M and leukemia inhibitory factor in the development of primordial germ cells and sertoli cells in mice. Dev Biol 1998; 201(2): 144-53.
[http://dx.doi.org/10.1006/dbio.1998.8990] [PMID: 9740655]
[217]
Wang Y, Xie L, Tian E, et al. Oncostatin M inhibits differentiation of rat stem Leydig cells in vivo and in vitro. J Cell Mol Med 2019; 23(1): 426-38.
[http://dx.doi.org/10.1111/jcmm.13946] [PMID: 30320465]
[218]
Sharpe RM, Maddocks S, Kerr JB. Cell-cell interactions in the control of spermatogenesis as studied using Leydig cell destruction and testosterone replacement. Am J Anat 1990; 188(1): 3-20.
[http://dx.doi.org/10.1002/aja.1001880103] [PMID: 2161173]
[219]
Alenghat FJ. The prevalence of atherosclerosis in those with inflammatory connective tissue disease by race, age, and traditional risk factors. Sci Rep 2016; 6: 20303.
[http://dx.doi.org/10.1038/srep20303] [PMID: 26842423]
[220]
Kim H, Kim S, Han S, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health 2019; 19(1): 1112.
[http://dx.doi.org/10.1186/s12889-019-7439-0] [PMID: 31412823]
[221]
Echevarria F, Walker C, Abella S, Won M, Sappington R. Stressor-dependent alterations in glycoprotein 130: Implications for glial cell reactivity, cytokine signaling and ganglion cell health in glaucoma. J Clin Exp Ophthalmol 2013; 4(3): 1000286.
[PMID: 25018894]
[222]
Xia X, Wen R, Chou TH, Li Y, Wang Z, Porciatti V. Protection of pattern electroretinogram and retinal ganglion cells by oncostatin M after optic nerve injury. PLoS One 2014; 9(9): e108524.
[http://dx.doi.org/10.1371/journal.pone.0108524] [PMID: 25243471]
[223]
Xia X, Li Y, Huang D, et al. Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration. PLoS One 2011; 6(3): e18282.
[http://dx.doi.org/10.1371/journal.pone.0018282] [PMID: 21479182]
[224]
Yang JY, Lu B, Feng Q, et al. Retinal protection by sustained nanoparticle delivery of oncostatin m and ciliary neurotrophic factor into rodent models of retinal degeneration. Transl Vis Sci Technol 2021; 10(9): 6.
[http://dx.doi.org/10.1167/tvst.10.9.6] [PMID: 34347033]
[225]
Song X, Li P, Li Y, et al. Strong association of glaucoma with atherosclerosis. Sci Rep 2021; 11(1): 8792.
[http://dx.doi.org/10.1038/s41598-021-88322-4] [PMID: 33888852]
[226]
Sampath SC, Sampath SC, Ho ATV, et al. Induction of muscle stem cell quiescence by the secreted niche factor oncostatin M. Nat Commun 2018; 9(1): 1531.
[http://dx.doi.org/10.1038/s41467-018-03876-8] [PMID: 29670077]
[227]
Xiao F, Wang H, Fu X, et al. Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration. Cell Res 2011; 21(2): 350-64.
[http://dx.doi.org/10.1038/cr.2010.144] [PMID: 20956996]
[228]
Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 2011; 301(3): E504-10.
[http://dx.doi.org/10.1152/ajpendo.00520.2010] [PMID: 21653222]
[229]
Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α myokines and exercise. Bone 2015; 80: 115-25.
[http://dx.doi.org/10.1016/j.bone.2015.02.008] [PMID: 26453501]
[230]
Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 2016; 79: 14-23.
[http://dx.doi.org/10.1016/j.biocel.2016.08.003] [PMID: 27497989]
[231]
Kim H, Jo C, Jang BG, Oh U, Jo SA. Oncostatin M induces growth arrest of skeletal muscle cells in G1 phase by regulating cyclin D1 protein level. Cell Signal 2008; 20(1): 120-9.
[http://dx.doi.org/10.1016/j.cellsig.2007.09.004] [PMID: 17976956]
[232]
Miki Y, Morioka T, Shioi A, et al. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem Biophys Res Commun 2019; 516(3): 951-6.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.143] [PMID: 31272716]
[233]
Latroche C, Weiss-Gayet M, Muller L, et al. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Reports 2017; 9(6): 2018-33.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.027] [PMID: 29198825]
[234]
NIH. Diffuse cutaneous systemic sclerosis National Center for Advancing Translational Sciences 2017. Available from: https://rarediseases.info.nih.gov/diseases/9751/diffuse-cutaneous-systemic-sclerosis
[235]
Fernandes TJ, Hodge JM, Singh PP, et al. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One 2013; 8(9): e73266.
[http://dx.doi.org/10.1371/journal.pone.0073266] [PMID: 24069182]
[236]
Persson E, Souza PPC, Floriano-Marcelino T, Conaway HH, Henning P, Lerner UH. Activation of Shc1 allows oncostatin M to induce RANKL and osteoclast formation more effectively than leukemia inhibitory factor. Front Immunol 2019; 10: 1164.
[http://dx.doi.org/10.3389/fimmu.2019.01164] [PMID: 31191537]
[237]
Zheng W, Guan J. Oncostatin M promotes the osteogenic differentiation of mouse MC3T3-E1osteoblasts through the regulation of monocyte chemotactic protein-1. Mol Med Rep 2018; 18(3): 2523-30.
[http://dx.doi.org/10.3892/mmr.2018.9261] [PMID: 30015860]
[238]
Johnson RW, Brennan HJ, Vrahnas C, et al. The primary function of gp130 signaling in osteoblasts is to maintain bone formation and strength, rather than promote osteoclast formation. J Bone Miner Res 2014; 29(6): 1492-505.
[http://dx.doi.org/10.1002/jbmr.2159] [PMID: 24339143]
[239]
Torossian F, Guerton B, Anginot A, et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2017; 2(21): 1-22.
[http://dx.doi.org/10.1172/jci.insight.96034] [PMID: 29093266]
[240]
Brady RD, Shultz SR, McDonald SJ, O’Brien TJ. Neurological heterotopic ossification: Current understanding and future directions. Bone 2018; 109: 35-42.
[http://dx.doi.org/10.1016/j.bone.2017.05.015] [PMID: 28526267]
[241]
Carmona-Fernandes D, Barreira SC, Leonardo N, et al. Atherosclerosis and bone loss in humans-results from deceased donors and from patients submitted to carotid endarterectomy. Front Med 2021; 8: 672496.
[http://dx.doi.org/10.3389/fmed.2021.672496] [PMID: 34095177]
[242]
Hui W, Bell M, Carroll G, Oncostatin M, Oncostatin M. (OSM) stimulates resorption and inhibits synthesis of proteoglycan in porcine articular cartilage explants. Cytokine 1996; 8(6): 495-500.
[http://dx.doi.org/10.1006/cyto.1996.0067] [PMID: 8818547]
[243]
Hui W, Rowan AD, Richards CD, Cawston TE. Oncostatin M in combination with tumor necrosis factor α induces cartilage damage and matrix metalloproteinase expression in vitro and in vivo. Arthritis Rheum 2003; 48(12): 3404-18.
[http://dx.doi.org/10.1002/art.11333] [PMID: 14673992]
[244]
Cawston TE, Ellis AJ, Humm G, Lean E, Ward D, Curry V. Interleukin-1 and oncostatin M in combination promote the release of collagen fragments from bovine nasal cartilage in culture. Biochem Biophys Res Commun 1995; 215(1): 377-85.
[http://dx.doi.org/10.1006/bbrc.1995.2476] [PMID: 7575616]
[245]
Barksby HE, Hui W, Wappler I, et al. Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: Implications for cartilage destruction and repair. Arthritis Rheum 2006; 54(2): 540-50.
[http://dx.doi.org/10.1002/art.21574] [PMID: 16447230]
[246]
Koshy PJT, Lundy CJ, Rowan AD, et al. The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: A time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum 2002; 46(4): 961-7.
[http://dx.doi.org/10.1002/art.10212] [PMID: 11953973]
[247]
Li WQ, Dehnade F, Zafarullah M. Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol 2001; 166(5): 3491-8.
[http://dx.doi.org/10.4049/jimmunol.166.5.3491] [PMID: 11207308]
[248]
Fearon U, Mullan R, Markham T, et al. Oncostatin M induces angiogenesis and cartilage degradation in rheumatoid arthritis synovial tissue and human cartilage cocultures. Arthritis Rheum 2006; 54(10): 3152-62.
[http://dx.doi.org/10.1002/art.22161] [PMID: 17009243]
[249]
Sims NA. Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146: 155655.
[http://dx.doi.org/10.1016/j.cyto.2021.155655] [PMID: 34332274]
[250]
Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: Is it all about inflammation? Nat Rev Rheumatol 2015; 11(7): 390-400.
[http://dx.doi.org/10.1038/nrrheum.2015.40] [PMID: 25825281]
[251]
Masjedi A, Hajizadeh F, Beigi Dargani F, et al. Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2021; 90: 107158.
[http://dx.doi.org/10.1016/j.intimp.2020.107158]
[252]
Simonneau M, Frouin E, Huguier V, et al. Oncostatin M is overexpressed in skin squamous-cell carcinoma and promotes tumor progression. Oncotarget 2018; 9(92): 36457-73.
[http://dx.doi.org/10.18632/oncotarget.26355] [PMID: 30559930]
[253]
Tripathi C, Tewari BN, Kanchan RK, et al. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014; 5(14): 5350-68.
[http://dx.doi.org/10.18632/oncotarget.2110] [PMID: 25051364]
[254]
Tawara K, Scott H, Emathinger J, et al. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: Synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget 2019; 10(21): 2068-85.
[http://dx.doi.org/10.18632/oncotarget.26699] [PMID: 31007849]
[255]
Liu J, Hadjokas N, Mosley B, Estrov Z, Spence MJ, Vestal RE. Oncostatin M-specific receptor expression and function in regulating cell proliferation of normal and malignant mammary epithelial cells. Cytokine 1998; 10(4): 295-302.
[http://dx.doi.org/10.1006/cyto.1997.0283] [PMID: 9617575]
[256]
Zarling JM, Shoyab M, Marquardt H, et al. Oncostatin M: A growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 1986; 83(24): 9739-43.
[http://dx.doi.org/10.1073/pnas.83.24.9739] [PMID: 3540948]
[257]
David E, Tirode F, Baud’huin M, et al. Oncostatin M is a growth factor for Ewing sarcoma. Am J Pathol 2012; 181(5): 1782-95.
[http://dx.doi.org/10.1016/j.ajpath.2012.07.023] [PMID: 22982441]
[258]
David E, Guihard P, Brounais B, et al. Direct anti-cancer effect of oncostatin M on chondrosarcoma. Int J Cancer 2011; 128(8): 1822-35.
[http://dx.doi.org/10.1002/ijc.25776] [PMID: 21344373]
[259]
Bolin C, Tawara K, Sutherland C, et al. Oncostatin m promotes mammary tumor metastasis to bone and osteolytic bone degradation. Genes Cancer 2012; 3(2): 117-30.
[http://dx.doi.org/10.1177/1947601912458284] [PMID: 23050044]
[260]
Shrivastava R, Asif M, Singh V, et al. M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis. Cytokine 2019; 118(118): 130-43.
[http://dx.doi.org/10.1016/j.cyto.2018.03.032] [PMID: 29625858]
[261]
Shrivastava R, Singh V, Asif M, Negi MPS, Bhadauria S. Oncostatin M upregulates HIF-1α in breast tumor associated macrophages independent of intracellular oxygen concentration. Life Sci 2018; 194(194): 59-66.
[http://dx.doi.org/10.1016/j.lfs.2017.12.017] [PMID: 29246543]
[262]
Lauber S, Wong S, Cutz JC, et al. Novel function of Oncostatin M as a potent tumour-promoting agent in lung. Int J Cancer 2015; 136(4): 831-43.
[http://dx.doi.org/10.1002/ijc.29055] [PMID: 24976180]
[263]
Simon TA, Thompson A, Gandhi KK, Hochberg MC, Suissa S. Incidence of malignancy in adult patients with rheumatoid arthritis: A meta-analysis. Arthritis Res Ther 2015; 17(1): 212.
[http://dx.doi.org/10.1186/s13075-015-0728-9] [PMID: 26271620]
[264]
Lee H. The risk of malignancy in Korean patients with rheumatoid arthritis. Yonsei Med J 2019; 60(2): 223-9.
[http://dx.doi.org/10.3349/ymj.2019.60.2.223] [PMID: 30666845]
[265]
Eisenberg ME, Sunkureddi PR, Baethge BA, Gonzalez EB, McNearney TA. Unusual Occurrence of renal cell carcinoma (RCC) diagnosed in 2 young hispanic patients with diffuse systemic sclerosis (dSSc). J Clin Rheumatol 2007; 13(6): 363-4.
[http://dx.doi.org/10.1097/RHU.0b013e31815c39c3] [PMID: 18176153]
[266]
Dutta P, Courties G, Wei Y, et al. Myocardial infarction accelerates atherosclerosis. Nature 2012; 487(7407): 325-9.
[http://dx.doi.org/10.1038/nature11260] [PMID: 22763456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy