Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Neurobiology of Dream Activity and Effects of Stimulants on Dream

Author(s): Eric Murillo-Rodríguez*, Astrid Coronado-Álvarez, Luis Angel López-Muciño, José Carlos Pastrana-Trejo, Gerardo Viana-Torre, Juan José Barberena, Daniela Marcia Soriano-Nava and Fabio García-García

Volume 22, Issue 15, 2022

Published on: 01 July, 2022

Page: [1280 - 1295] Pages: 16

DOI: 10.2174/1568026622666220627162032

Price: $65

conference banner
Abstract

The sleep-wake cycle is the result of the activity of multiple neurobiological network interactions. The dreaming feature is one interesting sleep on that represents sensorial components, mostly visual perceptions, accompaniedby intense emotions. Further complexity has been added to the topic of the neurobiological mechanism of dream generation by the current data suggesting drugs' influence on dream generation. Here, we discuss the review of some of the neurobiological mechanisms of the regulation of dream activity, with special emphasis on the effects of stimulants on dreaming.

Keywords: Acetylcholine, Cocaine, Dreaming, Homeostasis, Hypothalamus, Rapid eye movement sleep.

« Previous
Graphical Abstract
[1]
Martin, J.S.; Laberge, L.; Sasseville, A.; Bérubé, M.; Alain, S.; Houle, J.; Hébert, M. Day and night shift schedules are associated with lower sleep quality in Evening-types. Chronobiol. Int., 2015, 32(5), 627-636.
[http://dx.doi.org/10.3109/07420528.2015.1033425] [PMID: 26035480]
[2]
Rod, N.H.; Dissing, A.S.; Clark, A.; Gerds, T.A.; Lund, R. Overnight smartphone use: A new public health challenge? A novel study design based on high-resolution smartphone data. PLoS One, 2018, 13(10), e0204811.
[http://dx.doi.org/10.1371/journal.pone.0204811] [PMID: 30325929]
[3]
Giuntella, O.; Mazzonna, F. Sunset time and the economic effects of social jetlag: Evidence from US time zone borders. J. Health Econ., 2019, 65, 210-226.
[http://dx.doi.org/10.1016/j.jhealeco.2019.03.007] [PMID: 31030116]
[4]
Hulsegge, G.; Loef, B.; van Kerkhof, L.W.; Roenneberg, T.; van der Beek, A.J.; Proper, K.I. Shift work, sleep disturbances and social jetlag in healthcare workers. J. Sleep Res., 2019, 28(4), e12802.
[http://dx.doi.org/10.1111/jsr.12802] [PMID: 30520209]
[5]
Merdad, R.A.; Akil, H.; Wali, S.O. Sleepiness in Adolescents. Sleep Med. Clin., 2017, 12(3), 415-428.
[http://dx.doi.org/10.1016/j.jsmc.2017.03.014] [PMID: 28778239]
[6]
Kolla, B.P.; He, J.P.; Mansukhani, M.P.; Kotagal, S.; Frye, M.A.; Merikangas, K.R. Prevalence and correlates of hypersomnolence symp-toms in US teens. J. Am. Acad. Child Adolesc. Psychiatry, 2019, 58(7), 712-720.
[http://dx.doi.org/10.1016/j.jaac.2018.09.435] [PMID: 30768408]
[7]
Chanchlani, N. Health consequences of shift work and insufficient sleep. BMJ, 2017, 356, i6599.
[http://dx.doi.org/10.1136/sbmj.i6599] [PMID: 31055304]
[8]
Bogan, R.K. Getting serious about excessive sleepiness. Sleep Health, 2019, 5(4), 319.
[http://dx.doi.org/10.1016/j.sleh.2019.07.005] [PMID: 31400881]
[9]
Hartse, K.M. The phylogeny of sleep. Handb. Clin. Neurol., 2011, 98, 97-109.
[http://dx.doi.org/10.1016/B978-0-444-52006-7.00007-1] [PMID: 21056182]
[10]
Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol., 2018, 63(1), 69-86.
[http://dx.doi.org/10.1146/annurev-ento-020117-043201] [PMID: 28938081]
[11]
Lesku, J.A.; Ly, L.M.T. Sleep origins: Restful jellyfish are sleeping jellyfish. Curr. Biol., 2017, 27(19), R1060-R1062.
[http://dx.doi.org/10.1016/j.cub.2017.08.024] [PMID: 29017039]
[12]
Miyazaki, S.; Liu, C.Y.; Hayashi, Y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neurosci. Res., 2017, 118, 3-12.
[http://dx.doi.org/10.1016/j.neures.2017.04.017] [PMID: 28501499]
[13]
Anafi, R.C.; Kayser, M.S.; Raizen, D.M. Exploring phylogeny to find the function of sleep. Nat. Rev. Neurosci., 2019, 20(2), 109-116.
[http://dx.doi.org/10.1038/s41583-018-0098-9] [PMID: 30573905]
[14]
Khoury, J.; Doghramji, K. Primary sleep disorders. Psychiatr. Clin. North Am., 2015, 38(4), 683-704.
[http://dx.doi.org/10.1016/j.psc.2015.08.002] [PMID: 26600103]
[15]
Eban-Rothschild, A.; Appelbaum, L.; de Lecea, L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology, 2018, 43(5), 937-952.
[http://dx.doi.org/10.1038/npp.2017.294] [PMID: 29206811]
[16]
Gent, T.C.; Bassetti, C.; Adamantidis, A.R. Sleep-wake control and the thalamus. Curr. Opin. Neurobiol., 2018, 52, 188-197.
[http://dx.doi.org/10.1016/j.conb.2018.08.002] [PMID: 30144746]
[17]
Moruzzi, G.; Magoun, H.W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol., 1949, 1(4), 455-473.
[http://dx.doi.org/10.1016/0013-4694(49)90219-9] [PMID: 18421835]
[18]
Jones, B.E. Arousal and sleep circuits. Neuropsychopharmacology, 2020, 45(1), 6-20.
[http://dx.doi.org/10.1038/s41386-019-0444-2] [PMID: 31216564]
[19]
Jones, B.E.; Yang, T.Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retro-grade axonal transport in the rat. J. Comp. Neurol., 1985, 242(1), 56-92.
[http://dx.doi.org/10.1002/cne.902420105] [PMID: 2416786]
[20]
Ford, B.; Holmes, C.J.; Mainville, L.; Jones, B.E. GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J. Comp. Neurol., 1995, 363(2), 177-196.
[http://dx.doi.org/10.1002/cne.903630203] [PMID: 8642069]
[21]
Steriade, M.; Oakson, G.; Ropert, N. Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp. Brain Res., 1982, 46(1), 37-51.
[http://dx.doi.org/10.1007/BF00238096] [PMID: 7067790]
[22]
McLean, S.; Rothman, R.B.; Herkenham, M. Autoradiographic localization of mu- and delta-opiate receptors in the forebrain of the rat. Brain Res., 1986, 378(1), 49-60.
[http://dx.doi.org/10.1016/0006-8993(86)90285-4] [PMID: 3017503]
[23]
Starzl, T.E.; Magoun, H.W. Organization of the diffuse thalamic projection system. J. Neurophysiol., 1951, 14(2), 133-146.
[http://dx.doi.org/10.1152/jn.1951.14.2.133] [PMID: 14814573]
[24]
Steriade, M.; Morin, D. Reticular influences on primary and augmenting responses in the somatosensory cortex. Brain Res., 1981, 205(1), 67-80.
[http://dx.doi.org/10.1016/0006-8993(81)90720-4] [PMID: 6258711]
[25]
Gritti, I.; Mainville, L.; Mancia, M.; Jones, B.E. GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J. Comp. Neurol., 1997, 383(2), 163-177.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970630)383:2<163:AID-CNE4>3.0.CO;2-Z] [PMID: 9182846]
[26]
Buzsaki, G.; Bickford, R.G.; Ponomareff, G.; Thal, L.J.; Mandel, R.; Gage, F.H. Nucleus basalis and thalamic control of neocortical activ-ity in the freely moving rat. J. Neurosci., 1988, 8(11), 4007-4026.
[http://dx.doi.org/10.1523/JNEUROSCI.08-11-04007.1988] [PMID: 3183710]
[27]
Fuller, P.M.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol., 2011, 519(5), 933-956.
[http://dx.doi.org/10.1002/cne.22559] [PMID: 21280045]
[28]
Vanderwolf, C.H.; Stewart, D.J. Thalamic control of neocortical activation: A critical re-evaluation. Brain Res. Bull., 1988, 20(4), 529-538.
[http://dx.doi.org/10.1016/0361-9230(88)90143-8] [PMID: 3395864]
[29]
de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., II; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 322-327.
[http://dx.doi.org/10.1073/pnas.95.1.322] [PMID: 9419374]
[30]
Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wil-son, S.; Arch, J.R.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92(4), 573-585.
[http://dx.doi.org/10.1016/S0092-8674(00)80949-6] [PMID: 9491897]
[31]
Peyron, C.; Faraco, J.; Rogers, W.; Ripley, B.; Overeem, S.; Charnay, Y.; Nevsimalova, S.; Aldrich, M.; Reynolds, D.; Albin, R.; Li, R.; Hungs, M.; Pedrazzoli, M.; Padigaru, M.; Kucherlapati, M.; Fan, J.; Maki, R.; Lammers, G.J.; Bouras, C.; Kucherlapati, R.; Nishino, S.; Mignot, E. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med., 2000, 6(9), 991-997.
[http://dx.doi.org/10.1038/79690] [PMID: 10973318]
[32]
Li, S.B.; de Lecea, L. The hypocretin (orexin) system: From a neural circuitry perspective. Neuropharmacology, 2020, 167, 107993.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107993] [PMID: 32135427]
[33]
Sakurai, T.; Nagata, R.; Yamanaka, A.; Kawamura, H.; Tsujino, N.; Muraki, Y.; Kageyama, H.; Kunita, S.; Takahashi, S.; Goto, K.; Ko-yama, Y.; Shioda, S.; Yanagisawa, M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 2005, 46(2), 297-308.
[http://dx.doi.org/10.1016/j.neuron.2005.03.010] [PMID: 15848807]
[34]
Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons containing hypocretin (orex-in) project to multiple neuronal systems. J. Neurosci., 1998, 18(23), 9996-10015.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09996.1998] [PMID: 9822755]
[35]
Carter, M.E.; Brill, J.; Bonnavion, P.; Huguenard, J.R.; Huerta, R.; de Lecea, L. Mechanism for Hypocretin-mediated sleep-to-wake tran-sitions. Proc. Natl. Acad. Sci. USA, 2012, 109(39), E2635-E2644.
[http://dx.doi.org/10.1073/pnas.1202526109] [PMID: 22955882]
[36]
Henny, P.; Brischoux, F.; Mainville, L.; Stroh, T.; Jones, B.E. Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus. Neuroscience, 2010, 169(3), 1150-1157.
[http://dx.doi.org/10.1016/j.neuroscience.2010.06.003] [PMID: 20540992]
[37]
Sears, R.M.; Fink, A.E.; Wigestrand, M.B.; Farb, C.R.; de Lecea, L.; Ledoux, J.E. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20260-20265.
[http://dx.doi.org/10.1073/pnas.1320325110] [PMID: 24277819]
[38]
Aston-Jones, G.; Bloom, F.E. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci., 1981, 1(8), 887-900.
[http://dx.doi.org/10.1523/JNEUROSCI.01-08-00887.1981] [PMID: 7346593]
[39]
Takahashi, K.; Kayama, Y.; Lin, J.S.; Sakai, K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience, 2010, 169(3), 1115-1126.
[http://dx.doi.org/10.1016/j.neuroscience.2010.06.009] [PMID: 20542093]
[40]
Vittoz, N.M.; Schmeichel, B.; Berridge, C.W. Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur. J. Neurosci., 2008, 28(8), 1629-1640.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06453.x] [PMID: 18973582]
[41]
Vittoz, N.M.; Berridge, C.W. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: Involvement of the ventral tegmental area. Neuropsychopharmacology, 2006, 31(2), 384-395.
[http://dx.doi.org/10.1038/sj.npp.1300807] [PMID: 15988471]
[42]
García-García, F.; Priego-Fernández, S.; López-Muciño, L.A.; Acosta-Hernández, M.E.; Peña-Escudero, C. Increased alcohol consump-tion in sleep-restricted rats is mediated by delta FosB induction. Alcohol, 2021, 93, 63-70.
[http://dx.doi.org/10.1016/j.alcohol.2021.02.004] [PMID: 33662520]
[43]
Pignatelli, M.; Bonci, A. Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 2015, 86(5), 1145-1157.
[http://dx.doi.org/10.1016/j.neuron.2015.04.015] [PMID: 26050034]
[44]
Perrey, D.A.; Zhang, Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res., 2020, 1731, 145922.
[http://dx.doi.org/10.1016/j.brainres.2018.08.025] [PMID: 30148984]
[45]
Szymusiak, R.; McGinty, D. Hypothalamic regulation of sleep and arousal. Ann. N. Y. Acad. Sci., 2008, 1129(1), 275-286.
[http://dx.doi.org/10.1196/annals.1417.027] [PMID: 18591488]
[46]
Uschakov, A.; Gong, H.; McGinty, D.; Szymusiak, R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience, 2007, 150(1), 104-120.
[http://dx.doi.org/10.1016/j.neuroscience.2007.05.055] [PMID: 17928156]
[47]
Lu, J.; Greco, M.A.; Shiromani, P.; Saper, C.B. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci., 2000, 20(10), 3830-3842.
[http://dx.doi.org/10.1523/JNEUROSCI.20-10-03830.2000] [PMID: 10804223]
[48]
Gong, H.; Szymusiak, R.; King, J.; Steininger, T.; McGinty, D. Sleep-related c-Fos protein expression in the preoptic hypothalamus: Ef-fects of ambient warming. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(6), R2079-R2088.
[http://dx.doi.org/10.1152/ajpregu.2000.279.6.R2079] [PMID: 11080072]
[49]
Xie, J.F.; Fan, K.; Wang, C.; Xie, P.; Hou, M.; Xin, L.; Cui, G.F.; Wang, L.X.; Shao, Y.F.; Hou, Y.P. Inactivation of the tuberomammillary nucleus by GABAA receptor agonist promotes slow wave sleep in freely moving rats and histamine-treated rats. Neurochem. Res., 2017, 42(8), 2314-2325.
[http://dx.doi.org/10.1007/s11064-017-2247-3] [PMID: 28365867]
[50]
Suntsova, N.; Guzman-Marin, R.; Kumar, S.; Alam, M.N.; Szymusiak, R.; McGinty, D. The median preoptic nucleus reciprocally modu-lates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J. Neurosci., 2007, 27(7), 1616-1630.
[http://dx.doi.org/10.1523/JNEUROSCI.3498-06.2007] [PMID: 17301170]
[51]
de Andrés, I.; Garzón, M.; Reinoso-Suárez, F. Functional anatomy of non-REM sleep. Front. Neurol., 2011, 2, 70.
[http://dx.doi.org/10.3389/fneur.2011.00070] [PMID: 22110467]
[52]
Deurveilher, S.; Semba, K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implica-tions for the circadian control of behavioural state. Neuroscience, 2005, 130(1), 165-183.
[http://dx.doi.org/10.1016/j.neuroscience.2004.08.030] [PMID: 15561433]
[53]
Morin, L.P. Neuroanatomy of the extended circadian rhythm system. Exp. Neurol., 2013, 243, 4-20.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.026] [PMID: 22766204]
[54]
Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep state switching. Neuron, 2010, 68(6), 1023-1042.
[http://dx.doi.org/10.1016/j.neuron.2010.11.032] [PMID: 21172606]
[55]
Vujovic, N.; Gooley, J.J.; Jhou, T.C.; Saper, C.B. Projections from the subparaventricular zone define four channels of output from the circadian timing system. J. Comp. Neurol., 2015, 523(18), 2714-2737.
[http://dx.doi.org/10.1002/cne.23812] [PMID: 26010698]
[56]
Lindsley, D.B.; Bowden, J.W.; Magoun, H.W. Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr. Clin. Neurophysiol., 1949, 1(4), 475-486.
[http://dx.doi.org/10.1016/0013-4694(49)90221-7] [PMID: 18421836]
[57]
Golanov, E.V.; Reis, D.J. Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel me-dullary area. Brain Res., 2001, 892(1), 1-12.
[http://dx.doi.org/10.1016/S0006-8993(00)02949-8] [PMID: 11172744]
[58]
Gottesmann, C. Neurophysiological support of consciousness during waking and sleep. Prog. Neurobiol., 1999, 59(5), 469-508.
[http://dx.doi.org/10.1016/S0301-0082(99)00014-3] [PMID: 10515665]
[59]
Aserinsky, E.; Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 1953, 118(3062), 273-274.
[http://dx.doi.org/10.1126/science.118.3062.273]
[60]
Dement, W.; Kleitman, N. The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. J. Exp. Psychol., 1957, 53(5), 339-346.
[http://dx.doi.org/10.1037/h0048189] [PMID: 13428941]
[61]
Jouvet, M.; Michel, F. Corrélations électromyographique du sommeil chez le chat décortiqué et mésencéphalique chronique. C. R. Seances Soc. Biol. Fil., 1959, 153(3), 422-425.
[PMID: 13663472]
[62]
Jouvet, M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Arch. Ital. Biol., 1962, 100, 125-206.
[http://dx.doi.org/10.4449/aib.v100i2.1761] [PMID: 14452612]
[63]
Erickson, K.I.; Hillman, C.; Stillman, C.M. Physical activity, cognition, and brain outcomes: A review of the 2018 physical activity guidelines. Med. Sci. Sports Exercise, 2019, 51(6), 1242-1251.
[http://dx.doi.org/10.1249/MSS.0000000000001936]
[64]
Sapin, E.; Lapray, D.; Bérod, A.; Goutagny, R.; Léger, L.; Ravassard, P.; Clément, O.; Hanriot, L.; Fort, P.; Luppi, P.H. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One, 2009, 4(1), e4272.
[http://dx.doi.org/10.1371/journal.pone.0004272] [PMID: 19169414]
[65]
Sastre, J.P.; Buda, C.; Kitahama, K.; Jouvet, M. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience, 1996, 74(2), 415-426.
[http://dx.doi.org/10.1016/0306-4522(96)00190-X] [PMID: 8865193]
[66]
Kaur, S.; Thankachan, S.; Begum, S.; Liu, M.; Blanco-Centurion, C.; Shiromani, P.J. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One, 2009, 4(7), e6346.
[http://dx.doi.org/10.1371/journal.pone.0006346] [PMID: 19623260]
[67]
Weber, F.; Hoang Do, J.P.; Chung, S.; Beier, K.T.; Bikov, M.; Saffari Doost, M.; Dan, Y. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Nat. Commun., 2018, 9(1), 354.
[http://dx.doi.org/10.1038/s41467-017-02765-w] [PMID: 29367602]
[68]
Verret, L.; Goutagny, R.; Fort, P.; Cagnon, L.; Salvert, D.; Léger, L.; Boissard, R.; Salin, P.; Peyron, C.; Luppi, P.H. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci., 2003, 4(19), 19.
[http://dx.doi.org/10.1186/1471-2202-4-19] [PMID: 12964948]
[69]
Hassani, O.K.; Lee, M.G.; Henny, P.; Jones, B.E. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J. Neurosci., 2009, 29(38), 11828-11840.
[http://dx.doi.org/10.1523/JNEUROSCI.1259-09.2009] [PMID: 19776269]
[70]
Jego, S.; Glasgow, S.D.; Herrera, C.G.; Ekstrand, M.; Reed, S.J.; Boyce, R.; Friedman, J.; Burdakov, D.; Adamantidis, A.R. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci., 2013, 16(11), 1637-1643.
[http://dx.doi.org/10.1038/nn.3522] [PMID: 24056699]
[71]
Luppi, P.H.; Fort, P. Sleep-wake physiology. Handb. Clin. Neurol., 2019, 160, 359-370.
[http://dx.doi.org/10.1016/B978-0-444-64032-1.00023-0] [PMID: 31277860]
[72]
Hobson, J.A.; Pace-Schott, E.F.; Stickgold, R. Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behav. Brain Sci., 2000, 23(6), 793-842.
[http://dx.doi.org/10.1017/S0140525X00003976] [PMID: 11515143]
[73]
Cipolli, C.; Ferrara, M.; De Gennaro, L.; Plazzi, G. Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Med. Rev., 2017, 35, 8-20.
[http://dx.doi.org/10.1016/j.smrv.2016.07.005] [PMID: 27569701]
[74]
Scarpelli, S.; Bartolacci, C.; D’Atri, A.; Gorgoni, M.; De Gennaro, L. The functional role of dreaming in emotional processes. Front. Psychol., 2019, 10, 459.
[http://dx.doi.org/10.3389/fpsyg.2019.00459] [PMID: 30930809]
[75]
Aserinsky, E.; Kleitman, N. Two types of ocular motility occurring in sleep. J. Appl. Physiol., 1955, 8(1), 1-10.
[http://dx.doi.org/10.1152/jappl.1955.8.1.1] [PMID: 13242483]
[76]
Solms, M. Dreaming and REM sleep are controlled by different brain mechanisms. Behav. Brain Sci., 2000, 23(6), 843-850.
[http://dx.doi.org/10.1017/S0140525X00003988] [PMID: 11515144]
[77]
Siclari, F.; Tononi, G. Chapter 7 -Sleep and dreaming. The Neurology of Conciousness, 2nd ed; Elsevier, 2016, pp. 107-128.
[http://dx.doi.org/10.1016/B978-0-12-800948-2.00007-8]
[78]
Solms, M.; Turnbull, O.H. What Is Neuropsychoanalysis? Neuro-psychoanalysis, 2011, 13(2), 133-145.
[http://dx.doi.org/10.1080/15294145.2011.10773670]
[79]
Jacobs, L.; Feldman, M.; Bender, M.B. Eye movements during sleep. I. The pattern in the normal human. Arch. Neurol., 1971, 25(2), 151-159.
[http://dx.doi.org/10.1001/archneur.1971.00490020069008] [PMID: 4328322]
[80]
Bértolo, H.; Paiva, T.; Pessoa, L.; Mestre, T.; Marques, R.; Santos, R. Visual dream content, graphical representation and EEG alpha activity in congenitally blind subjects. Brain Res. Cogn. Brain Res., 2003, 15(3), 277-284.
[http://dx.doi.org/10.1016/S0926-6410(02)00199-4] [PMID: 12527101]
[81]
Meaidi, A.; Jennum, P.; Ptito, M.; Kupers, R. The sensory construction of dreams and nightmare frequency in congenitally blind and late blind individuals. Sleep Med., 2014, 15(5), 586-595.
[http://dx.doi.org/10.1016/j.sleep.2013.12.008] [PMID: 24709309]
[82]
Scarpelli, S.; Alfonsi, V.; Mangiaruga, A.; Musetti, A.; Quattropani, M.C.; Lenzo, V.; Freda, M.F.; Lemmo, D.; Vegni, E.; Borghi, L.; Saita, E.; Cattivelli, R.; Castelnuovo, G.; Plazzi, G.; De Gennaro, L.; Franceschini, C. Pandemic nightmares: Effects on dream activity of the COVID-19 lockdown in Italy. J. Sleep Res., 2021, 30(5), e13300.
[http://dx.doi.org/10.1111/jsr.13300] [PMID: 33547703]
[83]
Hrvoj-Mihic, B.; Semendeferi, K. Neurodevelopmental disorders of the prefrontal cortex in an evolutionary context. Prog. Brain Res., 2019, 250, 109-127.
[http://dx.doi.org/10.1016/bs.pbr.2019.05.003] [PMID: 31703898]
[84]
Rolls, E.T. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct. Funct., 2019, 224(9), 3001-3018.
[http://dx.doi.org/10.1007/s00429-019-01945-2] [PMID: 31451898]
[85]
Schäfer, S.; Frings, C. Searching for the inner self: Evidence against a direct dependence of the self-prioritization effect on the ventro-medial prefrontal cortex. Exp. Brain Res., 2019, 237(1), 247-256.
[http://dx.doi.org/10.1007/s00221-018-5413-1] [PMID: 30382323]
[86]
Chau, B.K.H.; Jarvis, H.; Law, C.K.; Chong, T.T. Dopamine and reward: A view from the prefrontal cortex. Behav. Pharmacol., 2018, 29(7), 569-583.
[http://dx.doi.org/10.1097/FBP.0000000000000424] [PMID: 30188354]
[87]
Maquet, P.; Péters, J.; Aerts, J.; Delfiore, G.; Degueldre, C.; Luxen, A.; Franck, G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 1996, 383(6596), 163-166.
[http://dx.doi.org/10.1038/383163a0] [PMID: 8774879]
[88]
Braun, A.R.; Balkin, T.J.; Wesenten, N.J.; Carson, R.E.; Varga, M.; Baldwin, P.; Selbie, S.; Belenky, G.; Herscovitch, P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain, 1997, 120(Pt 7), 1173-1197.
[http://dx.doi.org/10.1093/brain/120.7.1173] [PMID: 9236630]
[89]
Nofzinger, E.A.; Mintun, M.A.; Wiseman, M.; Kupfer, D.J.; Moore, R.Y. Forebrain activation in REM sleep: An FDG PET study. Brain Res., 1997, 770(1-2), 192-201.
[http://dx.doi.org/10.1016/S0006-8993(97)00807-X] [PMID: 9372219]
[90]
Desseilles, M.; Dang-Vu, T.T.; Sterpenich, V.; Schwartz, S. Cognitive and emotional processes during dreaming: A neuroimaging view. Conscious. Cogn., 2011, 20(4), 998-1008.
[http://dx.doi.org/10.1016/j.concog.2010.10.005] [PMID: 21075010]
[91]
De Carli, F.; Proserpio, P.; Morrone, E.; Sartori, I.; Ferrara, M.; Gibbs, S.A.; De Gennaro, L.; Lo Russo, G.; Nobili, L. Activation of the motor cortex during phasic rapid eye movement sleep. Ann. Neurol., 2016, 79(2), 326-330.
[http://dx.doi.org/10.1002/ana.24556] [PMID: 26575212]
[92]
Maquet, P.; Laureys, S.; Peigneux, P.; Fuchs, S.; Petiau, C.; Phillips, C.; Aerts, J.; Del Fiore, G.; Degueldre, C.; Meulemans, T.; Luxen, A.; Franck, G.; Van Der Linden, M.; Smith, C.; Cleeremans, A. Experience-dependent changes in cerebral activation during human REM sleep. Nat. Neurosci., 2000, 3(8), 831-836.
[http://dx.doi.org/10.1038/77744] [PMID: 10903578]
[93]
De Gennaro, L.; Cipolli, C.; Cherubini, A.; Assogna, F.; Cacciari, C.; Marzano, C.; Curcio, G.; Ferrara, M.; Caltagirone, C.; Spalletta, G. Amygdala and hippocampus volumetry and diffusivity in relation to dreaming. Hum. Brain Mapp., 2011, 32(9), 1458-1470.
[http://dx.doi.org/10.1002/hbm.21120] [PMID: 20740648]
[94]
De Gennaro, L.; Lanteri, O.; Piras, F.; Scarpelli, S.; Assogna, F.; Ferrara, M.; Caltagirone, C.; Spalletta, G. Dopaminergic system and dream recall: An MRI study in Parkinson’s disease patients. Hum. Brain Mapp., 2016, 37(3), 1136-1147.
[http://dx.doi.org/10.1002/hbm.23095] [PMID: 26704150]
[95]
Blake, Y.; Terburg, D.; Balchin, R.; van Honk, J.; Solms, M. The role of the basolateral amygdala in dreaming. Cortex, 2019, 113, 169-183.
[http://dx.doi.org/10.1016/j.cortex.2018.12.016] [PMID: 30660955]
[96]
Spanò, G.; Pizzamiglio, G.; McCormick, C.; Clark, I.A.; De Felice, S.; Miller, T.D.; Edgin, J.O.; Rosenthal, C.R.; Maguire, E.A. Dreaming with hippocampal damage. eLife, 2020, 9, e56211.
[http://dx.doi.org/10.7554/eLife.56211] [PMID: 32508305]
[97]
Wamsley, E.J. How the brain constructs dreams. Elife, 2020, 9, e58874.
[http://dx.doi.org/10.7554/eLife.58874]
[98]
Eichenlaub, J.B.; Nicolas, A.; Daltrozzo, J.; Redouté, J.; Costes, N.; Ruby, P. Resting brain activity varies with dream recall frequency between subjects. Neuropsychopharmacology, 2014, 39(7), 1594-1602.
[http://dx.doi.org/10.1038/npp.2014.6] [PMID: 24549103]
[99]
Vallat, R.; Eichenlaub, J.B.; Nicolas, A.; Ruby, P. Dream recall frequency is associated with medial prefrontal cortex white-matter densi-ty. Front. Psychol., 2018, 9, 1856.
[http://dx.doi.org/10.3389/fpsyg.2018.01856] [PMID: 30319519]
[100]
Marzano, C.; Ferrara, M.; Mauro, F.; Moroni, F.; Gorgoni, M.; Tempesta, D.; Cipolli, C.; De Gennaro, L. Recalling and forgetting dreams: Theta and alpha oscillations during sleep predict subsequent dream recall. J. Neurosci., 2011, 31(18), 6674-6683.
[http://dx.doi.org/10.1523/JNEUROSCI.0412-11.2011] [PMID: 21543596]
[101]
Scarpelli, S.; Marzano, C.; D’Atri, A.; Gorgoni, M.; Ferrara, M.; De Gennaro, L. State- or trait-like individual differences in dream recall: Preliminary findings from a within-subjects study of multiple nap REM sleep awakenings. Front. Psychol., 2015, 6, 928.
[http://dx.doi.org/10.3389/fpsyg.2015.00928] [PMID: 26217264]
[102]
Sederberg, P.B.; Kahana, M.J.; Howard, M.W.; Donner, E.J.; Madsen, J.R. Theta and gamma oscillations during encoding predict subse-quent recall. J. Neurosci., 2003, 23(34), 10809-10814.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10809.2003] [PMID: 14645473]
[103]
Esposito, M.J.; Nielsen, T.A.; Paquette, T. Reduced alpha power associated with the recall of mentation from stage 2 and stage REM sleep. Psychophysiology, 2004, 41(2), 288-297.
[http://dx.doi.org/10.1111/j.1469-8986.00143.x] [PMID: 15032994]
[104]
Holst, S.C.; Landolt, H.P. Sleep-Wake Neurochemistry. Sleep Med. Clin., 2018, 13(2), 137-146.
[http://dx.doi.org/10.1016/j.jsmc.2018.03.002] [PMID: 29759265]
[105]
Yoshikawa, T.; Nakamura, T.; Yanai, K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br. J. Pharmacol., 2021, 178(4), 750-769.
[http://dx.doi.org/10.1111/bph.15220] [PMID: 32744724]
[106]
Gompf, H.S.; Anaclet, C. The neuroanatomy and neurochemistry of sleep-wake control. Curr. Opin. Physiol., 2020, 15, 143-151.
[http://dx.doi.org/10.1016/j.cophys.2019.12.012] [PMID: 32647777]
[107]
Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell. Mol. Life Sci., 2007, 64(10), 1187-1204.
[http://dx.doi.org/10.1007/s00018-007-6530-3] [PMID: 17364141]
[108]
Nishino, S.; Sagawa, Y. The neurochemistry of awakening: Findings from sleep disorder narcolepsy. Int. Rev. Neurobiol., 2010, 93, 229-255.
[http://dx.doi.org/10.1016/S0074-7742(10)93010-9] [PMID: 20970008]
[109]
Bogáthy, E.; Papp, N.; Vas, S.; Bagdy, G.; Tóthfalusi, L. AM-251, A cannabinoid antagonist, modifies the dynamics of sleep-wake cy-cles in rats. Front. Pharmacol., 2019, 10, 831.
[http://dx.doi.org/10.3389/fphar.2019.00831] [PMID: 31404291]
[110]
Amat-Foraster, M.; Celada, P.; Richter, U.; Jensen, A.A.; Plath, N.; Artigas, F.; Herrik, K.F. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Neuropharmacology, 2019, 158, 107745.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107745] [PMID: 31445017]
[111]
Sakurai, T.; Saito, Y.C.; Yanagisawa, M. Interaction between Orexin Neurons and Monoaminergic Systems. Front Neurol. Neurosci., 2021, 45, 11-21.
[http://dx.doi.org/10.1159/000514955] [PMID: 34052806]
[112]
Ross, J.A.; Van Bockstaele, E.J. The locus coeruleus- norepinephrine system in stress and arousal: Unraveling historical, current, and future perspectives. Front. Psychiatry, 2021, 11, 601519.
[http://dx.doi.org/10.3389/fpsyt.2020.601519] [PMID: 33584368]
[113]
Murillo-Rodriguez, E.; Poot-Ake, A.; Arias-Carrion, O.; Pacheco-Pantoja, E.; Fuente-Ortegon, A.L.; Arankowsky-Sandoval, G. The emerging role of the endocannabinoid system in the sleep-wake cycle modulation. Cent. Nerv. Syst. Agents Med. Chem., 2011, 11(3), 189-196.
[http://dx.doi.org/10.2174/187152411798047780] [PMID: 21919868]
[114]
Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev., 2011, 15(6), 411-418.
[http://dx.doi.org/10.1016/j.smrv.2011.08.003] [PMID: 22024172]
[115]
Prospéro-García, O.; Amancio-Belmont, O.; Becerril Meléndez, A.L.; Ruiz-Contreras, A.E.; Méndez-Díaz, M. Endocannabinoids and sleep. Neurosci. Biobehav. Rev., 2016, 71, 671-679.
[http://dx.doi.org/10.1016/j.neubiorev.2016.10.005] [PMID: 27756691]
[116]
Cherasse, Y.; Aritake, K.; Oishi, Y.; Kaushik, M.K.; Korkutata, M.; Urade, Y. The Leptomeninges Produce Prostaglandin D2 involved in sleep regulation in mice. Front. Cell. Neurosci., 2018, 12, 357.
[http://dx.doi.org/10.3389/fncel.2018.00357] [PMID: 30364224]
[117]
Chowdhury, S.; Matsubara, T.; Miyazaki, T.; Ono, D.; Fukatsu, N.; Abe, M.; Sakimura, K.; Sudo, Y.; Yamanaka, A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. eLife, 2019, 8, e44928.
[http://dx.doi.org/10.7554/eLife.44928] [PMID: 31159923]
[118]
Sun, M.J.; Tang, Y. Extracellular levels of the sleep homeostasis mediator, adenosine, are regulated by glutamatergic neurons during wakefulness and sleep. Purinergic Signal., 2020, 16(4), 475-476.
[http://dx.doi.org/10.1007/s11302-020-09758-3] [PMID: 33404956]
[119]
Cissé, Y.; Ishibashi, M.; Jost, J.; Toossi, H.; Mainville, L.; Adamantidis, A.; Leonard, C.S.; Jones, B.E. Discharge and Role of GABA pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recordings in mice. J. Neurosci., 2020, 40(31), 5970-5989.
[http://dx.doi.org/10.1523/JNEUROSCI.2875-19.2020] [PMID: 32576622]
[120]
Walzer, M.; Wu, R.; Ahmad, M.; Freeman, J.; Zammit, G.; Marek, G.J. A randomized phase 1 single-dose polysomnography study of ASP8062, a GABAB receptor positive allosteric modulator. Psychopharmacology (Berl.), 2021, 238(3), 867-876.
[http://dx.doi.org/10.1007/s00213-020-05738-y] [PMID: 33433644]
[121]
Jagannath, A.; Varga, N.; Dallmann, R.; Rando, G.; Gosselin, P.; Ebrahimjee, F.; Taylor, L.; Mosneagu, D.; Stefaniak, J.; Walsh, S.; Pa-lumaa, T.; Di Pretoro, S.; Sanghani, H.; Wakaf, Z.; Churchill, G.C.; Galione, A.; Peirson, S.N.; Boison, D.; Brown, S.A.; Foster, R.G.; Vasudevan, S.R. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat. Commun., 2021, 12(1), 2113.
[http://dx.doi.org/10.1038/s41467-021-22179-z] [PMID: 33837202]
[122]
Bandaru, S.S.; Khanday, M.A.; Ibrahim, N.; Naganuma, F.; Vetrivelan, R. Sleep-wake control by melanin-concentrating hormone (MCH) neurons: A review of recent findings. Curr. Neurol. Neurosci. Rep., 2020, 20(12), 55.
[http://dx.doi.org/10.1007/s11910-020-01075-x] [PMID: 33006677]
[123]
Kushikata, T.; Hirota, K.; Saito, J.; Takekawa, D. Roles of Neuropeptide S in anesthesia, analgesia, and sleep. Pharmaceuticals (Basel), 2021, 14(5), 483.
[http://dx.doi.org/10.3390/ph14050483] [PMID: 34069327]
[124]
Poluektov, M.G.; Golovatyuk, A.O. Sleep disorders in acute and chronic pain. Neurol. Neuropsychiatr. Psychosomat., 2021, 13(3), 125-130.
[http://dx.doi.org/10.14412/2074-2711-2021-3-125-130]
[125]
Koop, S.; Oster, H. Eat, sleep, repeat - endocrine regulation of behavioural circadian rhythms. FEBS J., 2021, 2021, 16109.
[http://dx.doi.org/10.1111/febs.16109] [PMID: 34228879]
[126]
Jaussent, I.; Bouyer, J.; Ancelin, M.L.; Akbaraly, T.; Pérès, K.; Ritchie, K.; Besset, A.; Dauvilliers, Y. Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly. Sleep, 2011, 34(8), 1103-1110.
[http://dx.doi.org/10.5665/SLEEP.1170] [PMID: 21804672]
[127]
Wennberg, A.M.; Canham, S.L.; Smith, M.T.; Spira, A.P. Optimizing sleep in older adults: Treating insomnia. Maturitas, 2013, 76(3), 247-252.
[http://dx.doi.org/10.1016/j.maturitas.2013.05.007] [PMID: 23746664]
[128]
Akbaraly, T.N.; Jaussent, I.; Besset, A.; Bertrand, M.; Barberger-Gateau, P.; Ritchie, K.; Ferrie, J.E.; Kivimaki, M.; Dauvilliers, Y. Sleep complaints and metabolic syndrome in an elderly population: The Three-City Study. Am. J. Geriatr. Psychiatry, 2015, 23(8), 818-828.
[http://dx.doi.org/10.1016/j.jagp.2014.10.001] [PMID: 25499672]
[129]
Mattis, J.; Sehgal, A. Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol. Metab., 2016, 27(4), 192-203.
[http://dx.doi.org/10.1016/j.tem.2016.02.003] [PMID: 26947521]
[130]
Gabelle, A.; Gutierrez, L.A.; Jaussent, I.; Navucet, S.; Grasselli, C.; Bennys, K.; Marelli, C.; David, R.; Andrieu, S.; Berr, C.; Vellas, B.; Dauvilliers, Y. Excessive sleepiness and longer nighttime in bed increase the risk of cognitive decline in frail elderly subjects: The MAPT-sleep study. Front. Aging Neurosci., 2017, 28, 9-312.
[http://dx.doi.org/10.3389/fnagi.2017.00312]
[131]
Incze, M.; Redberg, R.F.; Gupta, A. I have insomnia-what should I do? JAMA Intern. Med., 2018, 178(11), 1572.
[http://dx.doi.org/10.1001/jamainternmed.2018.2626] [PMID: 30208397]
[132]
Patel, D.; Steinberg, J.; Patel, P. Insomnia in the elderly: A review. J. Clin. Sleep Med., 2018, 14(6), 1017-1024.
[http://dx.doi.org/10.5664/jcsm.7172] [PMID: 29852897]
[133]
Sindi, S.; Kåreholt, I.; Johansson, L.; Skoog, J.; Sjöberg, L.; Wang, H.X.; Johansson, B.; Fratiglioni, L.; Soininen, H.; Solomon, A.; Skoog, I.; Kivipelto, M. Sleep disturbances and dementia risk: A multicenter study. Alzheimers Dement., 2018, 14(10), 1235-1242.
[http://dx.doi.org/10.1016/j.jalz.2018.05.012] [PMID: 30030112]
[134]
Desaulniers, J.; Desjardins, S.; Lapierre, S.; Desgagné, A. Sleep environment and insomnia in elderly persons living at home. J. Aging Res., 2018, 2018, 8053696.
[http://dx.doi.org/10.1155/2018/8053696] [PMID: 30363712]
[135]
Abad, V.C.; Guilleminault, C. Insomnia in elderly patients: Recommendations for pharmacological management. Drugs Aging, 2018, 35(9), 791-817.
[http://dx.doi.org/10.1007/s40266-018-0569-8] [PMID: 30058034]
[136]
Brandão, G.S.; Camelier, F.W.R.; Sampaio, A.A.C.; Brandão, G.S.; Silva, A.S.; Gomes, G.S.B.F.; Donner, C.F.; Oliveira, L.V.F.; Camelier, A.A. Association of sleep quality with excessive daytime somnolence and quality of life of elderlies of community. Multidiscip. Respir. Med., 2018, 13(1), 8.
[http://dx.doi.org/10.1186/s40248-018-0120-0] [PMID: 29568522]
[137]
Garbarino, S.; Scoditti, E.; Lanteri, P.; Conte, L.; Magnavita, N.; Toraldo, D.M. Obstructive sleep apnea with or without excessive day-time sleepiness: Clinical and experimental data-driven phenotyping. Front. Neurol., 2018, 9, 505.
[http://dx.doi.org/10.3389/fneur.2018.00505] [PMID: 29997573]
[138]
Kim, J.W.; Kim, T.; Shin, J.; Choe, G.; Lim, H.J.; Rhee, C.S.; Lee, K.; Cho, S.W. Prediction of obstructive sleep apnea based on respirato-ry sounds recorded between sleep onset and sleep offset. Clin. Exp. Otorhinolaryngol., 2019, 12(1), 72-78.
[http://dx.doi.org/10.21053/ceo.2018.00388] [PMID: 30189718]
[139]
Carneiro-Barrera, A.; Díaz-Román, A.; Guillén-Riquelme, A.; Buela-Casal, G. Weight loss and lifestyle interventions for obstructive sleep apnoea in adults: Systematic review and meta-analysis. Obes. Rev., 2019, 20(5), 750-762.
[http://dx.doi.org/10.1111/obr.12824] [PMID: 30609450]
[140]
Zalai, D.; Bingeliene, A.; Shapiro, C. Sleepiness in the elderly. Sleep Med. Clin., 2017, 12(3), 429-441.
[http://dx.doi.org/10.1016/j.jsmc.2017.03.015] [PMID: 28778240]
[141]
Junho, B.T.; Kummer, A.; Cardoso, F.; Teixeira, A.L.; Rocha, N.P. Clinical predictors of excessive daytime sleepiness in patients with Parkinson’s Disease. J. Clin. Neurol., 2018, 14(4), 530-536.
[http://dx.doi.org/10.3988/jcn.2018.14.4.530] [PMID: 30198233]
[142]
Maugeri, A.; Medina-Inojosa, J.R.; Kunzova, S.; Agodi, A.; Barchitta, M.; Sochor, O.; Lopez-Jimenez, F.; Geda, Y.E.; Vinciguerra, M. Sleep duration and excessive daytime sleepiness are associated with obesity independent of diet and physical activity. Nutrients, 2018, 10(9), 1219.
[http://dx.doi.org/10.3390/nu10091219] [PMID: 30177634]
[143]
Hombali, A.; Seow, E.; Yuan, Q.; Chang, S.H.S.; Satghare, P.; Kumar, S.; Verma, S.K.; Mok, Y.M.; Chong, S.A.; Subramaniam, M. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res., 2019, 279, 116-122.
[http://dx.doi.org/10.1016/j.psychres.2018.07.009] [PMID: 30072039]
[144]
K., Pavlova M.; Latreille, V. Sleep disorders. Am. J. Med., 2019, 132(3), 292-299.
[http://dx.doi.org/10.1016/j.amjmed.2018.09.021] [PMID: 30292731]
[145]
Gulia, K.K.; Kumar, V.M. Sleep disorders in the elderly: A growing challenge. Psychogeriatrics, 2018, 18(3), 155-165.
[http://dx.doi.org/10.1111/psyg.12319] [PMID: 29878472]
[146]
Iranzo, A. Parasomnias and sleep-related movement disorders in older Adults. Sleep Med. Clin., 2018, 13(1), 51-61.
[http://dx.doi.org/10.1016/j.jsmc.2017.09.005] [PMID: 29412983]
[147]
Miner, B.; Kryger, M.H. Sleep in the aging population. Sleep Med. Clin., 2017, 12(1), 31-38.
[http://dx.doi.org/10.1016/j.jsmc.2016.10.008] [PMID: 28159095]
[148]
Grandner, M.A.; Winkelman, J.W. Nocturnal leg cramps: Prevalence and associations with demographics, sleep disturbance symptoms, medical conditions, and cardiometabolic risk factors. PLoS One, 2017, 12(6), e0178465.
[http://dx.doi.org/10.1371/journal.pone.0178465] [PMID: 28586374]
[149]
Yaremchuk, K. Sleep disorders in the elderly. Clin. Geriatr. Med., 2018, 34(2), 205-216.
[http://dx.doi.org/10.1016/j.cger.2018.01.008] [PMID: 29661333]
[150]
Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The Orexin/Receptor System: Molecular mechanism and thera-peutic potential for neurological diseases. Front. Mol. Neurosci., 2018, 11, 220.
[http://dx.doi.org/10.3389/fnmol.2018.00220] [PMID: 30002617]
[151]
Bonvalet, M.; Ollila, H.M.; Ambati, A.; Mignot, E. Autoimmunity in narcolepsy. Curr. Opin. Pulm. Med., 2017, 23(6), 522-529.
[http://dx.doi.org/10.1097/MCP.0000000000000426] [PMID: 28991006]
[152]
Takenoshita, S.; Sakai, N.; Chiba, Y.; Matsumura, M.; Yamaguchi, M.; Nishino, S. An overview of hypocretin based therapy in narco-lepsy. Expert Opin. Investig. Drugs, 2018, 27(4), 389-406.
[http://dx.doi.org/10.1080/13543784.2018.1459561] [PMID: 29623725]
[153]
Fronczek, R.; van Geest, S.; Frölich, M.; Overeem, S.; Roelandse, F.W.; Lammers, G.J.; Swaab, D.F. Hypocretin (orexin) loss in Alz-heimer’s disease. Neurobiol. Aging, 2012, 33(8), 1642-1650.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.014] [PMID: 21546124]
[154]
Roh, J.H.; Jiang, H.; Finn, M.B.; Stewart, F.R.; Mahan, T.E.; Cirrito, J.R.; Heda, A.; Snider, B.J.; Li, M.; Yanagisawa, M.; de Lecea, L.; Holtzman, D.M. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J. Exp. Med., 2014, 211(13), 2487-2496.
[http://dx.doi.org/10.1084/jem.20141788] [PMID: 25422493]
[155]
Nixon, J.P.; Mavanji, V.; Butterick, T.A.; Billington, C.J.; Kotz, C.M.; Teske, J.A. Sleep disorders, obesity, and aging: The role of orexin. Ageing Res. Rev., 2015, 20, 63-73.
[http://dx.doi.org/10.1016/j.arr.2014.11.001] [PMID: 25462194]
[156]
Kovalská, P.; Kemlink, D.; Nevšímalová, S.; Maurovich Horvat, E.; Jarolímová, E.; Topinková, E.; Šonka, K. Narcolepsy with cataplexy in patients aged over 60 years: A case-control study. Sleep Med., 2016, 26, 79-84.
[http://dx.doi.org/10.1016/j.sleep.2016.05.011] [PMID: 27665501]
[157]
Gabelle, A.; Jaussent, I.; Hirtz, C.; Vialaret, J.; Navucet, S.; Grasselli, C.; Robert, P.; Lehmann, S.; Dauvilliers, Y. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol. Aging, 2017, 53, 59-66.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.01.011] [PMID: 28235679]
[158]
Tribl, G.G.; Wetter, T.C.; Schredl, M. Dreaming under antidepressants: A systematic review on evidence in depressive patients and healthy volunteers. Sleep Med. Rev., 2013, 17(2), 133-142.
[http://dx.doi.org/10.1016/j.smrv.2012.05.001] [PMID: 22800769]
[159]
Nicolas, A.; Ruby, P.M. Dreams, sleep, and psychotropic drugs. Front. Neurol., 2020, 11, 507495.
[http://dx.doi.org/10.3389/fneur.2020.507495] [PMID: 33224081]
[160]
Hutka, P.; Krivosova, M.; Muchova, Z.; Tonhajzerova, I.; Hamrakova, A.; Mlyncekova, Z.; Mokry, J.; Ondrejka, I. Association of sleep architecture and physiology with depressive disorder and antidepressants treatment. Int. J. Mol. Sci., 2021, 22(3), 1333.
[http://dx.doi.org/10.3390/ijms22031333] [PMID: 33572767]
[161]
Lechinger, J.; Koch, J.; Weinhold, S.L.; Seeck-Hirschner, M.; Stingele, K.; Kropp-Näf, C.; Braun, M.; Drews, H.J.; Aldenhoff, J.; Huchzermeier, C.; Göder, R. REM density is associated with treatment response in major depression: Antidepressant pharmacotherapy vs. psychotherapy. J. Psychiatr. Res., 2021, 133, 67-72.
[http://dx.doi.org/10.1016/j.jpsychires.2020.12.009] [PMID: 33310502]
[162]
Calohan, J.; Peterson, K.; Peskind, E.R.; Raskind, M.A. Prazosin treatment of trauma nightmares and sleep disturbance in soldiers de-ployed in Iraq. J. Trauma. Stress, 2010, 23(5), 645-648.
[http://dx.doi.org/10.1002/jts.20570] [PMID: 20931662]
[163]
Khazaie, H.; Nasouri, M.; Ghadami, M.R. Prazosin for trauma nightmares and sleep disturbances in combat veterans with post-traumatic stress disorder. Iran. J. Psychiatry. Behav. Sci., 2016, 10(3), e2603.
[http://dx.doi.org/10.17795/ijpbs-2603] [PMID: 27822278]
[164]
Roepke, S.; Danker-Hopfe, H.; Repantis, D.; Behnia, B.; Bernard, F.; Hansen, M.L.; Otte, C. Doxazosin, an &-1-adrenergic-receptor an-tagonist, for nightmares in patients with posttraumatic stress disorder and/or borderline personality disorder: A chart review. Pharmacopsychiatry, 2017, 50(1), 26-31.
[http://dx.doi.org/10.1055/s-0042-107794] [PMID: 27276365]
[165]
Calegaro, V.C.; Mosele, P.H.C.; Duarte, E. Souza, I.; da Silva, E.M.; Trindade, J.P.; Trindade, J.P. Treating nightmares in PTSD with dox-azosin: A report of three cases. Br. J. Psychiatry, 2019, 41(2), 189-190.
[http://dx.doi.org/10.1590/1516-4446-2018-0292] [PMID: 30942322]
[166]
Colace, C. Drug dreams in cocaine addiction. Drug Alcohol Rev., 2006, 25(2), 177.
[http://dx.doi.org/10.1080/09595230500538843] [PMID: 16627309]
[167]
Tanguay, H.; Zadra, A.; Good, D.; Leri, F. Relationship between drug dreams, affect, and craving during treatment for substance depend-ence. J. Addict. Med., 2015, 9(2), 123-129.
[http://dx.doi.org/10.1097/ADM.0000000000000105] [PMID: 25700139]
[168]
Silva, T.R.D.; Nappo, S.A. Crack cocaine and dreams: The view of users. Cien. Saude Colet., 2019, 24(3), 1091-1099.
[http://dx.doi.org/10.1590/1413-81232018243.05072017] [PMID: 30892529]
[169]
Ellis, J.D.; Mayo, J.L.; Finan, P.H.; Gamaldo, C.E.; Huhn, A.S. Clinical correlates of drug-related dreams in opioid use disorder. Am. J. Addict., 2022, 31(1), 37-45.
[http://dx.doi.org/10.1111/ajad.13219] [PMID: 34459058]
[170]
Van Amsterdam, J.; Van Den Brink, W. Harm related to recreational ketamine use and its relevance for the clinical use of ketamine. A systematic review and comparison study. Expert Opin. Drug Saf., 2022, 21(1), 83-94.
[http://dx.doi.org/10.1080/14740338.2021.1949454] [PMID: 34176409]
[171]
Cheong, S.H.; Lee, K.M.; Lim, S.H.; Cho, K.R.; Kim, M.H.; Ko, M.J.; Shim, J.C.; Oh, M.K.; Kim, Y.H.; Lee, S.E. Brief report: The effect of suggestion on unpleasant dreams induced by ketamine administration. Anesth. Analg., 2011, 112(5), 1082-1085.
[http://dx.doi.org/10.1213/ANE.0b013e31820eeb0e] [PMID: 21346162]
[172]
Blagrove, M.; Morgan, C.J.; Curran, H.V.; Bromley, L.; Brandner, B. The incidence of unpleasant dreams after sub-anaesthetic ketamine. Psychopharmacology (Berl.), 2009, 203(1), 109-120.
[http://dx.doi.org/10.1007/s00213-008-1377-3] [PMID: 18949459]
[173]
Gyulaházi, J.; Varga, K.; Iglói, E.; Redl, P.; Kormos, J.; Fülesdi, B. The effect of preoperative suggestions on perioperative dreams and dream recalls after administration of different general anesthetic combinations: A randomized trial in maxillofacial surgery. BMC Anesthesiol., 2015, 15(1), 11.
[http://dx.doi.org/10.1186/1471-2253-15-11] [PMID: 25685056]
[174]
Gyulaházi, J.; Redl, P.; Karányi, Z.; Varga, K.; Fülesdi, B. Dreaming under anesthesia: Is it a real possiblity? Investigation of the effect of preoperative imagination on the quality of postoperative dream recalls. BMC Anesthesiol., 2016, 16(1), 53.
[http://dx.doi.org/10.1186/s12871-016-0214-1] [PMID: 27484458]
[175]
Yoshida, A.; Fujii, K.; Yoshikawa, T.; Kawamata, T. Factors associated with quality of dreams during general anesthesia: A prospective observational study. J. Anesth., 2021, 35(4), 576-580.
[http://dx.doi.org/10.1007/s00540-021-02942-8] [PMID: 33950294]
[176]
Sandman, N.; Valli, K.; Kronholm, E.; Ollila, H.M.; Revonsuo, A.; Laatikainen, T.; Paunio, T. Nightmares: Prevalence among the finnish general adult population and war veterans during 1972-2007. Sleep, 2013, 36(7), 1041-1050.
[http://dx.doi.org/10.5665/sleep.2806] [PMID: 23814341]
[177]
Baird, T.; Theal, R.; Gleeson, S.; McLeay, S.; O’Sullivan, R.; McLeay, S.; Harvey, W.; Romaniuk, M.; Crawford, D.; Colquhoun, D.; McD, Young R.; Dwyer, M.; Gibson, J.; O’Sullivan, R.; Cooksley, G.; Strakosch, C.; Thomson, R.; Voisey, J.; Lawford, B. Detailed pol-ysomnography in australian vietnam veterans with and without posttraumatic stress disorder. J. Clin. Sleep Med., 2018, 14(9), 1577-1586.
[http://dx.doi.org/10.5664/jcsm.7340] [PMID: 30176975]
[178]
Worley, C.B.; Bolstad, C.J.; Nadorff, M.R. Epidemiology of disturbing dreams in a diverse US sample. Sleep Med., 2021, 83, 5-12.
[http://dx.doi.org/10.1016/j.sleep.2021.04.026] [PMID: 33990066]
[179]
Rasimas, J.J.; Liebelt, E.L. Adverse effects and toxicity of the atypical antipsychotics: What is important for the pediatric emergency medicine practitioner. Clin. Pediatr. Emerg. Med., 2012, 13(4), 300-310.
[http://dx.doi.org/10.1016/j.cpem.2012.09.005] [PMID: 23471213]
[180]
Stoner, S.C. Management of serious cardiac adverse effects of antipsychotic medications. Ment. Health Clin., 2018, 7(6), 246-254.
[http://dx.doi.org/10.9740/mhc.2017.11.246] [PMID: 29955530]
[181]
Kameg, B.; Champion, C. Atypical antipsychotics: Managing adverse effects. Perspect. Psychiatr. Care, 2021, 2021, 12837.
[http://dx.doi.org/10.1111/ppc.12837] [PMID: 33955013]
[182]
Petkovska, L.; Chibishev, A.; Stevcevska, A.; Smokovski, I.; Petkovski, D.; Antova, E. Multi-system complications after intravenous cocaine abuse. Open Access Maced. J. Med. Sci., 2017, 5(2), 231-235.
[http://dx.doi.org/10.3889/oamjms.2017.046] [PMID: 28507634]
[183]
Havakuk, O.; Rezkalla, S.H.; Kloner, R.A. The cardiovascular effects of cocaine. J. Am. Coll. Cardiol., 2017, 70(1), 101-113.
[http://dx.doi.org/10.1016/j.jacc.2017.05.014] [PMID: 28662796]
[184]
Self, T.H.; Shah, S.P.; March, K.L.; Sands, C.W. Asthma associated with the use of cocaine, heroin, and marijuana: A review of the evi-dence. J. Asthma, 2017, 54(7), 714-722.
[http://dx.doi.org/10.1080/02770903.2016.1259420] [PMID: 27858495]
[185]
Kariisa, M.; Scholl, L.; Wilson, N.; Seth, P.; Hoots, B. Drug overdose deaths involving cocaine and psychostimulants with abuse poten-tial - United States, 2003-2017. MMWR Morb. Mortal. Wkly. Rep., 2019, 68(17), 388-395.
[http://dx.doi.org/10.15585/mmwr.mm6817a3] [PMID: 31048676]
[186]
Jahir, T.; Hossain, S.M.S.; Risal, R.; Schmidt, M.; Enriquez, D.; Bagum, M. Cocaine hurts your kidneys too: A rare case of acute intersti-tial nephritis caused by cocaine abuse. Cureus, 2021, 13(11), e19236.
[http://dx.doi.org/10.7759/cureus.19236] [PMID: 34877213]
[187]
Rudin, D.; Liechti, M.E.; Luethi, D. Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics. Exp. Neurol., 2021, 343, 113778.
[http://dx.doi.org/10.1016/j.expneurol.2021.113778] [PMID: 34090893]
[188]
Jayanthi, S.; Daiwile, A.P.; Cadet, J.L. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp. Neurol., 2021, 344, 113795.
[http://dx.doi.org/10.1016/j.expneurol.2021.113795] [PMID: 34186102]
[189]
Mckenzie, A.; Meshkat, S.; Lui, L.M.W.; Ho, R.; Di Vincenzo, J.D.; Ceban, F.; Cao, B.; McIntyre, R.S. The effects of psychostimulants on cognitive functions in individuals with attention-deficit hyperactivity disorder: A systematic review. J. Psychiatr. Res., 2022, 149, 252-259.
[http://dx.doi.org/10.1016/j.jpsychires.2022.03.018] [PMID: 35303614]
[190]
Dinis-Oliveira, R.J. Metabolism and metabolomics of ketamine: A toxicological approach. Forensic Sci. Res., 2017, 2(1), 2-10.
[http://dx.doi.org/10.1080/20961790.2017.1285219] [PMID: 30483613]
[191]
Lavender, E.; Hirasawa-Fujita, M.; Domino, E.F. Ketamine’s dose related multiple mechanisms of actions: Dissociative anesthetic to rapid antidepressant. Behav. Brain Res., 2020, 390, 112631.
[http://dx.doi.org/10.1016/j.bbr.2020.112631] [PMID: 32437885]
[192]
Gitlin, J.; Chamadia, S.; Locascio, J.J.; Ethridge, B.R.; Pedemonte, J.C.; Hahm, E.Y.; Ibala, R.; Mekonnen, J.; Colon, K.M.; Qu, J.; Akeju, O. Dissociative and analgesic properties of ketamine are independent. Anesthesiology, 2020, 133(5), 1021-1028.
[http://dx.doi.org/10.1097/ALN.0000000000003529] [PMID: 32898213]
[193]
Kohtala, S. Ketamine-50 years in use: From anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol. Rep., 2021, 73(2), 323-345.
[http://dx.doi.org/10.1007/s43440-021-00232-4] [PMID: 33609274]
[194]
Orhurhu, V.J.; Vashisht, R.; Claus, L.E.; Cohen, S.P. Ketamine toxicity. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy